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sion two loci in the F-theory base where the divisor carrying the gauge group is singular;

the associated Weierstrass model does not have the form associated with a generic SU(2)

Tate model. For 6D theories, the matter is localized at a triple point singularity of arith-

metic genus g = 3 in the curve supporting the SU(2) group. This is the first explicit

realization of matter in F-theory in a representation corresponding to a genus contribution

greater than one. The construction is realized by “unHiggsing” a model with a U(1) gauge

factor under which there is matter with charge q = 3. The resulting SU(2) models can

be further unHiggsed to realize non-Abelian G2 × SU(2) models with more conventional

matter content or SU(2)3 models with trifundamental matter. The U(1) models used as

the basis for this construction do not seem to have a Weierstrass realization in the general

form found by Morrison-Park, suggesting that a generalization of that form may be needed

to incorporate models with arbitrary matter representations and gauge groups localized on

singular divisors.
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1 Introduction

F-theory [1–3] provides a very general string-theoretic approach to constructing low-energy

theories of supergravity coupled to gauge fields and matter. In particular, F-theory extends

the approach of type IIB string theory to include non-perturbative seven-brane configura-

tions that produce a rich variety of structures for low-energy physics. F-theory uses the

axiodilaton of the IIB theory to encode an elliptic fibration over the compactification space.

A beautiful mathematical correspondence originally elucidated by Kodaira [4] relates

singularities in the elliptic fibration over (complex) codimension one subspaces (divisors) in

the compactification space to Dynkin diagrams, encoding the physical non-Abelian gauge

content of the theory in geometric structure. This correspondence is well-understood, and

has been used to study low-energy theories with exceptional gauge groups (E6, E7, E8)

and non-simply laced groups (Sp(N), F4, G2) in addition to the usual groups such as

SU(N) that have standard realizations on D-branes in perturbative string theory. A similar

correspondence holds between codimension two singularities in elliptic fibrations and the

representation content of matter in F-theory models, but this correspondence is at present

only partially understood despite much recent work in the F-theory community on the

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
7
1

explicit resolution of codimension two singularities [5–12]. In this paper we explore some

explicit examples of F-theory models with novel matter content as a step towards a more

general understanding of the codimension two generalization of the Kodaira story.

Some hints towards a general structure underlying the proposed correspondence be-

tween codimension two singularities in elliptic fibrations and representation theory of semi-

simple Lie groups were given in [7, 13]. For any representation R of a Lie group G, there

is a number gR given by

gR =
λ

12
(2λCR +BR −AR) , (1.1)

where AR, BR, CR are numerical coefficients associated with the representation R through

Tr RF
2 = ARTr F 2 (1.2)

Tr RF
4 = BRTr F 4 + CR(Tr F 2)2 , (1.3)

and λ is a group-dependent constant, with λ = 1 for SU(N). Here Tr refers to the trace in

the fundamental representation, while TrR corresponds to the trace in the representation R.

By manipulation of the anomaly cancellation formulae of 6D supergravity, it was suggested

in [13] that gR should have a natural geometric interpretation as a genus contribution to

the divisor (curve) supporting the gauge group. Previous analyses of specific cases have

supported this hypothesis. For SU(N), k-index antisymmetric representations all have

gR = 0, and these are precisely the representations that can be realized on a smooth

genus 0 curve in a 6D F-theory model. The adjoint and (two-index) symmetric matter

representations of SU(N) both have gR = 1. In 6D models where G is realized on a

smooth curve of genus g, there are g matter fields in the adjoint representation. We expect

that for all representations with gR > 0 other than the adjoint, gR represents the arithmetic

genus contribution from a singularity p on the divisor C that supports the group G, where

p supports matter in the representation R.

As discussed in general terms in [7, 14], the two-index symmetric representation of

SU(N) is expected to be realized on ordinary double point singularities of the singular curve

C carrying the group. Recently, two explicit constructions of classes of models containing

matter in the two-index symmetric representation (6) of SU(3) were given [15, 16]. Direct

construction of Weierstrass models with gR > 0 matter representations other than the

adjoint appears to be quite subtle, as the algebraic structure of e.g. SU(N) models with

such matter requires an intricate cancellation in the vanishing of the discriminant to high

order on C that relies on the singular nature of C and the consequent non-UFD (Universal

Factorization Domain) structure of the ring of functions on C. Such models thus cannot be

realized as Weierstrass forms from generic constructions in the standard Tate approach used

in e.g. [6, 17], or using a naive power series analysis using generic factorization properties of

functions in C as in [7]. Lacking a general theory of Weierstrass forms for models with such

exotic matter representations, explicit constructions of symmetric matter representations

have so far used indirect approaches. In [15], the symmetric representation of SU(3) was

constructed by identifying models with Abelian groups U(1)×U(1) and appropriate charges

that lift to the symmetric representation of SU(3) after unHiggsing. This is the general

approach we use in this paper. In [16], the symmetric representation of SU(3) was identified
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by Higgsing a theory with a larger (SU(6)) group so that the symmetric matter naturally

appeared after the Higgsing. This gives a complementary perspective on the construction

of such models that we also incorporate into the analysis of this paper. A more direct

approach to constructing Weierstrass models for these kinds of situations where the ring

of functions on the singular divisor C is not a UFD will be presented elsewhere [18].

In this paper we focus on the three-index symmetric (4) representation of SU(2), asso-

ciated with the Young diagram . We realize this representation by unHiggsing Abelian

models constructed in [19] with U(1) gauge group and matter of charge q = 3. For SU(2),

there is no quartic Casimir, so the group coefficient BR vanishes, and we have A4 = 10,

C4 = 41 for the 4 representation. These coefficients are readily verified by using a field

strength F proportional to the generator T3, which takes the form diag(1/2,−1/2) in the

fundamental representation and diag(3/2, 1/2,−1/2,−3/2) in the three-index symmetric

representation 4. It follows from (1.1) that the genus contribution from a full hypermulti-

plet in the 4 representation of SU(2) is g4 = 6. Because this representation is self-conjugate

(pseudoreal), we can have matter in a half-hypermultiplet, giving a genus contribution
1
2g4 = 3. From the point of view of 6D anomaly cancellation, the contribution of a half-

hypermultiplet in the 4 representation combined with 7 hypermultiplets in the fundamental

2 representation are anomaly equivalent [7, 20] to the contribution of 3 hypermultiplets in

the adjoint 3 representation along with 7 uncharged hypermultiplets. We thus expect that

we may find half-hypermultiplets of the 4 representation of SU(2) at arithmetic genus 3

singularities in a curve C supporting the gauge group in a general complex surface base

B. We see that this works out as expected in the explicit constructions we present here

based on unHiggsing the U(1) models in [19]. As in the previous explicit constructions of

symmetric (6) matter representations of SU(3), the models that we find have a non-Tate

realization of the gauge group SU(2) in the Weierstrass model. This matches with the

general expectations of the analysis of [16] and seems to be related to another curious

feature of the construction shown here, which is that the involved U(1) model of [19] does

not have the general form considered in [21]. We discuss these connections further in the

conclusions section at the end of the paper.

The structure of this paper is as follows. In section 2 we review the U(1) models of [19]

with charge q = 3 matter. In section 3, we unHiggs these U(1) models to SU(2) models

with matter in the 4 representation. In section 4, we consider further unHiggsing to non-

Abelian gauge groups with other matter content, and section 5 contains some concluding

remarks.

