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We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We
show that the proposals based on the assumption that dark matter is made up of heavy particles with masses
which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated
long-range forces and radiative stability of the quintessence potential require that such dark matter and dark
energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light
axions, they can have significant mixings which are radiatively stable and perfectly consistent with
quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The
mixings yield interesting signatures which are observable and are within current cosmological limits but
could be constrained further by future observations.
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I. INTRODUCTION

Close to 95% of the Universe is invisible. About a quarter
of it is compressible, behaving as dark matter (DM). The
remaining three quarters has negative pressure—called dark
energy (DE)—and approximates the cosmological constant.
To leading order these two components seem to be mutually
noninteracting in the absence of gravity. The origin of their
scales and their relative normalization remains mysterious,
particularly in light of the cosmological constant problem
[1–4]. While we expect to observe and study systematically
the dark matter, DE is extremely difficult to explore beyond
simply establishing its existence.
Whatever we think about the cosmological constant

problem, nature solves it in someway. So one might wonder
if the residual components of the dark sector might be some
relics of themechanismwhich stabilizes the vacuum energy.
This might suggest that the dark degrees of freedom are not
totally decoupled from each other. They might have inter-
actions which transfer energy from one dark sector to
another. This question is particularly appealing since such
energy rebalances might be probed with direct observations
of large-scale structure and the cosmic microwave back-
ground (CMB) in the forthcoming experiments.
It is easy to imagine DM/DE mixing [5], especially since

one might resort to a fluid approximation to describe their
influence on astronomical scales [6–10]. The question is

whether such setups make sense in a realistic quantum field
theory. One might be tempted to ignore this issue, arguing
that we do not really know much about dark sectors. For
example, some question whether quantum field theory
(QFT) even works as usual in the dark sector, since after
all it suffers from the cosmological constant problem.
However, QFT has proven time and again to be the most
reliable tool for the description of consistent interacting
models in nature. So our starting point here will be to look
for a QFT description of interacting DM/DE.
We will outline the key obstructions to formulating an

interacting DM/DE theory in QFT both conceptually and
phenomenologically. The main conceptual obstacle stems
from decoupling: one expects that DM should be heavy
fields, and DE—if dynamical—should be light. Because of
decoupling, in a normal perturbative QFT very heavy and
very light fields do not interact very efficiently. If one
introduces strong couplings by hand, these lead to the
renormalization of the dark energy scales by the exchange
of dark matter quanta. That would render the DE potential
very steep, and so DE could not be a field in slow roll any
more. The only way for such a potential to behave as DE is
if the field is in the minimum with a nonzero cosmological
constant. Further, if for any reason the dark energy quanta
remain light, their exchange between dark matter particles
yields extra long-range forces between them, which can
easily violate observational bounds on DM interactions.
The combined implications of these problems for inter-

acting DM/DE models are quite severe for a broad class of
proposals.1 Combining the bounds from the weakness of
long-range forces and flatness of the light DE field potential

*damico.guido@gmail.com
†teresahamill@gmail.com
‡kaloper@physics.ucdavis.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

1Some bounds have already been considered in the literature;
see in particular Refs. [7,9].

PHYSICAL REVIEW D 94, 103526 (2016)

2470-0010=2016=94(10)=103526(14) 103526-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.103526
http://dx.doi.org/10.1103/PhysRevD.94.103526
http://dx.doi.org/10.1103/PhysRevD.94.103526
http://dx.doi.org/10.1103/PhysRevD.94.103526
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


after DM-induced radiative corrections are included pro-
hibits significant DM/DE mixing when DM are heavy
particles with masses mDM ≫ mDE.
However, we will show that significant DM/DE mixings

are quite likely if a fraction of DM is composed of ultralight
boson condensates, with mass not too much greater than the
current Hubble scale H0. Thus it is possible to have the
mass of this part of the DM close enough to the mass of DE
to evade decoupling. Using scaled-down axion monodro-
mies, which can arise, for example, in the “axiverse”
framework [11], we will see that a system of several axions
can easily yield such a model with dark energy and a
fraction of dark matter, with significant DM/DE inter-
actions. Wewill focus on a set of three axions, of which two
are very light, one being DE at the present and another, with
a mass m≳H0, being a component of DM. Since the
amount of ultralight dark matter is bounded [12,13], in this
case most of DM is provided by a heavier axion,2 with a
mass m ≫ H0. As a result, systems of coupled axions are
completely realistic frameworks for interacting DM/DE,
and so probing for DM/DE interactions becomes quite
sensible. In addition, such tests may be a new portal for
exploring the “axiverse.”

II. PROBLEMS WITH DM/DE INTERACTIONS

So imagine a model of interacting DM/DE within QFT.
The observations suggest that at cosmologically large
distances any such model should be described by a weakly
coupled effective field theory, involving an interaction
Lagrangian LIðϕ;ψÞ. Otherwise it would not even be
possible to identify dark matter and dark energy as separate
constituents of the Universe. Let the field ϕ be the DE field
(a “quintessence” [6,14–16], which is “fundamental” up to
some cutoff scale μ ≫ H0) and ψ a DM field. Depending
on the mass of the DM field, dark matter is either DM
particles (if the mass is large enough so that the particles are
nonrelativistic from matter/radiation equality onwards) or
an almost uniform, time-dependent, condensate of a DM
field zero mode (especially if the mass is small; but note
that even in this case, mDM ≫ mDE). Clearly, DM could
also be a combination of many separate components.
Suppose first that DM is made up of sufficiently heavy

particles. For simplicity,3 we could take them to be
fermions, with a mass term mψ ψ̄ψ . To model DM/DE
interactions, let the DM mass depend on the DE field
expectation value, mψ ¼ mψðϕÞ. Now, the DE field must
not change too quickly, in order to act as dark energy.
Further, since we are postulating that the underlying theory
of DE is an effective field theory, to ensure its validity we
require that ϕ=MPl is at most of order unity. So we can
expand

mψ ðϕÞ ¼ m0
ψ ð1þ cϕ=MPl þ � � �Þ ¼ m0

ψ þ gϕþ � � � : ð1Þ

Here g ¼ cm0
ψ=MPl, and c is a dimensionless number. So

unless c is exactly zero, the DM/DE interactions would
involve a Yukawa term

L ¼ gϕψ̄ψ ¼ c
m0

ψ

MPl
ϕψ̄ψ : ð2Þ

Clearly, prohibiting such a term would require imposing a
symmetry in the DE sector.
In the absence of a symmetry, however, this terms yields

new interaction channels. This coupling gives rise to
DM/DM interactions depicted by the Feynman diagram
of Fig. 1. The exchange of the virtual DE quanta generates
an attractive long-range force between a pair of DM
particles, with an effective potential

VDM−DM ≃ −
g2

r
e−mDEr ≃ −c2GN

m0
ψ1m

0
ψ2

r
e−mDEr; ð3Þ

where we have used the fact that 1=M2
Pl ¼ GN . This

expression, of course, is just the three-dimensional
Fourier transform of the Euclidean DE propagator,
ð~p2 þm2

DEÞ−1. Note that while the Yukawa suppression
cuts the DE-mediated force off at distances r ≫ 1=mDE, at
shorter distances the resultant force follows the inverse-
square law.
Another important consequence of this term arises from

the DE self-energy diagram of Fig. 2, which yields a
“dressing” of the DE potential and specifically the DE
Lagrangian mass term renormalization due to the emission
and reabsorption of the virtual DM quanta. The Lagrangian
mass term of the DE field, controlling the steepness of the
DE potential, is corrected additively by the contributions
from the virtual DM quanta. The corrections can be
calculated using the standard Feynman rules for the

FIG. 1. Dark matter scattering mediated by dark energy
exchange.

