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a b s t r a c t

Superconducting quarter-wave resonators (QWRs) will be used in the superconducting linac upgrade in
the frame of the HIE-ISOLDE project at CERN. The QWRs are made of bulk copper and have their inner
surface covered with sputtered niobium. Their resonant frequency is 101.28 MHz at 4.5 K. Each cavity
will be equipped with a tuning system to both minimize the forward power and compensate the
frequency variations during production and beam operation. After a careful examination of all
contributors to the frequency variation, we decomposed them into two components: frequency shift
and its uncertainties. A pre-tuning step was subsequently added to the production sequence prior to
niobium sputtering to accommodate the frequency shift mainly due to mechanical tolerances during
substrate production, substrate surface treatment, niobium sputtering and cooldown process. To this
end, the length of the QWR was chosen as a free parameter for the pre-tuning. Consequently the tuning
system needs only to compensate the frequency uncertainties and Lorentz force detuning, thus its design
has been largely simplified and its production cost was reduced by 80% comparing to its previous
version. We have successfully applied this tuning scheme to five HIE-ISOLDE QWRs and the measured
tuning error was 2:471:9 kHz. This is well consistent with our calculations and well recoverable by the
current simplified tuning system. It is worth noticing that the pre-tuning method only involves one-time
measurement of the cavity's resonant frequency and its outer conductor length. This paper focuses on
HIE-ISOLDE high-β QWR, but the method can be applied to HIE-ISOLDE low-β QWRs and other variants
of QWR-like cavities.
& 2015 CERN for the benefit of the Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The High Intensity and Energy (HIE) ISOLDE project is a major
upgrade of the existing post-accelerator facility at CERN [1]. The
main focus is to boost the radioactive beam energy from 3 MeV/u
to 10 MeV/u for a mass to charge ratio within 2:5oA=qo4:5. This
will be realized by replacing part of the existing normal conduct-
ing linac with superconducting quarter-wave resonators (QWRs)
[2]. The QWRs will make use of the niobium (Nb) sputtered on
copper (Cu) technology which was pioneered at CERN for LEP2
project [3] and subsequently developed at INFN-LNL to accom-
modate the complex QWR shape for the energy upgrade of ALPI
project [4].

The HIE-ISOLDE QWR will be operated with a frequency of
101.28 MHz at 4.5 K. It will provide an accelerating gradient of
6 MV/m on beam axis with a maximum of 10 W power dissipation

on the cavity inner surface. Two types of QWRs, low-β (6.3%) and
high-β (10.3%), are planned to be installed in 3 phases to cover the
entire energy range [5]. Since the linac upgrade started from
the high energy section, all R&D efforts have been focussed on the
high-β QWRs [6,7]. Its main parameters are listed in Table 1.

The production of a Nb-sputtered QWR requires several process
steps [10] as shown in Fig. 1: Cu substrate production, substrate
surface treatment, Nb sputtering and cavity cooldown to 4.5 K. The
cavity resonant frequency evolves after each process and this
needs to be characterized. We decomposed the frequency varia-
tion into two components: frequency shift and its uncertainties.
The frequency shift is the frequency change from the copper QWR
substrate to the Nb-coated cavity at operating frequency at 4.5 K,
while the frequency uncertainties are the frequency fluctuations
during each process. By analytical calculation, electromagnetic
simulation and RF measurements, the frequency shift can be well
determined, while the frequency uncertainties can be estimated.

Possessing a good knowledge of the frequency variation, a pre-
tuning step was added to the overall tuning scheme. We used the
cavity length as a free parameter to recover the frequency shift
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while using the tuning plate only to compensate the frequency
uncertainties. As a consequence, the tuning system design has
been largely simplified and the coarse tuning range is reduced
from originally 220 kHz down to 42 kHz. This has been proved to
be sufficient as long as the surface treatment scheme after
substrate trimming is relatively stable. The most obvious benefit
is the drastic fall of the tuning plate cost by 80% from its original
version. The design and first test results of the simplified tuning
system can be found in [7]. The measured frequency error of the
pre-tuning for five QWRs is 2.471.9 kHz. This can be well
recovered by the tuning plate coarse range.

In this paper, all contributors to the frequency variations are
carefully analyzed. Possessing a good knowledge of the frequency
variation, a frequency tuning scheme is formulated with one pre-
tuning step added. Finally the mechanism and the measured error
of the frequency pre-tuning are described.