2 Abelian F-theory models with matter of charge q = 3

In this section, we review a construction of a family of F-theory compactifications with

gauge group G = U(1) and matter with U(1) charges q = 1, 2, 3. These compactifications

were first studied in [19], to which we refer for further details. In section 2.1, we briefly recall

the construction of the elliptically fibered Calabi-Yau manifolds, denoted by X, specifying

these compactifications. We then summarize the matter spectrum of the resulting effective

theories in section 2.2. We conclude this discussion in section 2.3 by presenting explicit

models with base B = P2.
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2.1 Geometry of the elliptic fibration

We consider elliptically fibered Calabi-Yau manifolds π : X → B with base manifold B.

The elliptic fiber E = π−1(p) over a generic point p ∈ B is given by the Calabi-Yau

hypersurface in the del Pezzo surface dP1, which is the blow-up of P2 at a point; this space

is also known as the first Hirzebruch surface F1. F-theory compactifications on such Calabi-

Yau manifolds X were first analyzed in detail in [19], whose notation and conventions we

follow. In summary, the resulting low-energy effective theories have G = U(1) gauge group

and charged matter with U(1) charges q = 1, 2, 3.

The Calabi-Yau manifold X is constructed as the hypersurface

p := s1u
3e2 +s2u

2ve2 +s3uv
2e2 +s4v

3e2 +s5u
2we+s6uvwe+s7v

2we+s8uw
2 +s9vw

2=0 ,

(2.1)

in the ambient space of a dP1 fibration over B. Here the coefficients si are sections of line

bundles on the base B, to be specified momentarily, and the variables [u : v :w : e] are the

homogeneous coordinates on dP1, which is the ambient space of the generic elliptic fiber E ;

the weights of the coordinates are (1, 1, 1, 0) and (0, 0, 1, 1) with respect to two C∗ actions on

dP1. The blow down map from dP1 to P2 is given by [u :v :w :e] 7→ [ue :ve :w] so that e van-

ishes on the exceptional divisor E of dP1. The del Pezzo surface dP1 is toric; it is described

by a reflexive polyhedron that we depict, along with its dual polyhedron, in figure 1.

The Calabi-Yau condition for X implies that the hypersurface constraint (2.1) has to

be a well-defined section of the anti-canonical bundle of the ambient space given by the

dP1 fibration over B. This requires that the coordinates [u :v :w :e] and the coefficients si
are sections of the following line bundles:

Section Line bundle

u O(H − E + S9 +KB)

v O(H − E + S9 − S7)
w O(H)

e1 O(E)

Section Line bundle

s1 O(−3KB − S7 − S9)
s2 O(−2KB − S9)
s3 O(−KB + S7 − S9)
s4 O(2S7 − S9)
s5 O(−2KB − S7)
s6 O(−KB)

s7 O(S7)
s8 O(−KB + S9 − S7)
s9 O(S9)

(2.2)

Here we denote the line bundle associated to a divisor D by O(D), −KB is the anti-

canonical divisor of B and the classes H, E are the pullback of the hyperplane on P2 and

the exceptional divisor on the dP1-fiber, respectively. We note that the two divisor classes

S7 and S9, which are the classes of the coefficients s7 and s9, are free discrete parameters

determining the topology of X. When S7 = S9 = −KB, the dP1 fibration over the base B

is trivial and the si are all sections of the line bundle O(−KB). Other values of S7 and S9
parametrize a two-parameter family of twisted dP1 bundles over B.
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Figure 1. Polyhedron for dP1 and its dual with corresponding monomials (in the patch e = 1).

The toric zero section ĉ0 is indicated by the dot.

The Weierstrass model of (2.1) and a Tate form for it are readily computed for example

using Nagell’s algorithm [19]. As the explicit expressions for the Weierstrass coefficients

f , g, the discriminant ∆ = 4f3 + 27g2 as well as the Tate coefficients are rather lengthy,

we relegate them to (A.1) and (A.3) in appendix A. The computation of ∆ reveals that X

generically does not exhibit any codimension one singularities, which implies the absence

of a non-Abelian gauge group in the F-theory effective theory.1

The elliptic fibration of X has two sections, one of which being the zero section ĉ0 and

the second one, denoted by ĉ1, generating its rank one Mordell-Weil group (MW-group) of

rational sections. Consequently, the gauge group G of F-theory on X is

G = U(1) . (2.3)

More explicitly, the two sections of X are given by the intersection of e = 0 with (2.1),

which we choose as the zero section ĉ0, and by the second point of intersection of the line

tP := s8u + s9v = 0 with X, besides e = 0 where the intersection is tangent. Thus, the

MW-group of X is not realized torically, i.e. the extra section is not simply the intersection

of a toric divisor of dP1 with the elliptic curve. In terms of the homogeneous coordinates

on the dP1-fiber, the sections read

ĉ0 = X ∩ {e = 0} : [−s9 : s8 : 1 : 0] , (2.4)

ĉ1 = X ∩ {tP = 0} : [−s9 : s8 : s1s
3
9 − s2s29s8 + s3s9s

2
8 − s4s38 : s7s

2
8 − s6s9s8 + s5s

2
9] .

The Weierstrass coordinates of the section ĉ1 are given in (A.2) in appendix A, while ĉ0
maps to the zero section in Weierstrass form. The Shioda map of the section ĉ1 is computed

to be [19]

σ(ĉ1) = C1 − C0 + 3KB + S7 − 2S9 , (2.5)

where C1, C0 denote the divisor classes of the rational sections ĉ1 and ĉ0. The Kaluza-Klein

reduction of the M-theory three-form C3 along the (1, 1)-form associated to σ(ĉ1) yields

the U(1) gauge field in the effective theory [3, 24]. The (negative of the) height pairing is

b11 = 2(−3KB + 2S9 − S7) , (2.6)

which enters a Green-Schwarz counterterm in the F-theory effective action [21, 24].

1We do not consider the non-Abelian gauge groups that would be imposed by choosing bases B with

non-Higgsable clusters [22, 23]. However, the analysis can be extended straightforwardly.
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We emphasize here that the locus in B where the coordinates (2.4) of the two sections

agree is given by

z1 := s7s
2
8 − s6s8s9 + s5s

2
9 = 0 . (2.7)

At points where z1 = 0, a rescaling under the second C∗ makes the two sections in (2.4)

equivalent. Note that z1 is precisely the z-coordinate of ĉ1 in Weierstrass form, cf. (A.2).

Thus, the homology class of the divisor in B along which ĉ0 ∼= ĉ1 is [z1] = −2KB +2S9−S7
as follows from (2.2).

Furthermore, we observe that the Calabi-Yau constraint (2.1) is invariant under the

Z2-symmetry u ↔ v given that we also exchange s1 ↔ s4, s2 ↔ s3, s5 ↔ s7 and s8 ↔ s9.

According to (2.2), this amounts to exchanging

S7 7→ S ′7 := −2KB − S7 , S9 7→ S ′9 := −KB + S9 − S7 . (2.8)

This symmetry relates Calabi-Yau manifolds X with the same base B, but different values

for S7 and S9. Indeed, we can check that the key geometric properties of X are invariant

under the symmetry u↔ v. In particular, this implies that the effective theories of F-theory

on X that are related by (2.8) have to be identical.

