Multi-boson production at ATLAS

Al Goshaw (Duke University) for the ATLAS Collaboration

PHENO2016, Pittsburgh May 10, 2016

A broad menu of EWK boson studies at the LHC

Collisions		Mea	sure	ment	Production	EWK Study
p + p	\rightarrow	V	+	0 jets	EWKs-channel	
at	\rightarrow	V	+	2 forward jets	s VBF	TGC
7,8,13	\rightarrow	VV'	+	0 jets	EWKs-channel	TGC
TeV	\rightarrow	VV'	+	2 forward jets	s VBS	QGC
	\rightarrow	V V' V''	+	0 jets	EWKs-channel	QGC
Thanks to the LHC	Fro	m the exc of ATI	cellen LAS a	t performance nd CMS P	Studies using increasingly recise SM theory calculations	Test the SM and look for BSM physics
				Al Goshaw Pheno 20	16	

2

Thanks to CERN and the LHC ...

pp collisions Typical data set analyzed by ATLAS

7 TeV 8 TeV 13 TeV 13 TeV ~ 5 fb⁻¹
~ 20 fb⁻¹
2015 data sample of 3.2 fb⁻¹
2016 first collisions occurring now ...
Goal ~ 25 fb⁻¹ by end of year *

* modulo DWF

Beautiful detector performance ...

$p + p \rightarrow Z(\mu^+ \mu^-) + Z(e^+ e^-) + ... at 13 TeV$

Recent ATLAS measurements for VV'and VVV

Di-boson production and TGC studies

- Solution Use Z decays to $e^+ e^-$, $\mu^+ \mu^-$ and $\nu \nu$ from 20.3 fb⁻¹ of data.
- Cross sections measured for $Z(I^+ I^-) + \gamma (E_T(\gamma) > 15 \text{ GeV}; Z(I^+ I^-) > 40 \text{ GeV})$ and for $Z(v v) + \gamma (E_T(\gamma) > 130 \text{ GeV})$.
- Solution Major backgrounds (Z/W+jets, γ +jets) determined with data driven methods
- Compare measurements to SM theory calculations at NNLO (arxiv:1504.01330)
- Search for BSM sources of Z γ production from aTGC's .

$p + p \rightarrow Z + \gamma + \dots$ at 8 TeV <u>arxiv:1604.05232</u>

$\ref{eq:set_aTGC}$ limits on ZZy and Zyy using high Et photons

$$h_i^{V}/(1 + \hat{s}/\Lambda_{FF}^2)^n$$

with $\Lambda = 4$ TeV for uniterization

The best constraints to date on h_i^V (i=3,4 V= γ , Z).

$p + p \rightarrow W^{\pm} + Z + \dots$ at 8 TeV arxiv:1603.02151

- Solution Use W decays to e ν and μ ν , Z decays to e^+ e^- and μ^+ μ^- from 20.3 fb^-1 of data.
- Event selected with at least one charged lepton with Et > 25 GeV,
- Backgrounds from Z+jets, Z+ γ, WW and top estimated from data driven methods; other EWK backgrounds from MC simulations.
- Total and differential cross sections measured for 66 < M(l⁺ l⁻) < 116 GeV</p>
- Precision of measurements require SM predictions beyond NLO. New (April 28, 2016) NNLO calculations now available: arXiv:1604.08576.

$p + p \rightarrow W^{\pm} + Z + ... \text{ at 8 TeV}$ arxiv:1603.02151

NLO SM predictions (redline Powheg+Pythia) disagree with data.