2. Variations of the cavity resonant frequency

The resonant frequency of a QWR can be varied by: manufacturing
tolerances, surface treatment of the Cu substrate, Nb sputtering
process, RRR of the sputtered Nb film, intrinsic quality factor of the
cavity, cooldown process, presence of dielectrics in the cavity volume
and eventually Lorentz force detuning. The impact of these contribu-
tors to the cavity frequency are described in detail along with
measurement validations in this section. The parameters used for
the following calculations are taken from Table 1.

2.1. Manufacturing tolerances

The geometry of a simplified QWR is shown in Fig. 2 together
with geometry parameters relevant to the cavity frequency. The
variation of these parameters alters the cavity resonant frequency.
In order to evaluate the frequency sensitivity due to geometry
changes, each cavity geometry parameter has been independently
studied by ANSYSsHFSS simulations. The frequency convergence
criterion is 400 Hz. The detailed explanation of this study can be
found in [11]. The results are listed in Table 2. The most sensitive
part is the length of the inner conductor (AntL). Unlike other

parameters, a longer tip gap (tg) increases the cavity frequency.
This is due to the decrease of the capacitance formed by the inner
conductor tip and the bottom plate. The tip gap, in other words,
the length of the cavity will be used as a free parameter to pre-
tune the frequency. This will be explained in Section 4.

In the production of the Cu substrate, the manufacturing tolerance
at the temperature of 20 1C and 50% relative humidity with normal
pressure is required to be 0.1 mm for each geometry parameter. In the
worst case where all errors add up, the frequency error due to
manufacturing tolerances is calculated to be

ΔF ¼ 7 ð105þ156þ41þ14þ107þ18þ24Þ
�0:1¼ 746:5 kHz: ð1Þ

This frequency error can be corrected by varying the tip gap by
2–3mm by means of trimming the cavity outer conductor. The
precision of trimming at CERN is 0.02 mm [12] which can be
translated into approximately 400 Hz frequency uncertainty.

2.2. RRR of the sputtered Nb film

The quality of the sputtered Nb film varies from cavity to cavity.
This will have an impact on the superconducting penetration
depth and thus on the resonant frequency.

The penetration depth λ depends on temperature T and
material properties and can be expressed as [13]

λ¼ λL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þπξ0

2l

r
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� T
Tc

� �4
s ; ð2Þ

λL ¼ 32 nm; ξ0 ¼ 39 nm; ð3Þ
where λL and ξ0 are London penetration depth and BCS coherent
length and their values are taken from the literature [14], the

Table 1
The main parameters of the high-β QWR. The definitions are given in [8] and values
are from [7,9].

Parameter Value

f 0 at 4:5 K ðMHzÞ 101.28
βoptimum ð%Þ 10.9
Epeak=Eacc 5.0
Bpeak=Eacc (mT/(MV/m)) 9.5
Geometry factor G¼ RsQ0 ðΩÞ 30.8
Nominal gradient Eacc ðMV=mÞ 6
Nominal accelerating voltage Vacc ðMVÞ 1.8
Power dissipation Pc at Eacc ¼ 6 MV=m ðWÞ 10
Q0 at Eacc ¼ 6 MV=m 4:7� 108

Thickness of Nb layer ðμmÞ 2–7
Thickness of Cu substrate (mm) 10

Start:
Cu substrate 
production

Frequency 
pre-tuning

Cu substrate 
surface treatment

Nb sputteringRF test at 4.5K
End:
Cavity 

storage

Fig. 1. A simplified QWR production workflow.
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rtop: the vertical radius of the cavity top part

AntL: the length of the inner conductor

nose: the length of the nose

dant: the diameter of the inner conductor

rtip: the vertical radius of the inner conductor tip

tg: the gap between inner conductor tip and the bottom plate

dcav: the diameter of the cavity outer conductor

nose nose

2*rtop

Fig. 2. The simplified model of a high-β QWR with main geometry parameter
definitions.

Table 2
The frequency sensitivity to cavity geometry
changes by þ1 mm from the nominal value [11].