FIG. 2. Dark energy self-energy from dark matter exchange.

2Or something entirely different, which, as we noted, needs to
be decoupled from DE.

3This is a fairly common assumption [7,9].
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diagram (2), which yield the truncated scalar two-point
function

−iΣ ¼ g2
Z

d4p
ð2πÞ4 Tr

�
i

pþ k −m0
ψ

i
p −m0

ψ

�
; ð4Þ

where k ¼ γμkμ, and k and p are the external and internal
momenta, respectively, and m0

ψ is the dark matter mass.
Rationalizing the integrand by using the Feynman trick to
combine the factors in the denominator, performing the
trace and analytically continuing to d ¼ 4 − ϵ dimensions
leads to

−iΣ ¼ 4g2μ4−d
Z

ddp
ð2πÞd

Z
1

0

dx
p2 − xð1 − xÞk2 þm0

ψ
2

½p2 þ xð1 − xÞk2 −m0
ψ
2�2 ;

ð5Þ

where μ is the regularization scale which preserves the
dimensionality of the two-point function after continuing to
d ¼ 4 − ϵ dimensions. This integral is divergent, including
both divergences which depend on the external momentum
and those which do not. The former lead to the wave-
function renormalization of the scalar, whereas the latter
renormalize the mass term in the potential. For our
purposes it suffices to focus on the latter, and evaluate
the integral at zero external momentum, k2 ¼ 0. Then after
Wick rotation, the dark energy mass term correction is

Δm2
DE ¼ −4g2μ4−d

Z
ddpE

ð2πÞd
�

1

p2
E þm0

ψ
2
−

2m0
ψ
2

½p2
E þm0

ψ
2�2

�
:

ð6Þ

The integrals are straightforward to evaluate, albeit tedious.
We merely state the result here, in the limit when
4 − d ¼ ϵ → 0:

Δm2
DE ¼ 12g2m0

ψ
2

16π2

�
2

ϵ
þ ln

�
4πμ2

M2

�
− γ þ 1

3
− ln

�
m0

ψ
2

M2

��
;

ð7Þ

where γ is the Euler-Mascheroni constant, and the new
scale M is the renormalization scale, which designates the
scale at which the finite part of the renormalized DE mass is
determined. The divergent part ∝ 1=ϵ is subtracted by the
choice of the bare DE mass counterterm. Using the MS
subtraction scheme to define the finite part which is
canceled along with the infinity, which means the mass
counterterm is

δm2
DE ¼ −

12g2m0
ψ
2

16π2

�
2

ϵ
þ ln

�
4πμ2

M2

�
− γ

�
; ð8Þ

finally leads to the finite mass correction to the DE mass
term due to the exchange of virtual DM particles.
The finite DE mass depends on the physical mass of DM

particles,

Δm2
DEphys ¼ 12g2m0

ψ
2

16π2

�
1

3
− ln

�
m0

ψ
2

M2

��

≃ 3g2ðm0
ψ Þ2

2π2
ln
�
M
m0

ψ

�

≃ c2GNðm0
ψÞ4 ln

�
M
m0

ψ

�
: ð9Þ

Multiloop diagrams involving virtual DM quanta give rise
to the additional corrections to the DE Lagrangian mass
term, which scale with the same powers of DM mass and
the Planck scale. The logarithmic dependence of the
correction on DM masses means that it is physical and
cannot be summarily removed at all scales by a single finite
renormalization. In other words, although at a fixed scale
M the corrections to mDE could be subtracted away at
every order of the loop expansion, the resulting procedure
is badly radiatively unstable if the scale of the corrections is
much larger than the scale of the observationally required
value of the DE Lagrangian mass term. A small change of
the renormalization scale M would wreak havoc on the
cancellation scheme, requiring a completely different
prescription for the finite counterterms to maintain the
cancellation. This is beside any concern one might have
about the UV sensitivity of the theory, which we have
completely set aside here. The point is that the sensitivity of
the DE Lagrangian mass term to DM scales is a real thing;
as long as the DM particles are much heavier than DE, we
insist that the standard rules of QFT apply, and there are no
additional symmetries between the scales mDE and mDM to
cancel these corrections.4

What are the implications of these considerations?
First of all, the DE field should be very light to simulate
dynamical dark energy—a slowly varying scalar field.
Typically this is realized by taking the mass mDE to be
smaller than the current value of the Hubble parameter
≲H0 for the field to yield at least an e-fold of cosmic
acceleration now. Hence, at all subhorizon scales,
r < 1=H0, the DE field is effectively massless, giving rise
to an additional long-range force among dark matter
particles, VDM−DM ≃ −c2GNm0

ψ1m
0
ψ2=r. In the linearized

limit, this behaves as a scalar correction to gravity, and its
strength relative to the Newtonian potential is

VDM−DM

VN
≃ c2: ð10Þ

4Any additional protection mechanisms that might operate
above mDM, like supersymmetry, are irrelevant here.
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This quantity is constrained by the bounds on the weak
equivalence principle violation between dark and ordinary
matter [17–22] to be less than about 0.1. Therefore,

jcj≲ 1=3: ð11Þ

Note that if we rewrote Eq. (10) in terms of the Yukawa
coupling g ¼ cm0

ψ=MPl, we would get VDM−DM=VN≃
g2

GNðm0
ψ Þ2, which is essentially the parameter β of Eq. (18)

of Ref. [5], introduced by the comparison of long-range
dark energy and gravitational fields sourced by dark matter
agglomerates, if we ignore the variation of the DE field
between the interior and the exterior of the DM
agglomerate.5