Channel	$\sigma^{\rm fid.}$	$\delta_{ m stat.}$	$\delta_{ m sys.}$	$\delta_{ m lumi.}$	$\delta_{ m tot.}$
	[fb]	[%]	[%]	[%]	[%]
Combined	35.1	2.7	2.4	2.2	4.2
SM expectation	30.0				7.0

$p + p \rightarrow W^{\pm} + Z + \dots$ at 8 TeV arxiv:1603.02151

 The WZ channel has an approximate radiation zero similar to that Wγ production and is therefore particularly sensitive to higher order QCD corrections (arXiv:1604.08576):

\sqrt{s}	$\sigma_{\rm LO}~[{\rm pb}]$	$\sigma_{\rm NLO} \ [{\rm pb}]$	$\sigma_{\rm NNLO} \ [{\rm pb}]$	$\sigma_{ m NLO}/\sigma_{ m LO}$	$\sigma_{ m NNLO}/\sigma_{ m NLO}$
8	$13.654(1)^{+1.3\%}_{-2.1\%}$	$22.750(2)^{+5.1\%}_{-3.9\%}$	$24.690(16)^{+1.8\%}_{-1.9\%}$	+66.6%	+ 8.5%

Compare the NNLO prediction to the ATLAS 8 TeV WZ measurement with 66 < M(I⁺ I⁻) < 116 GeV:</p>

aTGC limits from $p + p \rightarrow W^{\pm} + Z + ...$ at 8 TeV arxiv:1603.02151

$$p + p \rightarrow W^{\pm} + Z + ...$$
 at 13 TeV
Approved today by ATLAS

- Solution Use W decays to e ν and μ ν , Z decays to e^+ e^- and μ^+ μ^- from 3.2 fb^-1 of data.
- Event selected with at least one charged lepton with Et > 25 GeV,
- Backgrounds from Z+jets, Z+ γ, WW and top estimated from data driven methods; other EWK backgrounds from MC simulations.
- Total cross sections measured for 66 < M(I⁺ I⁻) < 116 GeV</p>

Detector-level data (points with uncertainties). The solid red curve is the total background plus SM WZ signal with uncertainty indicated by the shaded violet band.

The SM WZ signal is calculated at NLO from Powheg+Pythia scaled by 1.17 to match the data.

p + p → W[±]+ Z + ... at 13 TeV Approved today by ATLAS

a) Ratio of measured WZ fiducial cross sections compared to NLO SM prediction from Powheg+Pythia with CT10 pdf.

 b) Ratio of W⁺Z/W⁻Z fiducial cross sections compared to NLO SM prediction from Powheg+Pythia with CT10 pdf.

$p + p \rightarrow W^{\pm} + Z + \dots$ at 13 TeV Just aproved by ATLAS

Compare the ATLAS 13 TeV WZ measurement to the recent NNLO SM predictions (arXiv:1604.08576).

Tri-boson production at ATLAS and QGC's

	WWWW	WWZZ	ZZZZ	$WW\gamma Z$	WWγγ	ZZZγ	ΖΖγγ	Ζγγγ	γγγγ
$\mathcal{L}_{S,0}, \mathcal{L}_{S,1}$	X	Х	X	0	0	0	0	0	0
$\mathcal{L}_{M,0}, \mathcal{L}_{M,1}, \mathcal{L}_{M,6}, \mathcal{L}_{M,7}$	Х	Х	Х	X	Х	X	X	0	0
$\mathcal{L}_{M,2}, \mathcal{L}_{M,3}, \mathcal{L}_{M,4}, \mathcal{L}_{M,5}$	0	Х	X	X	Х	X	X	0	0
$\mathcal{L}_{T,0}, \mathcal{L}_{T,1}, \mathcal{L}_{T,2}$	Х	Х	Х	X	Х	X	X	X	X
$\mathcal{L}_{T,5}, \mathcal{L}_{T,6}, \mathcal{L}_{T,7}$	0	Х	X	X	Х	X	X	X	X
$\mathcal{L}_{T,8}, \mathcal{L}_{T,9}$	0	0	X	0	0	X	X	X	X

- Compare measurements to SM theory calculations at NLO using MCFM.
- Solution For $Z_{\gamma\gamma}$ photons with $E_{\tau}(\gamma) > 15$ GeV and $\Delta R(I-\gamma) > 0.4$ For Wyy photons with $E_{\tau}(\gamma) > 20$ GeV and $\Delta R(I-\gamma) > 0.7$

Search for BSM sources of Zyy /Wyy production from aQGC's.