Relation to Bl1P2(1, 1, 2)-elliptic fibrations. Before delving into the analysis of codi-

mension two singularities of X, we elaborate on the relation to elliptic fibrations with

generic elliptic fiber in Bl1P2(1, 1, 2) considered in [21]. We will see that elliptic fibrations

with generic elliptic fiber in dP1 that satisfy the additional condition [s8] = 0 or [s9] = 0 are

equivalent to those with elliptic fiber in Bl1P2(1, 1, 2). Indeed, we first note that a general

elliptic fibration X described by (2.1) has to have non-vanishing and general coefficients

si. This necessitates that all divisor classes in (2.2) are effective, i.e. [si] ≥ 0. Second, we

see that a model with constant s8 (or s9) allows performing the variable transformation

u = u′ − vs9/s8 (v = v′ − us8/s9) so that we effectively achieve s9 ≡ 0 (s8 ≡ 0).2 As is

clear from the dual polyhedron in figure 1, removing s9 (s8) amounts to blowing up dP1 at

u = e = 0 (v = e = 0), i.e. adding the vertex with coordinates (−2, 1) (or (−1,−1)) to the

polyhedron of dP1. The resulting polyhedron is precisely the one of Bl1P2(1, 1, 2) and the

Calabi-Yau constraint (2.1) can be readily written in the form of [21], as claimed. We will

also see this equivalence on the level of the matter spectrum in section 2.2. Note however

that, as we discuss in further detail in later sections, in the generic case where s8, s9 6= 0,

this class of U(1) models cannot be written in the Morrison-Park form from [21].

More extremely, we can relax the effectiveness constraint [s8] ≥ 0 or [s9] ≥ 0 completely.

In both cases, the model defined by (2.1) still defines a sensible elliptically fibered Calabi-

Yau manifold. However, there will be a codimension one singularity of Kodaira type I2
at s9 = 0 or s8 = 0, respectively, as analyzed in [19, 25]. It can be resolved globally by

the blow-ups in dP1 at v = e = 0 or u = e = 0, respectively, resulting again in the new

ambient space Bl1P2(1, 1, 2). Thus, we see that the elliptic fibrations with their generic

elliptic fibers in Bl1P2(1, 1, 2) can be thought of as arising from the Calabi-Yau manifold

X via the specialization s8 = 0 or s9 = 0, respectively, in (2.1).

2The symmetry u↔ v exchanges s8 → s9 and the two case of constant s8 or s9.
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Rep Multiplicity Locus

13 x13 = S9 · (−KB + S9 − S7) V (I(3)) := {s8 = s9 = 0}

12
x12 = 6K2

B−KB · (4S9−5S7)
+S27 + 2S7S9 − 2S29

V (I(2)) := {s4s38−s3s28s9+s2s8s
2
9−s1s39

= s7s
2
8 + s5s

2
9−s6s8s9 = 0}\ V (I(3))

11
x11 = 12K2

B −KB · (8S7−S9)
−4S27 + S7S9 − S29

V (I(1)) := {(2.9)}\ (V (I(2)) ∪ V (I(3)))

Table 1. Charged matter under U(1) and codimension two fibers of X.

2.2 The matter spectrum

The matter spectrum of the F-theory compactification on X is derived by analyzing the

singularities of the elliptic fibration that arise over codimension two loci in the base. Since

the Calabi-Yau manifold X has a non-trivial MW-group generated by ĉ1, it automatically

has Kodaira fibers of type I2 at the codimension two loci in B along which

y1 = fz41 + 3x21 = 0 (2.9)

is satisfied [21]. Here f and g enter the Weierstrass form of X and [y1 : x1 : z1] are the

Weierstrass coordinates of ĉ1 given in (A.1) and (A.2), respectively. The matter located

at (2.9) is automatically charged under the U(1) gauge field corresponding to ĉ1.

The locus (2.9) is reducible with three irreducible components, as e.g. shown by a

primary decomposition (see [26, 27] for more details on the necessary technical tools),

corresponding to three different matter representations. The full matter spectrum derived

in [19] is given in table 1, which includes the U(1)-charges, the multiplicities xR of 6D

charged hyper multiplets in the representation R and the codimension two loci supporting

the respective fibers. Here, we use the notation V (I) for the vanishing set of an ideal I.

The matter spectrum of X is completed by the number of neutral hyper multiplets

Hneut. It has been computed in [19] to be

Hneutral = 13 + 11K2
B +KB · (3S7 + 4S9) + 3S27 − 2S7 · S9 + 2S29 . (2.10)

Employing this, together with the charged spectrum in table 1, anomaly-freedom of the

6D U(1) SUGRA theory is readily checked, following the general prescription of [28, 29].

We note that the matter spectra in table 1 and in (2.10) are invariant under the Z2-

symmetry (2.8) of X.

We stress that one main difference of the matter spectrum in table 1 and the one of

Bl1P2(1, 1, 2)-elliptic fibrations studied in [21] is the presence of matter fields with q = 3.

In turn, it is expected that models without these matter fields should be already described

by the models in [21]. Indeed, employing the discussion at the end of the previous section,

Calabi-Yau manifolds X with x13 = 0, which requires either [s8] = 0 or [s9] = 0, are geo-

metrically completely equivalent to Bl1P2(1, 1, 2)-elliptic fibrations and so are the effective

theories, as expected.
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2.3 Models over B = P2

We conclude the discussion of F-theory compactified on the Calabi-Yau manifold X by

considering the concrete examples with base B = P2. In this case we have −KB = OP2(3)

and S7 and S9 can be associated with non-negative integers since the second homology

of P2 is one-dimensional and generated by the hyperplane HB of P2. We can then solve

the conditions imposed by effectiveness of the divisor classes [si] ≥ 0, i = 1, . . . , 9, given

in (2.2), as in [26]. This yields the allowed region for the pair (S7,S9) shown in figure 2. We

immediately notice that this region is precisely given by the toric polytope of dP1 rescaled

by 3, which is precisely the anti-canonical class of P2 in units of HB.

Next we determine the matter spectrum of X for the concrete base P2 employing

table 1. We recall the Z2-symmetry (2.8) relating Calabi-Yau manifolds X with different

values for (S7,S9). In the allowed region in figure 2, this symmetry exchanges points on the

lines S9 = x and S9 = S7 − 3 + x for x = 0, . . . , 6. As the effective theories of F-theory on

X are related accordingly, as discussed before, and as S7 = 3 is the fixed line under (2.8),

we only have to list models and corresponding spectra for S7 ≤ 3. We obtain the following

list for the degrees of the sections si entering the Calabi-Yau constraint (2.1) and of the

matter multiplicities xR:

(S7,S9) [s1] [s2] [s3] [s4] [s5] [s6] [s8] (x13 , x12 , x11)

(0, 0) 9 6 3 0 6 3 3 (0, 54, 108)

(1, 0) 8 6 4 2 5 3 2 (0, 40, 128)

(2, 0) 7 6 5 4 4 3 1 (0, 28, 140)

(3, 0) 6 6 6 6 3 3 0 (0, 18, 144)

(1, 1) 7 5 3 1 5 3 3 (3, 52, 125)

(2, 1) 6 5 4 3 4 3 2 (2, 42, 138)

(3, 1) 5 5 5 5 3 3 1 (1, 34, 143)

(1, 2) 6 4 2 0 5 3 4 (8, 60, 120)

(2, 2) 5 4 3 2 4 3 3 (6, 52, 134)

(3, 2) 4 4 4 4 3 3 2 (4, 46, 140)

(2, 3) 4 3 2 1 4 3 4 (12, 58, 128)

(3, 3) 3 3 3 3 3 3 3 (9, 54, 135)

(2, 4) 3 2 1 0 4 3 5 (20, 60, 120)

(3, 4) 2 2 2 2 3 3 4 (16, 58, 128)

(3, 5) 1 1 1 4 3 3 5 (25, 58, 119)

(3, 6) 0 0 0 0 3 3 6 (36, 54, 108)

(2.11)

The spectrum of the remaining theories in the allowed region in figure 2 can be obtained by

application of the Z2-symmetry (2.8). We note that all the spectra in (2.11) are different.