Let us now turn to the quantum corrections to DE
mass (9). As we noted above, DM contributes to the DE
Lagrangian mass term regardless of any additional aspects
of the UV sensitivity and hierarchy problems. To keep the
DE field potential flat despite these corrections, one must
require ΔmDE ≲mDE. Then Eq. (9) and mDE ≲H0 yield

jcj≲MPlmDE

ðm0
ψÞ2

≲MPlH0

ðm0
ψ Þ2

≃
�
10−3 eV

m0
ψ

�
2

; ð12Þ

where in the last equation we substituted numerical values
of the Planck scale and the Hubble scale. The point of this
equation is to note that as the mass hierarchy between DE
and DM increases, the cross-coupling, as parametrized by
c, becomes extremely small quickly. Again, this is perfectly
reasonable since it is but a manifestation of decoupling of
heavy and light modes, which is universally valid in QFT.
Moreover, with the actual data reflecting the real world
included, Eq. (12) shows that it is generically extremely
difficult to couple any DM heavier than a milli-eV to DE
without completely destroying the DE sector. We summa-
rize Eqs. (11) and (12) in Fig. 3.
So, for standard quintessence fields with masses ≲H0,

the DM/DE interactions are extremely suppressed. This
renders simple interacting DM/DE models, with large mDM
and tiny mDE, such as those described in Ref. [7], com-
pletely unrealistic. The DM/DE interactions must be
irrelevant when mDM is large. The problem with this,
however, is that the phenomenological bounds on DM
masses coming from large-scale structure [23] require that
most of DM is considerably heavier than 10−3 eV. Hence,
if there are very light “dark” degrees of freedom, which can
interact significantly with quintessence, they cannot con-
stitute much of the cosmic contents. As a result, they cannot
affect DE evolution very much. Note that while we have
used fermions as an example of DM, we would get exactly
the same bounds if DMwere bosonic particles with trilinear

couplings to DE. Note also that here we have taken DE to
be a scalar, as is clear from the fermion mass term ∝ ψ̄ψ in
Eq. (2). If ϕ had been pseudoscalar, coupling to the fermion
bilinear ∝ ψ̄γ5ψ, the bounds from long-range forces would
essentially disappear since they would be spin-dependent
and drop with a higher power of distance [24]. The bounds
from the radiative corrections would however remain
essentially the same as discussed here, still prohibiting
the couplings of heavy DM to DE.
One might try to alleviate this by using a heavier DE

field. That could help both with the bounds on the
corrections to the DE potential and the bounds on the
extra long-range forces, since the mass corrections could be
larger and the force Yukawa-suppressed at distances longer
than 1=mDE. An example is provided by the so-called
MaVaN models [25]. The original proposal assumed that
DE is a single scalar with the mass parameter much larger
than the Hubble scale, mixing with a visible and sterile
neutrino. Although the scalar was too heavy to be in slow
roll on its own, the coupling to neutrinos could allow the
relic neutrino background to slow down its cosmological
evolution. However, this relied on neutrino-DE couplings
which were too strong and led to additional attractive long-
range forces at distances < 1=mDE, which, while shorter
than the scale of the Universe, were still too long range.
This forced nonrelativistic neutrinos to clump, forming
nuggets of size ∼1=mDE, which would not suppress the
DE rolling [26]. Indeed, this is in agreement with our
calculations of jcj and VDM−DM, which show that with
mDE ≫ H0 one would get a DE-mediated attractive force
much stronger than gravity at distances ≲1=mDE.
Evading this requires either lowering DE mass down to

≲H0, or using much more involved DE models, as in the
latter of Ref. [25] (see also Ref. [8]). These models utilize a
hybrid inflation dynamics at extremely low scales, which
drives current cosmological acceleration by an effective
cosmological constant term (and assumes that all other
contributions to the cosmological constant are somehow
canceled). It also includes a coupling of DE to a neutrino
species which is always relativistic in order to erase the

FIG. 3. DM/DE coupling versus DM mass; the shaded area
below the hyperbola is allowed. Here DE is an ultralight
quintessence field with a sub-Hubble mass.

5We could have included it here, in which case the results
would precisely reproduce those of Ref. [5].
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effects of strong DE-mediated couplings. Yet, in all these
cases, most of DM is left completely decoupled from DE.
So while the interactions might lead to imprints in the DE
evolution, the evolution of DM is not directly affected.

III. AXION MONODROMIES TO THE RESCUE

The considerations above show that the main obstruction
to DM/DE interactions comes from decoupling in QFT:
light and heavy fields do not mix very well. So, this
naturally suggests that the strongest interactions occur if
DM and DE mass scales are not very different. Now, since
DM must be nonrelativistic, to accommodate this—i.e.,
have DM with ultra-small masses and yet ensure it is not
relativistic—one needs DM to be a condensate like DE. In
other words, DM is a spatially homogeneous expectation
value of an ultralight scalar field very much like quintes-
sence, but with its mass somewhat larger than the current
Hubble scaleH0. In this case, instead of being stuck in slow
roll, the DM vacuum expectation value (VEV) is oscillating
about its minimum. To leading order, its energy density
behaves just like cold dark matter (CDM).
To build models with such fields consistently in QFT,

one needs to protect the theory from large radiative
corrections, both from the ultralight modes in the dark
sector and from any other heavier degrees of freedom. A
simple way is to provide the low-energy effective field
theory (EFT) with continuous shift symmetries, which
ensure that the ultralight dark modes are only derivatively
coupled in perturbation theory. Hence their potentials are
automatically very flat and radiatively stable. In fact, the
only fully self-consistent models of dark energy rely
precisely on constructions involving pseudo-Nambu-
Goldstone bosons as DE fields (pNGBs, or “axions”)
[27–31], which utilize shift symmetry as the protection
mechanism of the effective theory. So in practice all one
needs is to add an extra axion, over and above the one
playing the role of DE, and pick its scales so that it can be
DM today [12,32,33]. However, if it is very light, this DM
axion is constrained by cosmological data and cannot be
all of DM today [12] (see also Ref. [13] for the updated
bounds). Even so, it could comprise as much as ∼5% of the
total amount of DM, which is a far larger fraction of the
critical energy density than could be in, for example, sterile
neutrinos and other light fermions.
This reasoning points directly to a possible framework

for realizing such a scenario6: the “axiverse” [11]. Multiple
axions, with varying scales which control their couplings
and masses, arise from string compactifications. The vast
diversity of the multiverse and the proliferation of the
pNGB fields suggests that such hierarchical axion models
are readily realized. In such models the axions are naturally

mixed, which means that in low-energy EFT they couple to
each other [34,35]. In fact, the simplest mechanisms to
generate small axion masses based on axionic monodro-
mies [36–38] automatically ensure that the interactions
between the lightest axions are so strong that the axion
mixing energy is comparable to the energies in the normal
modes. Hence such models can leave quite strong cosmo-
logical signatures, affecting directly both DE and DM
evolution, by rebalancing the energy contents of individual
channels in the course of cosmic evolution.
In what follows we will analyze a simple model, which is

essentially a combination of the ideas of Ref. [12] and
Refs. [34–36] to demonstrate this. Ultimately, we will be
led to a setup with three axions where one is heavy, another
is lighter than the current Hubble scaleH0, and the third has
a mass in between but relatively close to H0. By decou-
pling, the interactions between the heaviest and the two
light axions are small, and so we will ignore them
completely. On the other hand, we will devise a simple
setup where two light axions mix strongly, so as to ensure
that the axion decay constants are not super-Planckian,
while one still happens to be lighter than H0. This sector is
basically a scaled down version of the misaligned axion
inflation of Refs. [36,39]. The underlying monodromy
which generates ultralight axions in slow roll with sub-
Planckian axion decay constants implies that the two
lightest axions automatically have strong interactions.
We will analyze the cosmological evolution of the system,
both on the cosmological background and with perturba-
tions, to identify the possible signatures and show that the
model is consistent with the current bounds.