Select W/Z leptonic decays from 20.3 fb⁻¹ of data.

$$p + p \rightarrow Z + \gamma + \gamma \dots$$
 at 8 TeV
arxiv:1604.05232

$$p + p \rightarrow W + \gamma + \gamma \dots at 8 TeV$$

arxiv:1503.03243

 $p + p \rightarrow W + \gamma + \gamma \dots$ at 8 TeV arxiv:1503.03243

- Observation of Z_{γγ} signal with significance at the level 5 sigma.
- Evidence for W_{γγ} with significance at the level 3 sigma.
- Within large data statistical uncertainties we find agreement with SM predictions at NLO using MCFM.

	$\sigma^{\rm fid}$ [fb]	$\sigma^{\rm MCFM}$ [fb]
Inclusive $(N_{\text{jet}} \ge 0)$		
$\mu u\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)	
$e \nu \gamma \gamma$	$4.3 + 1.8 - 1.6$ (stat.) $+ 1.9 - 1.8$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
$\ell u \gamma \gamma$	$6.1 \ ^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)	
Exclusive $(N_{\rm jet} = 0)$		
$\mu u\gamma\gamma$	$3.5 \pm 0.9 \text{ (stat.)} ^{+1.1}_{-1.0} \text{ (syst.)} \pm 0.1 \text{ (lumi.)}$	
$e \nu \gamma \gamma$	$1.9 \ ^{+1.4}_{-1.1}$ (stat.) $\ ^{+1.1}_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
$\ell u \gamma \gamma$	$2.9 \ ^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)	

 \odot Use the M($\gamma\gamma$) spectrum to set aQGC limits: $M(\gamma\gamma) > 200 [300] GeV$ for $Z(I^+ I^-) + \gamma\gamma [Z(\nu\nu) + \gamma\gamma]$: $M(\gamma\gamma) > 300 GeV$ for $W + \gamma\gamma$ Choose some parameters describing dimension 8 operators:

$$\mathcal{L}_{M,2} = \frac{f_{M2}}{\Lambda^4} [B_{\mu\nu} B^{\mu\nu}] \times [(D_\beta \phi)^{\dagger} D^\beta \phi]$$

$$\mathcal{L}_{M,3} = \frac{f_{M3}}{\Lambda^4} [B_{\mu\nu} B^{\nu\beta}] \times [(D_\beta \phi)^{\dagger} D^\mu \phi]$$

$$\mathcal{L}_{T,0} = \frac{f_{T0}}{\Lambda^4} \mathrm{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times \mathrm{Tr}[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta}]$$

$$\mathcal{L}_{T,5} = \frac{f_{T5}}{\Lambda^4} \mathrm{Tr}[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu}] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = \frac{f_{T9}}{\Lambda^4} B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

(using convention of Eboli et al.)

 $WW_{\gamma\gamma} ZZ_{\gamma\gamma} Z_{\gamma\gamma\gamma}$ aQGC consistent with O SM 🗸

$p + p \rightarrow$	$Z + \gamma + \gamma \dots$	at 8 TeV
• •	arxiv:1604.052	<u>32</u>

n	$\Lambda_{\rm FF}$ [TeV]	Limits 95% C.L.	Observed [TeV ⁻⁴]	Expected [TeV ⁻⁴]
		f_{M2}/Λ^4	$[-1.6, 1.6] \times 10^4$	$[-1.2, 1.2] \times 10^4$
		f_{M3}/Λ^4	$[-2.9, 2.7] \times 10^4$	$[-2.2, 2.2] \times 10^4$
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	f_{T0}/Λ^4	$[-0.86, 1.03] \times 10^2$	$[-0.65, 0.82] \times 10^2$
		f_{T5}/Λ^4	$[-0.69, 0.68] \times 10^3$	$[-0.52, 0.52] \times 10^3$
		f_{T9}/Λ^4	$[-0.74, 0.74] \times 10^4$	$[-0.58, 0.59] \times 10^4$
	5.5	f_{M2}/Λ^4	$[-1.8, 1.9] \times 10^4$	$[-1.4, 1.5] \times 10^4$
	5.0	f_{M3}/Λ^4	$[-3.4, 3.3] \times 10^4$	$[-2.6, 2.6] \times 10^4$
2	0.7	f_{T0}/Λ^4	$[-2.3, 2.1] \times 10^3$	$[-1.9, 1.6] \times 10^3$
	0.6	f_{T5}/Λ^4	$[-2.3, 2.2] \times 10^4$	$[-1.8, 1.8] \times 10^4$
	0.4	f_{T9}/Λ^4	$[-0.89, 0.86] \times 10^{6}$	$[-0.71, 0.68] \times 10^{6}$