Geometry parameter Δf ðkHz=mmÞ

rtop �105
AntL �156
nose �41
dant �14
rtip �107
tg 18
dcav �24
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electron mean free path l can be calculated from the residual
resistance ratio RRR by [8]

l ½nm� ¼ 2:7 � RRR: ð4Þ
By using Eqs. (2) and (4), the variation of penetration depth due to
dissimilar cavity RRR can be calculated. The change of penetration
depth alters the cavity RF volume and consequently shifts the
cavity resonant frequency. If we consider a perfect electric con-
ducting (PEC) cavity with zero penetration depth at 4.5 K, the
frequency variation Δf due to finite penetration depth can be
calculated as [13]

Δf ¼ f 4:5 K� f λ ¼ 0 ¼ �μ0πf
2
4:5 K

G
� λ4:5 K�0
� �

: ð5Þ

The frequency variation from the PEC case as a function of the
cavity RRR is shown in Fig. 3.

Small Cu and stainless-steel samples have been sputtered with
Nb using the same sputtering parameters as for the cavities, and
their RRR were measured. The values are ranging from 3 to 40
depending on sample locations on the cavity inner surface [9]. The
overall RRR of the sputtered Nb film on the QWRs can vary from
5 to 60 [2], thus a frequency variation of 51 Hz can be expected as
shown in Fig. 3.

2.3. Intrinsic quality factor of the cavity

The intrinsic quality factor, Q0, of the Nb-sputtered QWR is
specified to be 4:7� 108 corresponding to a total power

dissipation Pc of 10 W at nominal gradient 6 MV/m. However,
the cavity will be operated with a bandwidth, Δf , of approxi-
mately 20 Hz to compensate the effect of microphonics. This
corresponds to a loaded quality factor QL of

QL ¼
f
Δf

¼ 101:28 MHz
20 Hz

¼ 5:1� 106: ð6Þ

Therefore the external quality factor of the coupler, Qext , can be
determined by

1
Qext

¼ 1
QL

� 1
Q0

¼ 1

5:12� 106: ð7Þ

Since the pickup antenna used for the QWRs are highly under-
coupled (Qext is beyond 1010) and the insertion is fixed, we ignored
the pickup contribution in the calculation.

The Q0 of sputtered QWR varies from cavity to cavity [2]. In
order to operate all cavities with a fixed bandwidth, the Qext of the
coupler has to be changed to accommodate the dissimilar Q0. This
can be realized by changing the insertion of the input coupler.
Fig. 4 shows the changes of coupler Qext due to cavity Q0 variation
for two different operation bandwidths. Within 750% of Pc

changes asked by Q0 changes, the Qext variations are small for
both bandwidths.

The insertion of the coupler changes the coupler Qext and the
cavity resonant frequency as shown in Fig. 5. For an operating
bandwidth of 20 Hz, the desired Qext requires a coupler insertion
of approximately 8.6 mm, which corresponds to a frequency
perturbation of �1.2 kHz as seen in Fig. 6. The Q0-induced
(750% of nominal Pc) Qext variations shown in Fig. 4(b) will
require small changes of the coupler insertion, thus alter the
frequency perturbation by 720 Hz.

2.4. Cooldown process

The cool down of the QWR from room temperature to 4.5 K in
vacuum will alter the resonant frequency due to the thermal
contraction of the cavity geometry. The ambient environment
changes from normal air (293 K, 50% relative humidity with
normal pressure) to vacuum, and the surface impedance changes
from normal conducting Cu to superconducting Nb also modify
the resonant frequency. The substrate was made of Cu-OFE UNS
C10100 with a minimum RRR of 100. The inner conductor and the
outer conductor were machined separately from 3D-forged half-
hard Cu billets, then assembled by shrink fit, and finally electron
beam welded from the RF side. The details on Cu substrate
production can be found in [15].
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Fig. 4. Qext of the coupler as a function of cavity Q0 for two different operation bandwidths: (a) 10 Hz and (b) 20 Hz.
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2.4.1. Thermal contraction
The cavity resonant frequency f changes with thermal expan-

sion of the cavity, and is inversely proportional to the linear
dimension L of the cavity,

f ¼ C � 1
L
; ð8Þ

where C is a constant. The frequency shift Δf due to thermal
expansion can thus be obtained by using Eq. (8),

Δf
f

¼ �ΔL
L
: ð9Þ

We used the data from [16] to determine the integrated dimension
variation of Cu as

ΔL
L

¼
Z 293 K

4:5 K
αðtÞ dt ¼ 0:3247%: ð10Þ

Therefore the frequency shift from 4.5 K to 293 K due to thermal
expansion is

Δf thermal ¼ �0:3247%� 101:28 MHz¼ �328:9 kHz: ð11Þ
This is the dominate term of the total frequency shift.