A. Decoupled limit

To set the stage for the perturbative description of the
multi-axion dark sector, we start with the case where the
interactions are completely turned off [12]. So imagine three
axions, each with a potential Vi ¼ μ4i ½1 − cosðϕi=fiÞ�. The
unity here merely cancels the bare cosmological constant
(by hand). The potentials arise from nonperturbative gauge
dynamics and are radiatively stable: once flat, they are
always flat [27–31,38]. The radiative stability of the cosine
potentials is ensured by the underlying shift symmetry
ϕi → ϕi þ Ci, broken down to the discrete subgroup ϕi →
ϕi þ 2πNifi by the nonperturbative effects, where Ni are
integers. The unbroken discrete symmetries ensure that
the full nonperturbative potentials are harmonic, periodic
functions, where the higher harmonics are suppressed by
exponents of ðMPl=fiÞ2. As long asfi’s are not very large the
corrections can be ignored [40]. The homogeneous modes’
dynamics are described by the equations of motion

ϕ̈i þ 3H _ϕi þ ∂ϕi
Vi ¼ 0: ð13Þ

The fields for which ∂ϕi
Vi ≫ 3H _ϕi are DM, with virialized

kinetic and potential energy. Their homogenous mode

6Note that such a scenario can also occur accidentally, if there
are several ultralight axions in nature. The “axiverse” makes the
presence of a plethora of very small scales appear more natural.
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oscillates rapidly about the minimum of its potential, with
frequency m2

i ¼ μ4i =f
2
i , and, by the virial theorem, with an

amplitude ϕiðtÞ ∝ 1=a3=2. The fields for which ∂ϕi
Vi ≪

3H _ϕi are DE, being in slow roll.
The standard approach to properly normalize the ampli-

tude is to take each light axion to have an initial value ≃fi
set during early inflation by the inflationary thermal drift
affecting all fields with masses smaller thanHinflation. Then,
for decoupled axions, fi is the typical distance from the
nearest axion minimum, taken as the origin in the field
space. This axion stays in slow roll until H drops to ∼mi,
and after that starts to oscillate around its nearest minimum,
with the amplitude diluting as ∼1=a3=2. If all (or most) of
DM today is one such axion, its amplitude at present is
given by m2

iϕ
2
i;0 ¼ 3M2

PlH
2
0Ωm0 ≃ Ωm0h2ð10−3 eVÞ4. If fi

is fixed, the mass mi should be picked correctly to match
this condition, accounting for the dilution during the
evolution of the Hubble scale from H ∼mi to H0.
On the other hand, the DE axion is still in slow roll,

frozen at its initial value ϕi ≃OðfiÞ. In this case one needs
to have fi ≃MPl, μ4 ≃ 3M2

PlH
2
0, in order to match the scale

of DE today. Finally, a very light axion which has a mass
above H0, but not by much, has been in slow roll until
relatively recently. It started to roll around the minimum
in a very late universe. This implies that at scales
H > mintermediate, there was more dark energy than now,
and this is one of the reasons behind the bounds of
Ref. [12]. Such an axion did not dilute too much since
it started rolling, but it cannot be more than about 5% of
DM now [12,13]. A priori, its presence seems to require a
fair bit of tuning. Yet, as we will see shortly, such tuning
can be accommodated rather straightforwardly in mono-
dromies used to generate ultralight mass scales without
super-Planckian axion decay constants fi.

B. Mixing and interactions

Let us now turn on the interactions between the two
lightest axions. We use the effective potential generated by
the axions’ couplings to dark gauge fields as in a simple
monodromy model [36,39],

V ¼ μ41

�
1 − cos

�
ϕ1

f1

��
þ μ42

�
1 − cos

�
ϕ2

f2

��

þ μ43

�
1 − cos

�
ϕ1

f1
− n

ϕ2

f2

��
; ð14Þ

where we again subtract the cosmological constant term
by hand, picking V ¼ 0 at global minima. We now expand
Eq. (14) to quadratic order around a minimum at
ϕ1 ¼ ϕ2 ¼ 0,

Vð2Þ ¼ 1

2

X
i;j

ϕiMijϕj; ð15Þ

where Mij is the mass matrix

M ¼
� μ4

1
þμ4

3

f2
1

−n μ4
3

f1f2

−n μ4
3

f1f2

μ4
2
þn2μ4

3

f2
1

�
≡

�
m2

1 −m2
12

−m2
12 m2

2

�
: ð16Þ

We can easily transition to the system of normal modes,

using a field space rotation by an angle tan 2θ ¼ 2m2
12

m2
2
−m2

1

,

which yields the light and heavy axion eigenmodes,
respectively,

l ¼ cos θϕ1 þ sin θϕ2; h ¼ cos θϕ2 − sin θϕ1; ð17Þ

with eigenvalues λ�¼½m2
1þm2

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

2−m2
1Þ2þ4m4

12

p
�=2.

The light field l is DE, and the heavy one h is a
DM component. This requires

ffiffiffiffiffi
λ−

p ≲ 10−33 eV. Ifffiffiffiffiffi
λþ

p ≲ 10−24 eV, then its abundance is limited to no more
than 5% of DM, and depending on the mass, possibly even
less. In this case, most of DM has to be something else, e.g.
a third axion. On the other hand, if

ffiffiffiffiffi
λþ

p ≳ 10−24 eV, the
heavier light axion is not constrained strongly and could be
all of DM. For that case, one needs a large separation
between the eigenvalues, λþ=λ− ≳ 1018. In any case, some
hierarchy between mass eigenvalues is always needed.

1. Large hierarchy, Planckian decay constants,
and decoupling

To achieve a large hierarchy between the axion masses,
we need detM ≪ ðtrMÞ2, or in terms of the Lagrangian
parameters,

f21f
2
2ðμ42μ43 þ μ41ðμ42 þ n2μ43ÞÞ
≪ ðf22ðμ41 þ μ43Þ þ f21ðμ42 þ n2μ43ÞÞ2: ð18Þ

In this limit, the eigenvalues become approximately
λ− ≃ detM

trM , λþ ≃ trM, and the mixing angle is tiny, so that
l≃ ϕ1, h≃ ϕ2.
To simplify the initial analysis, we consider the case

when all dimensional parameters are degenerate,
μ1 ¼ μ2 ¼ μ3 ¼ μ, f1 ¼ f2 ¼ f3 ¼ f, and use the integer
n to control the hierarchy. If one light axion is to be
quintessence and the other heavy one is to be all of DM,
then we need n ≥ 109. Clearly, introducing one more axion
will relax this. We will consider such cases later on.
The full potential reads