In particular, the number of matter fields with charge q = 2 is always larger than zero,

which will be important for the unHiggsing of X discussed next.

We conclude by noting that the four models with x13 = 0 are precisely four of the

possible seven Bl1P2(1, 1, 2)-elliptic fibrations that can be constructed on B = P2 and

– 8 –
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4
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Figure 2. Allowed region for the pair (S7,S9) specifying X for B = P2.

without an I2 singularity at codimension one, i.e. an extra SU(2) gauge group factor.

The role of the parameter b in [21, 30] is played by b ≡ s5, which assumes values from

[b] = 3, . . . , 6 in the allowed region. In order to obtain the remaining three models with

[b] = [s5] = 0, 1, 2, we have to relax effectiveness of the class [s8]. The three missing models

are then given at (S7,S9) = (4, 0), (5, 0), (6, 0).

3 Matter in the three-index symmetric representation 4 of SU(2)

We begin this section by briefly recalling the general geometrical procedure that corre-

sponds to an unHiggsing of a U(1) to a non-Abelian gauge symmetry in F-theory. We will

focus on unHiggsings that preserve the rank of the gauge group. General discussions of

rank-preserving unHiggsings of U(1)’s in F-theory can be found in [15, 19, 21, 30, 31].

An F-theory compactification with a U(1)m gauge symmetry is specified by a Calabi-

Yau manifold X
(m)
n+1 with a MW-group of rank m. The Abelian gauge symmetry of the

theory is unHiggsed to a non-Abelian one by performing a geometric transition from X
(m)
n+1

to a new Calabi-Yau manifold X
(0)
n+1 with a trivial MW-group; the manifold X

(0)
n+1 is ob-

tained by tuning the complex structure of X
(m)
n+1 so that all its rational sections are placed

on top of each other. Typically, this process induces codimension one singularities of the

elliptic fibration of X
(0)
n+1 that produce a non-Abelian gauge group in the final “unHig-

gsed” theory. This can be thought of as a transition that takes “horizontal” divisors in

the Calabi-Yau manifold associated with sections into “vertical” divisors associated with

resolved Kodaira singularities over divisors in the base. For example, it is shown in [21, 30]

that a model with a single U(1) gauge group can be unHiggsed to a model with SU(2)

or larger non-Abelian gauge group3 and the general unHiggsings of two or more U(1)’s

are studied in [15]. Concrete unHiggsings of toric models with up to three U(1)’s and of

general U(1)×U(1) F-theory compactification are discussed in [19] and [15].

3In some cases, particularly when there are additional non-Abelian factors present before the unHiggsing,

the unHiggsed model can develop problematic singularities.

– 9 –



J
H
E
P
0
6
(
2
0
1
6
)
1
7
1

u = 0 ĉ0

ĉ1

E

u = 0

ĉ1 = ĉ0

E

Figure 3. UnHiggsing by tuning the complex structure of X, shown on the left, so that ĉ0 = ĉ1 in

the generic elliptic fiber E of X as shown on the right.

In this section, we analyze the unHiggsing of the Abelian F-theory model defined by the

Calabi-Yau manifold X in (2.1) that has one U(1). We thus identify X(1) ≡ X. This model

unHiggses to a non-Abelian theory with G = SU(2) gauge group, similar to the models

in [21, 30]. The corresponding geometrical tuning of X to a manifold X(0) ≡ XSU(2) with

trivial MW-group but I2 singularities at codimension one is discussed in section 3.1. Then,

we show that the structure of codimension two singularities in X that is responsible for

the presence of matter fields with U(1)-charge q = 3 in F-theory yields a novel singularity

structure in the unHiggsed geometry XSU(2): the I2 singularities corresponding to the

SU(2) gauge group occur on a singular divisor t = 0 with a triple point singularity. Most

notably, it seems that the triple point singularity can not be deformed without affecting

the I2 singularity of the elliptic fibration of XSU(2). This interplay between singularities

of the divisor t = 0 and the singularity of the elliptic fibration yields a new non-Tate

Weierstrass model with I2 singularities at codimension one. Furthermore, as demonstrated

in section 3.3, F-theory on XSU(2) yields the first explicit realization of SU(2) gauge theories

with the three-index symmetric representation, which is located precisely at the triple

point singularity of the SU(2) divisor t = 0. We support this observation by matching the

effective theories before and after the Higgsing in section 3.4. We conclude our discussion

by explicitly constructing all elliptic fibrations XSU(2) with base B = P2.

3.1 UnHiggsing U(1) → SU(2) in geometry

We begin by recalling that the elliptically fibered Calabi-Yau manifold X given in (2.1) has

two rational sections ĉ0 and ĉ1 with fiber coordinates (2.4). The unHiggsing of the U(1)

gauge symmetry of F-theory on X is performed by tuning its complex structure so that

the two rational sections ĉ0 and ĉ1 of the elliptic fibration become identical, i.e. ĉ0 ≡ ĉ1,

as shown in figure 3. As discussed before in (2.7), these two sections coincide precisely

if z1 ≡ 0, where z1 is the z-coordinate of the section ĉ1 in Weierstrass form. Thus, the

relevant tuning of the complex structure of X is given by

z1 = s7s
2
8 − s6s8s9 + s5s

2
9 → 0 . (3.1)

We denote the resulting tuned Calabi-Yau manifold by XSU(2) for reasons that become

clear below.

There are a number of remarks in order. First, we emphasize that we have to forbid

the special solution s8 = s9 ≡ 0 to (3.1). This is clear from table 1 because there is matter
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with q = 3 located at this locus in X. This implies that imposing s8 = s9 ≡ 0 globally by

tuning the complex structure of X would render the resulting elliptic fibration of XSU(2)

singular everywhere, which does not define a good F-theory model. In fact, we consider

solutions to (3.1) with general s8, s9 in order to preserve in the unHiggsing to XSU(2) the

geometric structure in X giving rise to matter with charge q = 3.

Second, the tuning (3.1) induces a codimension one singularity of Kodaira type I2.

This is immediately clear from table 1 and can be checked formally for example by using

the Weierstrass form, see appendix A. Indeed, the locus V (I(2)) in table 1, which supports

codimension two I2 singularities corresponding to matter with charge q = 2, is promoted

to codimension one in B if we perform the tuning z1 → 0. The locus of I2 singularities is

then given by

t := s4s
3
8−s3s28s9+s2s8s

2
9−s1s39 = 0 , (3.2)

whose class is [t] = [s1] + 3[s9] = −3KB + 2S9 − S7 according to (2.2).

Thus, we see that the gauge group G of F-theory on XSU(2), which has a trivial MW-

group of rational sections, is given by

G = SU(2) . (3.3)

The U(1) gauge group of X has been unHiggsed in a rank-preserving way to SU(2).

Third, we point out that generically, if all si in z1 are non-trivial and general polynomi-

als, the tuning (3.1) sets a non-trivial polynomial on B to zero. A general solution to this

relation can be identified when the base is smooth (which we assume) and the correspond-

ing ring of sections can be treated as a UFD, for example when the base is B = P2, where

the sections are simply homogeneous polynomials of various degrees in the homogeneous

coordinates. In this case, for example, every factor in s9 must be a factor of either s7 or

s8. We assume that s8 and s9 have no common factors since they could be factored out of

z1, and as mentioned above the solution s8 = s9 ≡ 0 does not give a good F-theory model.