2.4.2. Ambient environment
The change of ambient environment from normal air to

vacuum at 4.5 K alters the relative electric permittivity ϵr . Know-
ing the cavity frequency in vacuum, the frequency in air can then
be calculated as

f air ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiϵ0ϵrμ0

p λvac
¼ f vacffiffiffiffiffi

ϵr
p ; ð12Þ

where λvac is the wavelength in vacuum and ϵr of air is given by
[17]

ðϵr�1Þ � 106 ¼ 210
Pa

T
þ180 1þ5580

T

� �
Pw

T
; ð13Þ

where T is the absolute temperature in K, Pa and Pw are vapor
pressures of air and water in mm Hg and can be expressed as [18],

Pw ¼ h� 10 8:07131�ð1730:63=ð233:426þTÞð Þ; ð14Þ

Pa ¼ 760�Pw; ð15Þ
where h is the relative humidity of the air. In our case, the ϵr for air
at 20 1C and 50% relative humidity with normal pressure is
calculated to be 1.000647. Therefore the frequency shift from
vacuum to air is

f air� f vac ¼ 101:28 MHz� 1ffiffiffiffiffi
ϵr

p �1
� �

¼ �32:7 kHz: ð16Þ

2.4.3. Surface impedance
The surface impedance of Cu at room temperature and Nb at

4.5 K is different and this can cause a frequency variation between
warm and cold measurement.

The surface impedance and the cavity resonant frequency can
be related as [19,20],

1
Q0

�2j
Δω
ω0

¼ Rsþ jXs

G
; ð17Þ

where Rs and Xs are surface resistance and surface reactance, ω0 is
the unperturbed frequency considering zero penetration depth
hence zero surface impedance, Δω is the frequency shift due to
finite surface reactance, G is the cavity geometry factor. Thus we
can obtain the following equation relating surface reactance and
frequency shift as

Xs ¼ �2G
Δω
ω0

: ð18Þ
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The surface reactance for superconductors [8] and normal
conductors [21] are

XSC
s ¼ �2G

ωsc�ω0

ω0
¼ωscμ0λ; ð19Þ

XNC
s ¼ �2G

ωnc�ω0

ω0
¼ωncμ0

δ
2
; ð20Þ

where λ is the penetration depth defined in Eq. (2), δ is the skin
depth [21]. Therefore the frequency shift can be obtained from Eqs.
(19) and (20) as

Δω¼ωnc�ωsc ¼
μ0ω

2
sc λ�δ

2

� �

2G�μ0ωsc λ�δ
2

� �: ð21Þ

We use the parameter values in Table 1, RRR¼ 15 [2] and
δ¼ 6:6 μm for Cu at 293 K, the frequency shift from Nb-
sputtered superconducting cavity to normal conducting Cu sub-
strate due to surface reactance variations is �4.3 kHz.

The total frequency shift during the cooldown process from
293 K and 50% relative humidity with normal pressure in air to
4.5 K in vacuum is

Δf cooldown ¼ 328:9þ32:7þ4:3¼ 365:9 kHz: ð22Þ
The measured frequency shift during the cooldown process is

shown in Fig. 7. The average frequency shift is measured to be
370.5 kHz with a peak-to-peak uncertainty of 6 kHz. This is
consistent with the calculated value in Eq. (22).

2.5. Substrate surface treatment and Nb sputtering process

The Cu substrate was degreased and chemically etched in order to
prepare the Cu surface before Nb sputtering. The chemical etching
agent (SUBU) is a mixture of sulfamic acid, hydrogen peroxide, n-
butanol and ammonium citrate at a temperature of 72 1C. The
effectiveness of SUBU was previously studied at CERN. The average
roughness Ra reached 0.8 μm after 20 μm removal on the surface.
This accounts for a SUBU duration of approximately 30 min. The
details of SUBU and the production process for HIE-ISOLDE QWRs
can be found in [10,22]. The QWR was subsequently sputtered with
Nb at high temperature: 315–625 1C for the inner conductor corre-
sponding to 300–435 1C for the outer conductor [23].