 $p + p \rightarrow W + \gamma + \gamma \dots$ at 8 TeV arxiv:1503.03243

		Observed $[TeV^{-4}]$	Expected $[\text{TeV}^{-4}]$	
n = 0	$ \begin{array}{c} f_{\rm T0}/\Lambda^4 \\ f_{\rm M2}/\Lambda^4 \\ f_{\rm M3}/\Lambda^4 \end{array} $	$\begin{array}{l} [-0.9,0.9]\times10^2\\ [-0.8,0.8]\times10^4\\ [-1.5,1.4]\times10^4\end{array}$	$\begin{array}{l} [-1.2, 1.2] \times 10^2 \\ [-1.1, 1.1] \times 10^4 \\ [-1.9, 1.8] \times 10^4 \end{array}$	
n = 1	$ \begin{array}{c} f_{\rm T0}/\Lambda^4 \\ f_{\rm M2}/\Lambda^4 \\ f_{\rm M3}/\Lambda^4 \end{array} $	$\begin{array}{l} [-7.6, \ 7.3] \times 10^2 \\ [-4.4, \ 4.6] \times 10^4 \\ [-8.9, \ 8.0] \times 10^4 \end{array}$	$ \begin{array}{c} [-9.6, \ 9.5] \times 10^2 \\ [-5.7, \ 5.9] \times 10^4 \\ [-11.0, \ 10.0] \times 10^4 \end{array} $	$\Lambda_{ m FF}$ = 600 GeV for f _{T0}
n = 2	$\begin{array}{c} f_{\rm T0}/\Lambda^4 \\ f_{\rm M2}/\Lambda^4 \\ f_{\rm M3}/\Lambda^4 \end{array}$	$\begin{array}{l} [-2.7,2.6]\times10^3\\ [-1.3,1.3]\times10^5\\ [-2.9,2.5]\times10^5\end{array}$	$\begin{array}{c} [-3.5, \ 3.4] \times 10^{3} \\ [-1.6, \ 1.7] \times 10^{5} \\ [-3.7, \ 3.3] \times 10^{5} \end{array}$	$\Lambda_{\rm FF}$ = 500 GeV for $f_{\rm M2}$ and $f_{\rm M2}$

(using convention from VBFNLO) 22

Summary

- The ATLAS (and CMS) collaboration are making measurements of the production of two EWK bosons in pp collisions at 7, 8 and recently 13 TeV. Tri-boson production is just now being detected.
- The theory community is keeping pace with the required SM theory predictions for di-boson production with QCD corrections at order α_s^2 .
- Measurements and SM theory agree at these new levels of precision.
- Testing the triple and quartic gauge couplings are putting stringent limits on the phase space of postulated anomalous-coupling parameters.
- The advent of high statistics 13 TeV data will continue to increase the precision of multi-boson measurements, requiring new QCD+EWK calculations for testing the validity (or violation) of SM triple and quartic gauge-coupling.

Additional Information

$p + p \rightarrow Z + \gamma + ...$ at 8 TeV arxiv:1604.05232

Set aTGC limits on ZZy and Zyy using high Et photons

Events

Data

---- Z(vv)γ h⁷=0.0001, Λ_{FF}= Z(vv)γ SM

Z(vv)jets

🔀 stat. 🕀 svst.