The general solution to (3.1) with relatively prime s8 and s9 is then given by (cf. [32])

s5 = s8σ5 , s6 = s8σ7 + s9σ5 , s7 = s9σ7 . (3.4)

Here σ5 and σ7 are arbitrary sections of O(−KB−S9) and O(S7−S9), as follows from (2.2).

Clearly, a necessary condition for the existence of this solution is effectiveness of [s5]−[s8] =

−KB − S9 and S7 − S9 for the sections σ5 and σ7 to exist, respectively.

The constraint (3.1) can also be solved simply by setting

s5 = s6 = s7 ≡ 0 . (3.5)

Note that this is a special case of (3.4), where σ5 = σ7 = 0, and does not require effectiveness

of −KB − S9 or S7 − S9. We emphasize that this tuning is clearly always possible on any

base B. The charged matter spectrum of F-theory on XSU(2) obtained by this tuning agrees

with that obtained by the tuning (3.4). This follows from consistency with the Higgsing

back to X together with the fact, which we checked in an explicit computation, that the

additional tuning σ5 = σ7 ≡ 0 does not change the singularities of XSU(2). Thus, we will
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for the remainder of this work consider the solution (3.5). Finally, we note that simple

tunings achieving z1 → 0 are possible if s8 or s9 are constants, i.e. in the absence of matter

with U(1)-charge q = 3, cf. table 1; for example, if s8 is constant, we can always solve (3.1)

by s7 = 1
s28

(s6s8s9 − s5s29).
Let us further elaborate on the geometry of XSU(2). First, we emphasize that the

divisor t = 0 defined in (3.2) has triple point singularities at the locus of points defined by

s8 = s9 = 0; i.e., three of its branches cross at the common locus s8 = s9 = 0. Focusing on

complex two-dimensional bases B, t = 0 defines a Riemann surface with arithmetic genus

g computed as

g = 1 +
1

2
[t] · ([t] +KB) = pg +

1

2

∑
p

mp(mp − 1) . (3.6)

Here the first equality follows from adjunction whereas in the second equality we split the

arithmetic genus into the geometric genus pg and contributions from all singular points

p of t = 0 with multiplicity mp, see e.g. [7]. Each triple point singularity of t = 0 has

multiplicity mp = 3 and contributes 3 to the arithmetic genus g of t as it can be deformed

into three ordinary double point singularities, each of which contributes one to g. We

will discuss the physical interpretation of the triple point singularity in section 3.3, where

we show that each triple point singularity supports a half-hypermultiplet of matter in the

three-index symmetric 4 representation of SU(2).

We conclude by noting that the geometric genus pg of the curve t = 0 is greater or

equal to one for effective classes of s8 and s9. This follows from the genus formula (3.6) as

pg = 1+
1

2
(−2KB + [s8] + [s9]) · (−KB + [s8] + [s9])− 3[s8][s9]

≥ 1+
1

2
3[s9] · (−KB + [s8] + [s9])− 3[s8] · [s9] = 1+

1

2
3[s9] · (−KB + [s9])−

3

2
[s8] · [s9]

≥ 1+
1

2
3[s9] · [s8]−

3

2
[s8] · [s9] = 1 , (3.7)

where we used, employing (2.2), that [t] = −2KB + [s8] + [s9] in the first equality, then

−2KB ≥ 2[s9] − [s8] following from [s1] ≥ 0 in the first inequality and −KB + [s9] ≥ [s8]

as follows from [s7] ≥ 0 in the last inequality. Field theoretically, this is relevant since

we expect the geometric genus to give rise to pg nonlocal adjoint matter fields. At least

one adjoint matter field is required to Higgs the SU(2) gauge theory specified by XSU(2)

back to the original U(1) theory, so if the triple point singularities do not support localized

adjoint matter then it is clear that the geometric genus of t must be positive. In addition,

we emphasize that g ≥ 1 is equivalent to [z1] ≥ 0 as we have the relation

[t] = [z1]−KB , (3.8)

which follows from (2.7) and (2.2). This implies that [t] is always effective as we have

−KB ≥ 0 and [z1] ≥ 0, which is necessary for the existence of a non-trivial section z1
allowing for the deformation of the model XSU(2) back to X. The pg adjoint Higgs VEV’s

can be thought of as corresponding to the deformations in z1 6= 0.
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3.2 Novel matter structure from non-Tate Weierstrass forms

The Weierstrass model of the unHiggsed theory XSU(2) is obtained using the tuning (3.5) in

the general Weierstrass model of X given in (A.1). The resulting SU(2) model is specified

by the Weierstrass coefficients

f =
1

3

(
−
(
s23 − 3s2s4

)
s28 + (s2s3 − 9s1s4) s9s8 −

(
s22 − 3s1s3

)
s29
)
, (3.9)

g =
1

27

(
−2(s33 − 9s2s3s4 + 27s1s

2
4)s

3
8 − 6(s2s

2
3 + 3s22s4 − 9s1s3s4)s

2
8s9

+6s3(2s
2
2 − 3s1s3)s8s

2
9 − 2s32s

3
9

)
+

(
s1s4 −

1

3
s2s3

)
T .

Here we have replaced the variable t defined in (3.2) for the moment by the formal variable

T . While the formal expansion of f and g is thus ambiguous, it is clear that f is not

naturally written in a form containing terms proportional to T as there are no cubic terms

in s8, s9, and this form of g is a fairly natural way of combining terms with a term linear in

T . Alternative presentations of g lead to equivalent conclusions but with different algebra.

From (3.9), we readily compute the discriminant ∆ = 4f3 + 27g2. We emphasize that for

T being an abstract variable, we do not obtain a vanishing of ∆. However, we see that

(4f3 + 27g2)
∣∣
T=0
∼ s4s38 − s3s28s9 + s2s8s

2
9 − s1s39 , (3.10)

which agrees precisely with t given in (3.2). Thus, for the special choice T ≡ t we obtain a

vanishing of ∆ to first order. In fact, if we set T ≡ t we see that ∆ vanishes also to second

order at t = 0 due to additional cancellations. We then obtain

∆ = t2∆′ , ∆′ = 4s1s
3
3 + 4s32s4 − 18s1s2s3s4 + 27s21s

2
4 − s22s23 . (3.11)

Here, the remainder ∆′ of the discriminant is in the class [∆′] = −6KB + 2S7−4S9 so that

[∆] = [∆′] + 2[t] = −12KB.

In summary, we see that the singularity structure of the elliptic fibration defined by

the Weierstrass model with (3.9) crucially depends on the particular form of t = 0 with

triple point singularities at s8 = s9 = 0. In particular, the forms in (3.9) do not have the

structure needed for an SU(2) singularity through Tate’s algorithm [6, 33], and do not have

the form expected for an SU(2) on a smooth divisor t = 0, because the induced ring of local

functions is not a universal factorization domain [7]. Thus, we refer to the model (3.9) and

models of similar type more generally as non-Tate form Weierstrass models. Explicitly, we

observe that the Tate coefficients

a1 = a3 = 0 , a2 = −s3s8 − s2s9 , a4 = s2s4s
2
8 + (s2s3 − 3s1s4)s8s9 + s1s3s

2
9

a6 = −s1s24s38 + (2s1s3 − s22)s4s28s9 + (2s2s4 − s23)s1s8s29 − s21s4s39 (3.12)

for (3.9) that naively follow from (A.3) by the tuning (3.5) do not exhibit the vanishing

orders in Tate’s algorithm for the realization of an SU(2) gauge group [6, 33].