The cavity frequency was carefully monitored between each surface
treatment step and finally after the Nb sputtering. As shown in Fig. 8,
the frequency variation has a linear-like dependence on the SUBU
duration. The cavity will lose 26.5 kHz after 40-min SUBU etching
while the Nb sputtering process brings its frequency further down by
6.8 kHz. The corresponding frequency shift and its uncertainty are
listed in Table 3.

2.6. Lorentz force detuning

The Lorentz force detuning [24] of the Nb-sputtered-on-Cu QWR is
very small because of the considerably thicker wall of the Cu substrate
ð � 10 mmÞ. The dominant contribution is from the tuning plate which
is normally much thinner than 10mm. As will be described in Section
3, the new simplified tuning plate has a deformable part of only
0.3 mm thick. Fig. 9 shows the electric and magnetic field distributions
of the QWR at its lower part. The Lorentz force pulls the tuning plate
towards the inner conductor tip and thus lower the cavity resonant
frequency. Fig. 10 shows the frequency detuning by Lorentz force
measured at various cavity gradient at 4.5 K. At nominal gradient
ðEacc ¼ 6 MV=mÞ, the cavity resonant frequency is detuned by
�350 Hz when the tuning plate was disconnected from the lever
system [7] therefore being left free. This corresponds to a detuning
coefficient of κ ¼ � 9:1 Hz=ðMV=mÞ2, which is very comparable to the
previous measurements using the original tuning plate [25]. Once the
lever system is connected to the plate, the frequency detuning is largely
reduced to �110 Hz ðκ ¼ �3:0 Hz=ðMV=mÞ2Þ when the tuning plate
is at flat position and even down to �50 Hz ðκ ¼ � 1:3 Hz=ðMV=mÞ2
when the plate is pulled to the mid-range position (� 2:5 mm
deformation from the flat position). This is because that all QWRs
need to be tuned to 101.28 MHz at cold by pulling the plate away from
the inner conductor tip. This mitigates the Lorentz force on the plate
resulting in less frequency detuning.

The frequency detuning will vary slightly from cavity to cavity
due to different tip gap value determined in the pre-tuning step
(see Section 4). In addition, the position where the tuning plate is

360 365 370 375 380
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# 
of

 te
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Fig. 7. The measured frequency shift from 293 K and 50% relative humidity air with
normal pressure to 4.5 K in vacuum.

Fig. 8. The measured frequency shift as a function of SUBU duration.

Table 3
The measured frequency variation due to SUBU and
Nb sputtering.

Process name Frequency shift (kHz)

40-min SUBU 26:583:0
Nb sputtering 6:883:3
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deformed to in order to reach 101.28 MHz at cold will not be the
same for all cavities, therefore exerts dissimilar mitigation force on
the plate. This will also lead to slightly different frequency
detuning. The frequency detuning due to Lorentz force is approxi-
mately �100 Hz and can be well compensated by the tuning range
at cold. The hysteresis and tuning resolution have been measured
at cold and reported in [7].

At this stage, all contributors to the frequency variations of the
QWR have been described and their impact on the cavity
frequency have been characterized and summarized in Table 4.
Once the cavity has been pre-tuned by trimming the outer
conductor, all subsequent processes will reduce the cavity fre-
quency. Thus a suitable frequency margin has to be reserved in the
pre-tuning step. In this case, the tuning system will only need to
compensate the “f 0 error”s as shown in Table 4. These errors are
estimated to be less than 10 kHz in total.

3. The tuning system

The original tuning system is conceptually similar to TRIUMF's
and was described in [6]. An oilcan shaped diaphragm of copper–
beryllium (CuBe) was hydroformed and then sputtered with Nb as
shown in Fig. 11(a). The tuning coarse range is 220 kHz, which is
more than 20 times of the expected frequency error. This is highly
costly and not necessary. Therefore a simplified tuning plate has
been designed in year 2013 as shown in Fig. 11(b). The plate is

machined from a flat Cu OFE plate and sputtered with Nb. The
tuning is realized by deforming the plate from the center, where
the deformable part is 0.3 mm thick. The plate can be deformed up
to 5 mm from the flat position and can still maintain its elasticity.
The coarse tuning range can reach 42 kHz, well enough to cover
the expected �10 kHz frequency error. The detailed explanation of
the current tuning system can be found in [7].