V ¼ μ4
�
3 − cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p h
f

�
− cos

�
nhþ l

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�

− cos
�

nl − h

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
��

: ð19Þ
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In terms of the normal modes, Vð2Þ ¼ μ4

2f2 ½l2 þ ð2þ n2Þh2�,
and the quartic is, to leading order in n,

Vð4Þ≃−
μ4

24f4

�
n4h4þ 4

n
h3lþ12

n2
h2l2−

4

n
hl3þ l4

�
: ð20Þ

Moving away from the degenerate limit, one finds other
contributions, and in particular, a term ∼h3l with a
coefficient starting at OðnÞ.
The bottom line, however, is that in this case the

interactions are strongly suppressed by the hierarchy param-
eter n. The cosmological evolution is very close to the one of
noninteracting dark matter and dark energy components.
This is expected: this is just decoupling in action.
In this case, the only dimensionless number that controls

the interaction between the light and heavy fields is given
by the ratio of the masses, and so by the very hierarchy it
must be small. So the dark matter is h, which will oscillate
rapidly, and for sufficiently large n can be all of DM in the
Universe today.
The quintessence field l, on the other hand, stays in slow

roll. Since the dimensional coefficients are degenerate, the
numerical values will be as in the single-axion case:
μ≃ 10−3 eV, f ≃OðMPlÞ, and the amplitude of h is of
order f=n. However, this shows that this case does not
utilize field space monodromies since the axion decay
constant f is OðMPlÞ. All the dynamics unravels in the
attractive basin of a single minimum in the theory.

2. Less degeneracy, sub-Planckian decay constants
and monodromies

More interesting cases can be realized with less degen-
eracy in the parameter space and by meeting the conditions
for monodromy. To explore this, let us still take the axion
decay constants f1 ¼ f2 ¼ f for simplicity. Since we
imagine that they are determined by a symmetry breaking
in some UV-complete framework such as string theory,
this is probably realistic anyway. Their magnitude is sub-
Planckian, of order MPl=S, where S ≫ 1 is an action of the
breaking sector. We will take f ≲ 0.01–0.1MPl. Since the
scales μi are generated by nonperturbative physics, they are
generically exponentially sensitive to S, μi ∼ e−Si . To
illustrate some interesting dynamics, we will focus on
μ1 ≪ μ2 ≪ μ3 without loss of generality. For calculational
simplicity, let us further introduce a single parameter ϵ ≪ 1
and define μ1 ¼ ϵμ, μ2 ¼ μ, μ3 ¼ μ=ϵ.
The potential now reads (with V0 chosen to cancel the

vacuum energy in the minima)

V ¼ V0 − μ4
�
ϵ4 cos

�
ϕ1

f

�
þ cos

�
ϕ2

f

�

þ 1

ϵ4
cos

�
ϕ1 − nϕ2

f

��
: ð21Þ

Expanding in ϵ around the vacuum ϕ1 ¼ ϕ2 ¼ 0, the

eigenvalues are λ− ≃ μ4

f2ð1þn2Þ, λþ ≃ ð1þn2Þμ4
ϵ4f2 . The normal

modes of the system are ϕ1 ¼ nl−hffiffiffiffiffiffiffiffi
1þn2

p , ϕ2 ¼ nhþlffiffiffiffiffiffiffiffi
1þn2

p . In these

variables,

V ¼ V0 −
μ4

ϵ4

�
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p h
f

�
þ ϵ4 cos

�
lþ nh

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�

þ ϵ8 cos

�
nl − h

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
��

: ð22Þ

Note that when ϵ ¼ 1 this reduces to the previous case.
However, having introduced an extra dimensionless param-
eter ϵ, we can now explore the richer parameter space
ðn; 1=ϵÞ to search for physically interesting regions.
First off, we see that if we again require mh ¼

μ2=ðϵ2fÞ ≳ 10−23 eV, then the heavy field oscillations
can be all of dark matter with mass mh. To ensure that
the other mass is ≤ H0, we need ϵ≲ 10−5 to get the
requisite eigenvalue separation. This is not all: if the heavy
field vacuum is h ¼ 0, the two fields are essentially
decoupled, but the light field l behaves as quintessence
only if f ≳MPl, which we have been trying to avoid in
order to guarantee full control over EFT.
However, if we pick a generic heavy field vacuum

h ¼ 2kπf=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
, where k ≫ 1 is an integer, keep

f < MPl, and then integrate h out, the effective potential
for the light field becomes

VðlÞ≃ μ4

2f2ð1þ n2Þ
�
lþ 2knπfffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p

�
2

þ ϵ4μ4
�
1 − cos

�
2kπ

1þ n2
−

nl

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
��

: ð23Þ

The frequency of the second oscillatory term is very high,
and so we do not expand it. It represents merely a small
modulation on top of the flat quintessence potential given
by the first term, yielding small bumps in dark energy
density. Note that the effective light axion decay constant is
fl;eff ≃ nf, and so it is OðMPlÞ for n ∼ 10–100 if
f ≃ 0.01–0.1MPl. Further, the light field vacuum is not
at zero anymore but at lvac ¼ 2knπf=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p ≃ 2kπf,
which will be super-Planckian for k > 10 or so. This is how
monodromy sets up large field excursions from respective
vacua. Essentially, the heavy field pulls the light one’s
minimum far from the trivial one. Ergo, the slow-roll flat
plateaus are set up by entirely sub-Planckian local physics.
The effective potential remains tiny, of the order k2μ4=n2,
even when the field space distance to be traversed is super-
Planckian.
For completeness: although DE and DM in this limit

remain decoupled, we can easily get an approximate
ΛCDM evolution from entirely sub-Planckian
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microphysics. To start, we need the equation of state to
transition from w≃ 0 at early times towards −1 in the
future. The oscillations of h around its minimum provide all
of the required DM.Writing hðtÞ ¼ 2kπf=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
þ χðtÞ,

the field χðtÞ oscillates around zero with frequency mh and
amplitude decreasing as a−3=2. From the potential above,
it is clear that l is in slow roll today as long as k is big
enough. The resulting energy density and pressure are

ρ≃m2
hχ

2 þ 2μ4 ¼ μ4ð1þn2

ϵ4
χ2

f2 þ 2Þ, p≃ −2μ4. So, wtotal≃
−1=ð1þ 1þn2

2ϵ4
χ2

f2Þ. Clearly, this realizes the required limiting

behavior: before χ dilutes enough, so that its energy density
dominates, wtotal ≃ 0. As time goes on, wtotal converges to
−1 for as long as l remains in slow roll. Specifically, under
the assumption that the heavier axion is all of DM today,
this sets the value of the heavy field displacement from the
minimum at the present epoch

χ20 ≃Ωm

ΩΛ

ϵ4f2

1þ n2
: ð24Þ

More generally, this is the upper bound on the value of χ at
the current time.