We conclude by noting that (3.9) assumes the normal form of a Weierstrass model

with I2 singularities as dictated by Tate’s algorithm if s8 or s9 are constants, i.e. t = 0 is

smooth. For example, if s9 = const. we can shift the variables so that t ≡ s1 and (3.9)

assumes the form of a Weierstrass model with I2 singularities in [7].
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SU(2)-rep Multiplicity Fiber Locus

4 x4 = 1
2S9 · (−KB + S9 − S7) I∗ns0 VSing = {s8 = s9 = 0}

3 x3 = 1
2 [t] · ([t] +KB) + 1− 6x4 I2 VSU(2) = {t = 0}

2
x2 = 2(3K2

B −KB · (2S7 − S9)
−S27 + S7 · S9 − S29 ) + 2x4

I3 V (p1) ∪ VSing

Table 2. Matter spectrum of XSU(2). Shown is the multiplicity of full hypermultiplets in a 6D

SUGRA theory. We note that there is only a half-hypermultiplet in the 4⊕ 2⊕ 2 at each ordinary

triple point s8 = s9 = 0 of t = 0.

3.3 The non-Abelian matter spectrum

We are now in a position to determine the matter spectrum of F-theory on the Calabi-

Yau manifold XSU(2). For the reader only interested in the results of this analysis, we

summarize the matter content in table 2.

We begin with the matter content localized at codimension one. As noted before, the

SU(2) gauge algebra is supported on a Riemann surface t = 0 of higher (arithmetic) genus

g, which is computed via (3.6). As t = 0 has a number of [s8] · [s9] ordinary triple point

singularities, each of which contribute 3 to g, we obtain the topological genus pg

pg = g − 3[s8] · [s9] , (3.13)

which is explicitly given in the first line of (3.7). In a 6D compactification, the topological

genus pg gives rise to pg hypermultiplets in the adjoint representation 3 of the SU(2) gauge

group on t = 0 [34]. Employing (2.2), this gives the multiplicity x3 in the second row

in table 2.

Next let us consider the matter contribution of the triple point singularities at the loci

s8 = s9 = 0. One way to attain a triple point singularity on a divisor supporting an SU(2)

is to take a Tate model for an SU(2) on a smooth divisor t̃, and then to deform the divisor

to get a triple point singularity. In this scenario, the triple point can be viewed as a limit

of three double point singularities. Furthermore, each double point is reached in a limit

of a family of smooth surfaces; reasoning following [16], each such double point must be

associated with an adjoint representation since there is no intermediate opportunity for a

matter transition through a superconformal fixed point, and for similar reasons the triple

point in the Tate construction must then represent three adjoint matter multiplets. For

the non-Tate model found here, however, the arithmetic genus three singularity may give

a matter content with a half-hypermultiplet in the triple symmetric 4 representation. To

distinguish these possibilities, further analysis is needed. In the following section we argue

that by matching the matter content with the Higgsed U(1) theory, the only consistent

possibility is that each triple point carries a half-hypermultiplet in the 4 representation.

This gives the multiplicity x4 in the first row in table 2.

Another approach, in principle, to determining the matter content at the intersection

point is to explicitly resolve the singularity of the Calabi-Yau manifold over the triple
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intersection point. This is an interesting direction for study, which we leave the details of for

future work. We make several comments, however. First, the local analysis will determine

the representation of SU(2)×SU(2)×SU(2) realized at the intersection of three independent

divisors. This will either give three bifundamental type representations, corresponding to

the possibility of three adjoints for the SU(2) on the connected divisor, or a trifundamental4

representation 2×2×2, which would break up into a 4 and two fundamental 2’s when the

divisor is connected and we embed SU(2) ⊂ SU(2) × SU(2) × SU(2). (Actually, we would

get a half trifundamental, as this representation is self-conjugate). Note that while for

a larger group like SU(3), the precise matter content, such as the presence of an adjoint

vs. a symmetric + antisymmetric, depends on how the divisor connects to itself, i.e. on

whether the local representation on each branch is fundamental or antifundamental, that

distinction is irrelevant for SU(2) where the fundamental representation is self-conjugate.

In any case, this analysis suggests that when the triple point gives a triple-symmetric 4

representation there will also be two fundamental 2 representations present.

The Kodaira singularity at the triple points is of type I∗0 . Since this is a codimension

two singularity, the split/non-split distinction and monodromy structure is not relevant in

the same way as it is for codimension one singularities, where it would determine whether

the gauge group would be G2 or SO(8). For six-dimensional theories, this singularity arises

at a point, so there is no question of monodromy, and the Dynkin diagram associated with

the singularity is a D4. Locally, the matter structure associated with the codimension two

singularity is determined by the embedding of the three single nodes associated with the A1

SU(2) factors on the branches of the I2 locus into the D4. This can be done in an essentially

unique way that respects the permutation symmetry on the A1 factors by embedding the

three A1 factors as the three outer nodes of the Dynkin diagram D4. The central node then

represents a matter state that is charged under all three SU(2) factors, and thus associated

with the trifundamental representation 2×2×2, which yields the 4+2+2 representation

upon the embedding of SU(2) ⊂ SU(2) × SU(2) × SU(2) by identifying the three SU(2)

factors as discussed above. This gives strong evidence from the group theory point of

view that indeed the local D4 structure at the triple point must be associated with the 4

representation of the SU(2) on the I2 locus. A more explicit resolution of this singularity is

left to future work. Note that for 4D F-theory models, the codimension two D4 singularity

arises over a curve in the base threefold. While there may be nontrivial monodromy around

this curve, this simply corresponds to the identification of the different SU(2) factors on

the branches of the I2 locus that enter the triple point. Since these branches are already

identified globally, this does not modify the above conclusion that the resulting matter

content should include the 4 representation of the SU(2).

Finally, we use the Weierstrass model (3.9) to find the codimension two singularities

of XSU(2) at the intersection t = ∆′ = 0 with ∆′ given in (3.11). The computation of

the primary decomposition of the ideal I := {t,∆′} yields two prime ideals, which we

denote by p1 and p2. As these ideals are generated by 14 and six polynomials, respectively,

4The possibility of a trifundamental representation arising at a triple point of an I2 locus was also

discussed in [35].
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we do not present their explicit forms here. Consequently, the variety V (I) is reducible

with irreducible components V (p1) and V (p2) that can be shown, employing the resultant

technique as in [26], to have multiplicities 1 and 2 inside V (I), respectively. Thus, we find

the homology relation

[V (I)] = [V (p1)] + 2[V (p2)] . (3.14)

The individual homology classes are computed as explained in [27] to be

[V (p1)] = 2(3K2
B −KB · (2S7 − S9)− S27 + S7 · S9 − S29 ) ,

[V (p2)] = 6K2
B −KB · (S9 − 2S7) + 3S7 · S9 − 3S29 . (3.15)

Next, we determine the singularity type of XSU(2) along these two irreducible compo-

nents. By reducing the Weierstrass coefficients f , g and the discriminant ∆ given in (3.9)

and (3.11) as well as the Tate coefficients (3.12) modulo the ideals p1, p2, respectively, we

find Kodaira singularities of type I3 and III, respectively. Thus, the locus V (p1) supports

a number of [V (p1)] matter fields in the fundamental representation 2 of SU(2), as shown

in the last line of table 2, while no matter fields are located on V (p2) since the type III

fiber is just a degenerated I2 fiber with no additional P1 harboring matter states. In a

compactification on a threefold XSU(2) to 6D, the found matter fields form a full hyper-

multiplet. The multiplicity of matter fields in the 2 representation is given in the last line

of table 2, where we have added [s8] · [s9] fundamentals contributed by the ordinary triple

point singularities of t = 0, matching the analysis of the local trifundamental representation

mentioned above.