4. Cavity frequency pre-tuning

All QWRs are initially produced with a fixed and longer-than-
needed tip gap. The aim of the pre-tuning is to tune the cavity
frequency to a previously determined target frequency by trim-
ming the cavity outer conductor. In this section we will describe
how to determine the tuning target frequency and details the
tuning mechanism. Finally the frequency errors for all five pre-
tuned QWRs are given.

4.1. The target frequency at room temperature

The working frequency of the QWR is 101.28 MHz at 4.5 K
under vacuum with the tuning plate preferably pulled to its mid-
range position. However, the tuning measurement is conducted
with a flat plate in the metrology lab where temperature and
humidity are regulated. Therefore the target frequency for tuning
has to be scaled. Fig. 12 shows the step-by-step scaling of the
cavity frequency. Considering a 40 kHz coarse range, this will bring
down the frequency by 20 kHz by releasing the tuning plate from
its previously pulled mid-range position to a flat position. Since
the frequency was measured at room temperature during the pre-
tuning step, the frequency needs to be scaled by �370 kHz to

Fig. 9. The electric and magnetic field distribution of the QWR simulated using CST Microwave Studios .
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Fig. 10. The Lorentz force detuning of QWR measured at cold with the tuning plate
at different conditions. The dashed curves are fitted linearly with respect to the Eacc .

Table 4
The frequency shift and uncertainties of the QWR.

Contributors Value (kHz) Type

Manufacturing error (max) 746:5 f 0 shift
Surface treatment (40' SUBU) �26.5 f 0 shift
Nb sputtering process �6.8 f 0 shift
Cooldown process �370.5 f 0 shift
Q0 of the Nb-sputtered QWR �1.2 f 0 shift
Trimming at CERN 0.4 f 0 error
RRR of the Nb film 0.05 f 0 error
Q0 of the Nb-sputtered QWR 0.02 f 0 error
Cooldown process 6 f 0 error
Surface treatment (40' SUBU) 3.0 f 0 error
Nb sputtering process 3.3 f 0 error
Lorentz force detuning �0.1 f 0 error
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accommodate the changes due to warm-up process as described in
Section 2.4.

The measurement of the cavity resonant frequency at warm is
conducted by measuring the scattering parameter S11 in the
metrology lab at CERN where the ambient temperature and
humidity are regulated. A typical measurement setup is shown
in Fig. 13. The cavity is closed by a flat Cu plate at the bottom. The
weight of the cavity itself (larger than 100 kg) ensures a good RF
contact. The frequency is measured by using a simple stainless

steel pickup antenna as shown in Fig. 14(a). Before performing the
frequency measurement it is important to assure that the cavity is
and remains in thermal equilibrium with the environment. This is
essential to avoid frequency measurement errors.

The insertion of the pickup antenna changes the capacitance
from the cavity inner conductor to the pickup end, therefore alters
the cavity resonant frequency. This pickup-induced frequency
perturbation has to be characterized. This was done, in absence
of pickup antenna, by using a mobile coupler where the insertion
of the coupler inner conductor can be changed as shown in Fig. 14.
By reducing the insertion, the coupler perturbation decreases,
hence the cavity frequency increases as shown in Fig. 15. After
pulling out the coupler inner pin by 28 gear turns, the frequency
stops increasing, and this is the unperturbed cavity frequency.
Comparing it to the frequency measured by using the pickup
antenna, the frequency perturbation of the pickup antenna is
determined to be �27 kHz. This is used in the frequency scaling
in Fig. 12.

Finally the target frequency for tuning at warm is determined
to be 100.863 MHz. Since the frequency varies both with tem-
perature and humidity changes of the ambient environment, these

Fig. 11. The original and the current tuning plate for high-β QWRs.

Fig. 12. The target frequency at room temperature.

Network analyzer

Port 1

Flat plate
Fig. 13. The setup for the frequency measurement.

Fig. 14. The mobile coupler and pickup. (a) Coupler and pickup. (b) Coupler at full
insertion position.
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effects have also been calculated by using equations listed in
Section 2.4.2 and are shown in Table 5. The cavity will lose 1.7 kHz
by increasing the ambient temperature by 1 1C, and approximately
1 kHz by increasing the relative humidity by 10%.