3. Mixing and monodromies

The most interesting examples involve a very small
hierarchy between the two lightest axions, while still
realizing monodromy in the field space. This means that
we need the third axion to be most of DM. To realize this
case, we retain the parametrization of scales in the full
potential of the previous section, but allow ϵ to be larger.
As we noted previously, the masses of normal modes are

m2
l ≃ μ4

f2ð1þn2Þ and m2
h ≃ ð1þn2Þμ4

ϵ4f2 , so their ratio is m2
l =m

2
h≃

ϵ4=ð1þ n2Þ2. Hence taking ϵ≲ 1 and n ∼OðfewÞ will
easily generate a small hierarchy between them. The
potential (22), which we repeat here, is

V ¼ V0 −
μ4

ϵ4

�
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p h
f

�
þ ϵ4 cos

�
lþ nh

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�

þ ϵ8 cos

�
nl − h

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
��

:

Since most of DM is another, third axion, much heavier
than the normal modes l, h, we now do not require ϵ ≪ 1.
We do require, however, that ml ≲H0 in order for the light
mode to be quintessence. Further, as above, we demand that
f < MPl such that the EFT is under control, including the
corrections from quantum gravity. We see that n ∼OðfewÞ
will help bring the mass ml down by about an order of
magnitude, and combining this with μ≲ 10−3 eV will
ensure thatml ∼H0, whilemh is a few orders of magnitude
heavier.

Next, we imagine that the heavy field h resides
in an attraction basin of a generic vacuum hvac ¼ 2kπf=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
. Shifting the heavy field to h ¼ 2kπf=ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p

þ χ, we rewrite

V ¼ V0 −
μ4

ϵ4
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p χ

f

�
− μ4 cos

�
l

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p

þ 2knπ
1þ n2

þ nχ

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�

− μ4ϵ4 cos

�
nl

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p −
2kπ

1þ n2
−

χ

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p
�
: ð25Þ

The first term in Eq. (25) is the potential of the heavy field
h, or χ, after the field redefinition. In writing it, we have
dropped the phase shift 2kπ. At times when mh > H, this
potential forces χ to oscillate around the minimum,
contributing to DM. Clearly, the oscillations are bounded,
as shown in Ref. [12]. This simply means that, at present,
the amplitude of χ cannot be larger than a fraction of
Eq. (24); i.e., if the amplitude of χ is less than a fifth of χ0 in
Eq. (24), the energy density contribution to DM from the
heavier ultralight axion cannot be more than a few percent.
This would fit the bounds of Refs. [12,13].
The second term gives the leading-order contribution to

the light field potential. It features a monodromy. To see
this we normalize the argument of the cosine by taking out
the light field frequency as a prefactor, so this term is
∝ cos½ 1

f
ffiffiffiffiffiffiffiffi
1þn2

p ðlþ 2knπfffiffiffiffiffiffiffiffi
1þn2

p þ nχÞ�. The phase shift 2knπ=

ð1þ n2Þ generically cannot be removed by periodicity
of the cosine, and for 1 < k < n, it is ∼2kπ=n≲ 2π. Yet,
this automatically induces a displacement of l from its
vacuum by 2knπf=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

p ≃ 2kπf. Even for relatively
moderate values of k, this makes the effective field
excursions of l super-Planckian although f ≲MPl. The
third term is an additional modulation of the light field
potential—as before—producing bumps on the quintes-
sence potential. The reason we are adding it is that, in
principle, it helps generate the hierarchy between l and h.
It is important to notice, however, that when n; 1=ϵ are not

extremely large, all the terms in the potential are normalized
approximately the same. This means that if we expand
Eq. (25) beyond the quadratic order, we will find nonlinear
terms, describing interactions between DE (l field) and a
component of DM (h field), with energy densities that are
comparable inmagnitude to the energydensity contributions
from the normal modes at times before the heavier normal
mode dilutes away. In other words, this guarantees that the
DM/DE interactions are significant during at least a brief
period in cosmic history. In fact, we will show that the
interaction can be strong enough to facilitate a classical
transition of the heavier normal mode from one vacuum to a
neighboring one, creating a domainwall, whose tensions are
fortuitously small enough to meet the observational limits
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[41]. In those cases, we find the largest deviations from the
ΛCDM cosmology. In the next section we resort to numeri-
cal evolution of the model in this regime to determine the
signatures of the interactions.We also consider the effects on
cosmological perturbations.

IV. COSMOLOGICAL EVOLUTION

To investigate the cosmological signatures of the dynam-
ics,we now turn to numerical analysis. First, we integrate the
homogeneous equations to explore the evolution of the
background and find out the behavior of the leading-order
cosmological observables as a function of the redshift z.
After that, we consider the subleading effects using cos-
mological perturbation theory. Our focus is on the imprints
of DM/DE interactions. We exhibit the similarities—and
crucial and interesting differences—of the interacting mod-
els with monodromy when compared toΛCDM andmodels
with ultralight decoupled axions as discussed in Ref. [12].
The interacting models may leave nontrivial imprints when
compared to these benchmarks, especially when the inter-
actions are strong enough to force a vacuum transition of the
heavier ultralight mode. After that we turn to perturbative
analysis of the dynamics and find that interacting models
meet the current observational limits. For the background
evolution, we start our integration from high redshift, fixing
the parameters to their ΛCDM values [42] Ωc0¼0.26,
Ωb0¼0.05, Ωm ¼ Ωc þΩb, TCMB ¼ 2.275 K, assuming
three flavors of massless neutrinos. We normalize the
Hubble parameter today to H0 ¼ 68 km=s=Mpc. We
choose initial conditions for the axion potential such that
the Universe is flat, and we set the initial field velocity to
zero, as the axions are negligible at the initial epoch. Amore
complete analysis, including data and a broader allowed
range of values of cosmological parameters, would clearly
be interesting but is beyond the scope of the present work.

A. Background

To maximize the mixing between the two lightest axions,
we choose parameters that ensure that one of the cosine
terms goes over maxima before settling in a minimum.7 The
vacuum transition is most easily understood using the form
of the potential given in Eq. (10):

V ¼ V0 − μ41 cos

�
ϕ1

f1

�
− μ42 cos

�
ϕ2

f2

�

− μ43 cos

�
ϕ1

f1
− n

ϕ2

f2

�
:

Let us now take μ2 ≫ μ1; μ3 (reordering the scales
relative to the previous case) and f1 ¼ f2. With these
parameters, ϕ2 begins to oscillate while ϕ1 is still in slow
roll. If the oscillations of ϕ2 are large enough that
njΔϕ2j=f2 > 2π, then the third term crosses over a
maximum of the cosine. This means that, for given n
and f2, the initial value of ϕ2 must be a sufficient distance
from the minimum of the full potential. This is easily
accomplished, even with the constraint that the heavier
light axion field is not more than ∼5% of DM today.
Further, one should, in principle, also pick the initial
conditions for the slowly rolling field so that it rests in a
convex section of the cosine, to avoid excessive tachyonic
perturbations8 [31]. These conditions ensure that there will
be mixing, with some effect on cosmic expansion. The
parameters we choose are listed in Table I. For comparison,
we also consider a decoupled model where the mixing
between the two ultralight axions is completely turned off.
The parameters describing it are listed in Table II.
Figures 4–7 show the evolution of these models, nor-

malized to ΛCDM. Both the decoupled and interacting
models differ from ΛCDM by a temporary increase inHðzÞ
at low redshift [and the corresponding variation of dAðzÞ];
see Fig. 4. Initially, we normalizeH=HΛCDM to unity, fixing
the amount of CDM in the early Universe to reflect the data.
We add DE at early times in the form of the heavier
ultralight axion, which will decay before today. This means
that early on there was more DE. The equilibration of the
heavier ultralight axion is delayed by its oscillations and
also by the interactions. Nevertheless, asymptotically it
removes some fraction of DE and converts it into DM as
time goes on, which redshifts away under the influence of
DE. In the asymptotic future, this implies that H=HΛCDM
will dip below unity. In both models, the oscillations of the
intermediate-mass axion field produce oscillations in the
total equation of state (Fig. 5), with corresponding effects
in H and dA. Interestingly, these oscillations can mimic a

TABLE I. Parameters for the interacting model.

μ41 1.1M2
PlH

2
0 f1 0.1MPl

μ42 10.75M2
PlH

2
0 f2 0.1MPl

μ43 1.07M2
PlH

2
0 ϕ1;in 0.155MPl

n 9 ϕ2;in 0.7835MPl

TABLE II. Parameters for the decoupled model.

μ41 1.07M2
PlH

2
0 f1 0.9MPl

μ42 6.65M2
PlH

2
0 f2 0.1MPl

μ43 0 ϕ1;in 2.5192MPl
n 0 ϕ2;in 0.2075MPl

7One can consider the interactions between fields that remain
in a single vacuum, but in this case the effect of mixing is
diminished and short-lived. This is because once the heavy field
settles in its minimum the cosine is well approximated by a
quadratic potential, and therefore the mixing term can be set to
zero by a field redefinition.

8For a short-lived stage of late acceleration these bounds are
relatively weak.
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DM/DE interaction even in the decoupled case, when the
actual interaction is zero. As the equation of state of the
intermediate-mass field oscillates, it goes from being more
DE-like to DM-like to DE-like, and so on.
For a field that has m ∼Oð10ÞH0 these oscillations are

slow enough to be observed and do not effectually average
out as they do for the main component of dark matter.
Essentially, since the mass of the heavier light axion is so
close to the Hubble scale, the kinetic and potential energies
in the field oscillations do not have time to virialize. Their
energy rebalance, as well as the fact that the field just fell
out of slow roll, simulate the energy transfer between DE
and DM, as if the interactions were present. Constraints on
axions in this mass regime were discussed in Ref. [16],
assuming that DE is a single axion.
A scrutiny of the evolution of the equation-of-state

parameter with redshift reveals a striking difference
between the coupled and decoupled models, shown in
Fig. 5. This happens when the coupled model has

interactions strong enough to force a vacuum transition
of the heavier light axion. This jump and the subsequent
field ringdown is responsible for differences in the shapes
of the plots of HðzÞ and dAðzÞ.
While the vacuum transitions are clearly very interesting

for inducing the largest allowed deviations from the ΛCDM
evolution, at the same time, they are worrisome since they
lead to the formation of domain walls inside the horizon.
These domain walls could in principle lead to the large
perturbations in the late Universe, and are strongly con-
strained by observations [41]. To evaluate the constraints,
we need to get a reliable estimate of the domain wall
tension, which controls the scale of distortions. Since the
transition is between nearest-neighbor minima in the cosine
potential governing the heavier light axion, we can
approximate the cosine by the quartic potential, obtained
by expanding the cosine about the maximum between the
two minima. This yields Veff ≃ ð μ3feff

Þ4ðh2 − f2effÞ2, where
feff ≃ f2=n is the effective period of this cosine, as
discussed after Eq. (25) above. This means that the field
VEV in the core of the wall is ∼feff , but crucially, the self-
coupling is λ4 ≃ ðμ3=feffÞ4. Its scaling with four inverse
powers of feff is the reason the domain walls pass the
observational bounds. Indeed, the tension of a domain wall
separating two nearest-neighbor minima is

σ ≃ ffiffiffiffiffi
λ4

p
f3eff ≃

�
μ3
feff

�
2

f3eff ¼ μ23feff ≃ μ23f2
n

: ð26Þ

On average there would be one such domain wall per
Hubble volume, and so the fraction of the domain wall
energy to the total energy inside a Hubble patch would be
of order

Ewall

EHubble
≃ σH0

M2
PlH

2
0

≃ μ23f2
nM2

PlH0

: ð27Þ

Since μ23 < MPlH0—as the heavier light axion is just a
component of the total energy density of the Universe now,
and the interactions are a subleading contribution to its
energy density—we find

Ewall

EHubble
<

f2
nMPl

: ð28Þ

This inequality9 can be satisfied with the monodromy
configurations by taking f2 ≪ MPl, which ensures that

FIG. 4. Hubble parameter and angular diameter distance
compared to the Planck ΛCDM value, for the coupled (H, dA)
and decoupled (Hdec, ddecA .) models.

FIG. 5. The total equation of state and the equation of state of
the two light axions, compared to the ΛCDM case, for both
coupled and decoupled models.

9We note that we are somewhat sloppy here, since we are
ignoring the numerical prefactor in Eq. (28). This prefactor is
easily ≲Oð10−2Þ for realistic choices of parameters, and for
n ∼Oð10Þ–Oð100Þ it allows f2 ≲MPl=10 to satisfy the bound
(28). We have also neglected to scale the energy density in the
domain walls up by a factor of redshift to the epoch when the
walls were produced and compare that to the critical energy
density then. Since the relevant factor goes as

ffiffiffi
z

p
, and the redshift

when the domain walls are made is z ≲ 100 this is readily
compensated by other uncertainties.
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the domain-wall-induced distortions of the cosmological
geometry are small enough. With further expansion of the
Universe, the energy density in domain walls decreases
with respect to dark energy, so its contribution remains
subdominant. However, there could be interesting small
effects if the bound (28) is close to saturation.
We note that the energy density in the heavier field in the

coupled model dissipates away faster than that of simple
DM, as displayed in the evolution of the decoupled model
(Figs. 6 and 4). This is due to the sharp increase in kinetic
energy of the intermediate-mass field as it goes over the
extrema, as shown in Fig. 7. During this stage, the kinetic
energy dissipates much faster, approaching the 1=a6 law.
This constitutes an important signature of the coupled
model: the coupled model may have a comparatively large
impact on cosmic expansion at a particular redshift and a
comparatively small effect at later times.10 Finally, we note
that the fluctuations about the background satisfy a red-
shift-dependent dispersion relation. This is because the
effective mass of the intermediate-mass axion is back-
ground dependent due to the interaction with the DE axion.