ATLAS

√s=8 TeV, 20.3 fb⁻¹

$p + p \rightarrow W^{\pm} + W^{\mp} + \dots$ at 8 TeV arxiv:1603.01702

Set aTGC limits on ZWW and γ WW couplings using the leading lepton in the e/µ final states. $\mathcal{L} = ig_{WWV} \left[g_1^V (W_{\mu\nu}^+ W^{-\mu} - W^{+\mu} W_{\mu\nu}^-) V^{\nu} + k^V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} + \frac{\lambda^V}{m_W^2} W_{\mu}^{+\nu} W_{\nu}^{-\rho} V_{\rho}^{\mu} \right]$

Limits or

Scenario

on	$\frac{\Delta g_1^V}{\left(1+\frac{\hat{s}}{\Lambda^2}\right)^2}$	$\frac{\Delta k^{\nu}}{\left(1+\frac{\hat{s}}{\Lambda^2}\right)^2}$	$\frac{\lambda^{V}}{\left(1+\frac{\hat{s}}{\Lambda^{2}}\right)^{2}}$	(V = Ζ, γ)
	Parameter	Expected	Observed	Expected

Observed

ZWW and γWW aTGC consistent with 0 SM ✔

beenano	I urunieter	Enpected	000001100	Enpected	00001104
		$\Lambda =$	= ∞	$\Lambda = 1$	7 TeV
	Δg_1^Z	[-0.498, 0.524]	[-0.215, 0.267]	[-0.519, 0.563]	[-0.226, 0.279]
NT.	$\Delta k^{\hat{Z}}$	[-0.053, 0.059]	[-0.027, 0.042]	[-0.057, 0.064]	[-0.028, 0.045]
No constraints	λ^Z	[-0.039, 0.038]	[-0.024, 0.024]	[-0.043, 0.042]	[-0.026, 0.025]
scenario	Δk^{γ}	[-0.109, 0.124]	[-0.054, 0.092]	[-0.118, 0.136]	[-0.057, 0.099]
	λ^{γ}	[-0.081, 0.082]	[-0.051, 0.052]	[-0.088, 0.089]	[-0.055, 0.055]
limita com	manahl	a ta an ha	++on +hon	nnoviour	ATI AC ma

Limits comparable to or better than previous ATLAS measurements.

$p + p \rightarrow W^{\pm} + Z + ... \text{ at 8 TeV}$ arxiv:1603.02151

Set aTGC limits on the ZWW coupling using the transverse mass of the WZ pair. Same paramaterization as for WW on page 13.

$\Lambda_{ m co}$	Coupling	Expected	Observed
	Δg_1^Z	[-0.023;0.055]	[-0.029;0.050
2 TeV	$\Delta \kappa^Z$	[-0.22;0.36]	[-0.23;0.46]
	λ^Z	[-0.026; 0.026]	[-0.028 ; 0.028
	Δg_1^Z	[-0.016; 0.033]	[-0.019; 0.029
15 TeV	$\Delta \kappa^Z$	[-0.17; 0.25]	[-0.19;0.30]
	λ^Z	[-0.016;0.016]	[-0.017;0.01]
	Δg_1^Z	[-0.016; 0.032]	[-0.019; 0.029
∞	$\Delta \kappa^Z$	[-0.17; 0.25]	[-0.19; 0.30]
	λ^Z	[-0.016;0.016]	[-0.016; 0.016

ZWW aTGC consistent with 0 SM 🖌

- Solution Use W leptonic decays to e ν , $\mu \, \nu \,$ from 20.3 fb⁻¹ of data.
- \clubsuit Accept events if no jets with E_{T} > 25 GeV within $|\eta|$ < 4.5 .
- Backgrounds from W+jets, Drell-Yan, top, multi-jets data-driven; Diboson (WZ, ZZ W/Zy) from MC
- SM theory calculations at NNLO arXiv:1408.5243 [hep-ph] and arXiv:1307.1347 [hep-ph]

Use Z decays to e⁺ e⁻ and μ⁺ μ⁻ from 3.2 fb⁻¹ of data.

- Require leptons P_{T} > 20 GeV and M(I+I-) 66-116 GeV.
- A total of 63 events are observed with a total background of $0.62^{+1.08}_{-0.11}$ events.
- SM predictions at NNLO Phys. Lett. B750 (2015) 407-410 are compared to the measurement.