We conclude by noting that the anomaly coefficient b of the 6D SUGRA theory given

by F-theory on the threefold XSU(2) is given by the class of t, i.e. it reads

bSU(2) = [t] = −2KB + [s8] + [s9] = −3KB + 2S9 − S7 . (3.16)

Employing this coefficient, the spectrum in table 2, a = KB, and the anomaly coefficients

(AR, BR, CR) = (1, 0, 12), (4, 0, 8), (10, 0, 41) for the SU(2)-representations R = 2, 3, 4,

respectively, we readily check that the two 6D gauge and mixed gauge-gravity anomalies

are cancelled. For the anomaly cancellation to work, following the genus analysis, it is

necessary that there is only a half-hypermultiplet in the representation 4 ⊕ 2 ⊕ 2 at each

triple point singularity of t = 0, as indicated in table 2. Note furthermore, as mentioned

earlier, that there is an anomaly equivalence

1

2
4 + 7× 2↔ 3× 3 + 7× 1. (3.17)

This shows that with the number of matter fields in the fundamental identified above, it is

not possible to satisfy the anomaly conditions when the triple intersection point supports

three adjoints and any positive number of fundamental representations. This provides an

alternative argument using only anomaly conditions and counting of known singularity

types that the matter content at the triple points is 1
2 × 4 + 2 as identified above. For

more details on the relevant anomaly cancellation conditions in the context of F-theory, see

e.g. the review [36]. Finally, note that as found in [16], we expect that the total number of
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fields that must be brought together to explicitly undergo a transition like (3.17) will bring

the theory to a superconformal transition point, where a tensor branch is also available. A

more explicit treatment of such transitions will be presented elsewhere.

3.4 Matching effective theories through the Higgs transition

Next, we match the effective field theory of F-theory on XSU(2) with the Abelian model

obtained by F-theory on X. We show that the two theories are related under a Higgsing

by matter in the adjoint representation. As mentioned above, this corresponds to the

extremal transition XSU(2) → X induced by switching on the deformation parameter z1
defined in (3.1).

We begin by matching the charged matter spectrum of the non-Abelian model in table 2

with the one of the Abelian model in table 1 through the adjoint Higgsing. First, we note

the following branching of SU(2) representations under the breaking SU(2) → U(1):

4→ 13 ⊕ 1−3 ⊕ 11 ⊕ 1−1 , 3→ 12 ⊕ 1−2 ⊕ 10 , 2→ 11 ⊕ 1−1 . (3.18)

Here we have computed U(1)-charges using the generator 2σ3, where σ3 is the third Pauli

matrix of SU(2). Next, we use the fact that a hypermultiplet with charge q is composed

of states with charge q and −q to eliminate negative charges. Finally, employing that

two hypermultiplets with charges q = ±2, respectively, from the adjoint representation are

eaten up in the Higgsing by the massive W-bosons of the broken SU(2) vector multiplet, we

obtain an Abelian theory with the following numbers x1q of hypermultiplets with charges

q = 1, 2, 3:

x13 = 2x4 , x12 = 2(x13 − 1) , x11 = 2(x14 + x11) . (3.19)

Comparing with the matter spectrum in table 1, using table 2, we see that we precisely

reproduce the effective theory of F-theory on X. Furthermore, we note that the anomaly

coefficient b in (2.6) of the Abelian theory is 2bSU(2) with bSU(2) given in (3.16) as expected.

This in particular implies an anomaly free theory in 6D. This precise matching between

the spectra gives a rigorous argument for the presence of 4 matter at the triple point

singularities, matching with the results of the arguments given in the previous section; this

is the only matter content that would give a consistent U(1) theory after Higgsing.

Next, we note that the number of complex structure moduli increases in the Higgsing,

corresponding geometrically to the deformations XSU(2) → X. The new complex structure

moduli are naturally associated with the deformation parameters in z1. We expect therefore

that the number of independent parameters that deform z1 away from the locus z1 = 0 will

match the number of Higgs VEVs, i.e. neutral hypermultiplets in the 3 representation.5

As there are x3 = pg matter fields in the 3 representation, each of which has one neutral

component, we expect pg new moduli and deformation parameters in z1. To be concrete, for

the concrete base B = P2 we can compute the change in the number of complex structure

moduli by a counting of monomials in appropriate classes. First, we compute the number

5Note that there is no D-term condition in an adjoint Higgsing.
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x3 of adjoint fields in the representation 3 and Higgs VEVs according to table 2 as

x3 = 28− 15

2
S7 +

1

2
S27 + 6S9 + S7 · S9 − S29 , (3.20)

where we have used that KB = OP2(−3). Explicitly computing the number of deformation

parameters in z1, assuming the generic form (3.4) for the solution to z1 = 0, we can

parameterize the deformations by replacing σ5, σ7 by generic s5, s6, s7. The number of

independent monomials in a degree d divisor class is m[d] = (d+ 1)(d+ 2)/2, allowing us

to confirm that the number of independent degrees of freedom that deform z1 6= 0 is

m[s5] +m[s6] +m[s7]−m[σ5]−m[σ7] = x3 . (3.21)

In principle, it should also be possible to check whether the number of independent Weier-

strass moduli in both the SU(2) and U(1) models involved match precisely with the num-

ber of neutral scalar fields expected from the gravitational anomaly cancellation condition

H − V = 273 − 29T . While the computation just performed demonstrates that the dif-

ference between these numbers is correctly captured by the deformation parameters in z1,

there is some redundancy in our parameterization of these models through the si’s; remov-

ing this redundancy and identifying the proper number of independent degrees of freedom

in the Weierstrass model would a useful check to determine whether the models presented

here are the most general forms for the given spectra, or only represent a subset of the

possibilities.

3.5 Models over B = P2

We conclude the discussion of F-theory compactified on the Calabi-Yau manifold XSU(2)

with the concrete models obtained for B = P2.

We begin by considering the generic class of SU(2) models on P2. When the SU(2)

is realized on a smooth divisor of degree d, the genus of the corresponding curve is g =

(d − 1)(d − 2)/2. This is the number of matter fields in the adjoint (3) representation.

From explicit construction or anomaly cancellation, it is straightforward to determine that

the number of fundamental (2) matter fields is x2 = 16 + 6d2 − 16g. This parameterizes

the full spectrum of F-theory constructions on P2 with an SU(2) gauge group realized on

a smooth divisor. Using the anomaly equivalence (3.17), we expect that we can exchange

3 adjoints and seven uncharged moduli in any of these models for a half-hypermultiplet in

the 4 representation and seven fundamentals. For example, when d = 8, we have a genus

21 curve, and the generic matter content consists of 21 adjoints and 64 fundamentals.

We would expect anomaly-equivalent models with 21− 3x adjoints, x half-hypermultiplets

in the 4 representation, and 64 + 7x hypermultiplets in the fundamental representation.