4.2. The tuning mechanism

As described in previous sections,“tip gap” is the free para-
meter for pre-tuning. Given a target frequency, the desired tip gap
will be different from cavity to cavity due to mechanical tolerance
and SUBU duration to be conducted after substrate trimming (see
Fig. 1). For a newly produced cavity, the desired tip gap can be
determined by a one-time measurement of initial cavity frequency
and initial tip gap value along with the previously determined
reference curve and target frequency at warm.

Taking the cavity QS2.12 as an example, the reference curve is
the cavity frequency response to tip gap variations and has been
previously determined by electromagnetic simulations. This is the
black dot curve in Fig. 16. The initial tip gap of QS2.1 was measured
to be 107.7 mm and the measured frequency was 101.206 MHz
after 24 h of thermalization in metrology lab and normalized to
20 1C and 50% relative humidity using Table 5. This is shown in
Fig. 16 as the red solid dot. Moving down the calibration curve
until it intersects the initial measured point, the blue solid curve is
the working curve for QS2.1. This curve describes the cavity
frequency response to different tip gap values for QS2.1. The ideal
target frequency has been previously determined to be
100.863 MHz considering no further frequency shift by surface
treatment and sputtering process. This is denoted as the black
dashed line. The intersection of the working curve and the ideal
target frequency line is the suggested ideal point and is denoted by
the solid green square.

Based on the optical inspection of the cavity inner surface, we
decided to undertake 100-min SUBU after trimming followed by
the Nb sputtering. According to Fig. 8, these steps will shift the
frequency down by 72 kHz. This has to be reserved during the pre-
tuning thus making the final tuning target to be 100.936 MHz. This
is shown in Fig. 16 by the magenta dash-dot line. Therefore the
final suggested tuning point is denoted as the solid magenta
hexagram. The suggested tip gap is 82.0 mm, thus needs a
trimming of 25.7 mm from the initial tip gap value of 107.7 mm.

After trimming, surface treatment and Nb sputtering, the cavity
frequency was measured again at room temperature. The total
frequency drop is measured to be 68 kHz. Thus the tuning error for
QS2.1 is 4 kHz. According to Table 4, the tuning error is originated
from trimming error, RRR of the Nb film, surface treatment and Nb

sputtering process. This can be calculated as [26]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:42þ0:0512þ 3:0 � 100 min

40 min

� �2

þ3:32

s
¼ 8:2 kHz: ð23Þ

The measured tuning error is consistent with the calculated value.
At this stage, we conclude that the pre-tuning of QS2.1 is complete.

By using this pre-tuning method, we have successfully tuned
five QWRs and the average tuning error is 2.471.9 kHz. Together
with a maximum measured cooldown process error of 3.5 kHz, the
total frequency error can be well recovered by the tuning plate
coarse range.

5. Final remarks

The causes of the frequency variation for HIE-ISOLDE high-β
QWRs have been fully analyzed and decomposed into well-
determined frequency shift and carefully estimated frequency
uncertainties. Based on this information, a new tuning scheme
has been made. A pre-tuning step has been added prior to Nb
sputtering in order to accommodate the already-determined
frequency shift by using the cavity length as a free parameter.
On the other hand, the tuning system only needs to compensate
the frequency uncertainties which has been estimated to be rather
small (less than 10 kHz). This has led to a large simplification of
the tuning system design and consequently reduced the produc-
tion cost of the tuning plate by 80% from its original version.

A total of five HIE-ISOLDE high-β QWRs have been tuned by
this tuning scheme and the tuning error for all five cavities was
measured to be less than 5 kHz. This is in accordance with the
calculations and can be well recovered by the 42 kHz coarse range
of the current tuning system.

One needs to notice that the pre-tuning method only requires
one-time measurement of the cavity frequency and the cavity
length. Moreover the method can be easily applied on HIE-ISOLDE
low-β QWRs and other QWR-like cavities.

Fig. 15. The frequency perturbation of the pickup and mobile coupler.

Table 5
The impact of temperature and humidity variations
on cavity frequency.

Item name Δf ðkHzÞ

Temperature 71 K from 293 K 71:7
Humidity 710% from 50% 71
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Fig. 16. The tuning mechanism. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

2 The naming conventions for HIE-ISOLDE QWRs can be found in [2].
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