B. Perturbations

Finally, we turn to the linearized cosmological pertur-
bations of the models with two light axions and cold dark
matter. Our purpose is not a detailed study of the pertur-
bation effects, i.e., a full analysis that would be needed for
the detailed comparison with data. We merely want to
demonstrate the consistency of the axion DM/DE models
with the current bounds, by comparing their late-time
evolution to the standard ΛCDM model. This is the key
consistency test, since at early times the matter contents and
behavior is approximately the same in both models. We

stress that some aspects of this have already been done.
Specifically, an extensive analysis of the effects of a single
ultralight axion, which is a limit of the decoupled model
with two ultralight axions we have been using here, has
been done in Refs. [12,13]. A similar analysis of the
coupled dynamics with nontrivial mixing would therefore
seem very warranted but is left for future work.
Here wewill work in synchronous gauge, comoving with

cold dark matter, defined by the line element

ds2 ¼ −dt2 þ a2ðtÞ½δij þ∇−2∂i∂jðhþ 6ηÞ − 2ηδij�dxidxj;
ð29Þ

where the gauge variable η is given by

k2

a2
η ¼ H

2
_h −

3

2
ΩmH2δm − 4πG

�
_̄ϕJ _φ

J þ ∂V
∂ϕJ φ

J

�
; ð30Þ

and the additional condition δum ¼ 0 [43]. Here we
decomposed the axion fields as ϕI ¼ ϕ̄I þ φI (I ¼ 1, 2),
splitting them into the background and the order perturba-
tions, respectively. Then, the perturbation field equations
are [44]

φ̈I þ 3H _φI þ k2

a2
φI þ φJ ∂2V

∂ϕI∂ϕJ ¼ −
_h
2
_̄ϕ
I
: ð31Þ

The conservation equation for matter is

_δm ¼ −
_h
2
: ð32Þ

To complete the system of independent equations, we use

ḧþ 2H _h ¼ −8πGðδρþ 3δpÞ

¼ −3H2Ωmδm − 8πG
X
J

�
4 _̄ϕ

J
_φJ − 2

∂V
∂ϕJ φ

J

�
:

ð33Þ

FIG. 6. Energy densities in the main component of dark matter
and in the axion sector, for both coupled and decoupled models.
For comparison, we show the energy density in matter and Λ
in ΛCDM.

FIG. 7. Kinetic energy and potential energy in the axion sector.

10This will modify the bounds coming from Refs. [12,13].
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We set initial conditions deep in the matter-dominated era
[45], choosing, without any loss of generality, z ¼ 20 as the
initial time for the numerical integration of the perturbation
equations. Given an initial δmðtin;kÞ, the last equation
translates into _δmðtin;kÞ ¼ HðtinÞδmðtin;kÞ. The initial
field perturbations can be set to zero, as they will quickly
reach the attractor solution. Numerical results are given in
Figs. 8 and 9.
We find that in our model there is a small rescaling of

the matter power spectrum with respect to the ΛCDM

cosmology, with a suppression at higher wave numbers, as
illustrated in Fig. 8. By matter perturbations here we mean
those in the main component of the dark matter. Since the
heavier axion is still very light, it will not cluster on the
scales probed by the present galaxy surveys.
The evolution of the field perturbations is shown in

Fig. 9, where we plot the fraction δρax=ρax as a function of
redshift and wave number. An interesting observational
signature of the spectra are the enhanced oscillations
around a particular scale, particularly in the interacting

FIG. 8. Ratio of axion matter perturbations to the ΛCDM matter perturbations for redshifts 2, 1, 0.5 and 0. Left: Interacting model.
Right: Decoupled model.

FIG. 9. Top: Interacting model. Bottom: Decoupled model. Left: Fractional perturbations of the axion energy density δρax=ρax as a
function of time, for different wave numbers. Right: δρax=ρax as a function of wave number, for different redshifts.
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model. While the detailed implications for cosmological
data are yet to be understood, we see that at least at present
it appears that the multi-axion models do provide viable
alternatives to ΛCDM.

V. SUMMARY

The dark sectors of the Universe could be totally separate
components, referred to as dark matter, behaving as
completely neutral nonrelativistic billiard balls, and dark
energy, modeled by a single number, the “cosmological
constant.” Such a simple picture, with carefully tuned
normalizations, fits the observations very well at the
present time. Yet, possibilities for other options remain
open.
The “cosmic coincidences” problem, namely the

uncanny similarity between the fractional contributions
of very different cosmic constituents, remains an open
question. Why would dark matter and dark energy influ-
ence the bending of cosmic geometry comparably at
present, even though the time evolution of their effects
is dramatically different today? What sets their normaliza-
tions? Could the conundrum of cosmic coincidences be
resolved by some interaction between the hidden sectors of
the Universe, and could those also influence the visible
contents? There are many very simplistic schemes attempt-
ing to address these questions by proposing to relate
various sectors with interactions that could equilibrate
between cosmic constituents at the level of general
relativityþ fluid sources.
At the microscopic level, the situation is not so simple.

The problem rests on the fact that the evolution of different
cosmic components is controlled by very different scales.
If these components are allowed to interact, quantum-
mechanical effects communicate the presence of these
scales from one sector to another. This basically precludes
any significant interactions between heavy dark matter and
light dark energy. Specifically, the dark-energy-generated
long-range forces between dark matter particles and the
quantum radiative corrections to the dark energy mass
induced by virtual dark matter particles constrain the cross-
couplings to essentially zero when the masses of DM and
DE are very different.
Yet, there is a possible way out of this impasse: it

involves a somewhat more complicated, but consistent, set

of models of multiple axions. Some of them are light
enough to be DE, some are heavy enough to be (mostly
decoupled) DM, and some are too heavy to be DE today,
but nevertheless can couple strongly to DE. Setups like this
emerge naturally in the construction of radiatively and
nonperturbatively consistent models of field-driven cosmic
acceleration, using monodromy to explain the origin of
super-Planckian field displacements in effective field
theory. To be clear, this does not solve the cosmic
coincidence problem. However, if DE and DM are axions
with comparable decay constants, and if their masses have
correct values, then during inflation they will get the right
initial conditions to be DM and DE today. Also, in such
cases we easily find significant interactions between DE
and a component of DM, with interesting observational
implications.
From the low-energy point of view, this is a self-

consistent procedure for designing a field theory which
could have a viable UV completion. But it might be more:
the constructions involving many light, mixed axions could
be a signal of the presence of the “axiverse,” a string-
theoretic realization of a low-energy theory with many light
axion-like fields. Such constructions make the presence of
many mixed axions more natural.
We find that at the present time such models are basically

degenerate with ΛCDM but have significant deviations
which could be looked for in future observations. The
lightest axions can mix significantly to generate such
signatures. Among the specific predictions, we note oscil-
lations in the equation of state, sharp transitions in the
Hubble parameter around a particular redshift, and possible
signatures of domain walls produced by the classically
induced phase transitions of dark matter fields. These are
consistent with current data but could lead to interesting
small signatures at very large scales. We believe that such
specific predictions warrant a dedicated analysis with a
detailed comparison to data.
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