These classes of models (for general d) comprise all models that are consistent from the

low-energy 6D supergravity point of view, and that have no tensor multiplets, an SU(2)

gauge group, and matter in only the 1, 2, 3, 4 representations. We might hope to identify

in F-theory using the approach described here all such models that have at least one adjoint

representation that can be Higgsed to give a U(1) theory with charges up to q = 3.
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Next we recall that the Calabi-Yau manifold XSU(2) is defined by (2.1) with tuned

complex structure so that s5 ≡ s6 ≡ s7 ≡ 0. Thus, the model exists as long as all other

sections si exist, i.e. are associated to effective divisor classes. By explicitly solving the

effectiveness conditions implied by this, we again obtain the allowed region in figure 2. For

every Abelian model X there exists a corresponding model XSU(2) and vice versa. For

each of these 16 inequivalent models (recall the Z2-symmetry (2.8)) we readily compute

all divisor classes [si], the class of the SU(2)-divisor t = 0 as well as the charged matter

spectrum in table 2. We obtain:

(S7,S9) [s1] [s2] [s3] [s4] [s5] [s6] [s8] [t] (x4, x3, x2)

(0, 0) 9 6 3 0 6 3 3 9 (0, 28, 54)

(1, 0) 8 6 4 2 5 3 2 8 (0, 21, 64)

(2, 0) 7 6 5 4 4 3 1 7 (0, 15, 70)

(3, 0) 6 6 6 6 3 3 0 6 (0, 10, 72)

(1, 1) 7 5 3 1 5 3 3 10 (
3

2
, 27, 61)

(2, 1) 6 5 4 3 4 3 2 9 (1, 22, 68)

(3, 1) 5 5 5 5 3 3 1 8 (
1

2
, 18, 71)

(1, 2) 6 4 2 0 5 3 4 12 (4, 31, 56)

(2, 2) 5 4 3 2 4 3 3 11 (3, 27, 64)

(3, 2) 4 4 4 4 3 3 2 16 (2, 24, 68)

(2, 3) 4 3 2 1 4 3 4 13 (6, 30, 58)

(3, 3) 3 3 3 3 3 3 3 12 (
9

2
, 28, 63)

(2, 4) 3 2 1 0 4 3 5 15 (10, 31, 50)

(3, 4) 2 2 2 2 3 3 4 14 (8, 30, 56)

(3, 5) 1 1 1 4 3 3 5 16 (
25

2
, 30, 47)

(3, 6) 0 0 0 0 3 3 6 18 (18, 28, 36)

(3.22)

There are some remarks in order. First, we note that in the absence of triple point

singularities of t = 0, its minimal degree is 6. However, in that case the model XSU(2)

is completely equivalent to the elliptic fibrations by quartics in Bl1P2(1, 1, 2) of Morrison,

Park [21], as mentioned before. Thus, there have to exist models with [t] = 3, 4, 5. As

discussed before at the end of section 3.1, these can be obtained from X if we relax the

effectiveness condition on [s8]. Indeed, we can then lower the degree of [t] = [s1] to 3, as

expected.

Second, in the case with ordinary triple point singularities on t, we observe that our

list (3.22) does not produce all models that seem geometrically possible. For example, a

model with [t] = 5 has an arithmetic genus of g = 6 which seems to allow for one ordinary

triple point singularity while still exhibiting a geometric genus pg = 3, i.e. adjoints for a

Higgsing to an Abelian theory. Similar models with a different number of ordinary triple

points than in (3.22) seem to be constructable also for higher degree curves t = 0. Naively

it would seem that we can simply choose, for example [s1] = [s2] = [s3] = [s4] = 2 and
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[s8] = [s9] = 1 in the Weierstrass form (3.9). While this set of choices are not compatible

with effectiveness of all divisor classes in (2.2), this would seem to define a well-defined

Weierstrass model with the SU(2) structure of interest realized on a quintic curve with a

single triple point at the intersection s8 = s9 = 0. The issue, however, is that since f

is of degree 12 and g of degree 18 in homogeneous coordinates [x : y : z], this leads to

a problematic (6, 12) singularity when z → 0. The compatibility of the divisor classes

with (2.2) avoids this problem. It would be interesting to understand whether the absence

of these models is a mere artifact of how the Weierstrass form (3.9) is constructed, or

whether this is an indication of a fundamental limitation in the spectrum of models available

from F-theory, or even in 6D supergravity consistent with quantum gravity constraints. A

systematic mathematical classification of Weierstrass models of elliptic fibrations with I2
singularities over singular divisors would help to answer this question.

4 Further unHiggsing to larger non-Abelian groups

In this section we discuss the possibility to further unHiggs the non-Abelian model de-

fined by F-theory on XSU(2). Here, we are motivated by the search for a resulting non-

Abelian theory that has a standard matter spectrum consisting only of fundamentals,

anti-fundamentals and adjoints. In this case, the geometric realization of the correspond-

ing elliptic fibration should follow the standard rules of Tate’s algorithm. Starting with

these standard Tate Weierstrass models the inverse process of the unHiggsing described

here can then be understood as a deformation (re-Higgsing) of these Weierstrass models to

a non-Tate Weierstrass model. Systematizing this deformation procedure outlined below

may shed light on the general construction of non-Tate Weierstrass forms with novel matter

structures in F-theory. For a recent application of this idea, we refer the reader to [16].

Here, we discuss two unHiggsing, one to models with G2 × SU(2) gauge group and

standard matter content given by adjoints and (bi-)fundamentals and one to models with

SU(2)×SU(2)×SU(2) gauge group and with a matter content that includes trifundamental

matter.

4.1 UnHiggsing SU(2) with the 4 representation to SU(2)×G2

One possible unHiggsing of F-theory on XSU(2) yields a theory with G2 × SU(2) gauge

group on two different divisors and with a standard matter spectrum consisting of adjoints,

fundamentals and bifundamentals. The unHiggsing is achieved by imposing

s8 ≡ as9 (4.1)

for an appropriate section a ∈ O(−KB − S7), which can exist if −KB − S7 is an effective

class (if [s9] ≥ [s8], we can impose the inverse relation s9 = bs8 for appropriate b.).

With this tuning, the SU(2) divisor t = 0 defined in (3.2) degenerates as

t = s39(s4a
3 − s3a2 + s2a− s1) , (4.2)
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so that its triple point singularities disappear at the cost of an overall factor of s39. Indeed,

the Weierstrass model (3.9) reduces to the form

f =

(
−1

3
s̃22 + s̃3s̃1

)
s29 , g =

(
− 2

27
s̃32 +

1

3
s̃2s̃3s̃1 − s4s̃21

)
s39 ,

∆ = −16s̃21s̃
6
9∆
′ , ∆′ = −s̃22s̃23 + 4s̃1s̃

3
3 + 4s̃32s̃4 − 18s̃1s̃2s̃3s̃4 + 27s̃21s̃

2
4 , (4.3)

where we made the definitions

s̃1 = s1 + as2 − a2s3 + a3s4 , s̃2 = s2 − 2as3 + 3a2s4 , s̃3 = s3 − 3as4 . (4.4)

The Weierstrass form (4.3) reveals the presence of singularities of Kodaira types I2 at

s̃1 = 0 and I∗0 at s9 = 0, respectively. We readily observe that (4.3) is of the normal form

of a Weierstrass model with I2 singularity following from Tate’s algorithm or the analysis

in [7]. Using the orders of vanishing of the Tate coefficients (A.3) in the limit (4.1), which

are (∞, 1,∞, 2, 3), or by computing the irreducible monodromy cover [20], we see that the

singularity at s9 = 0 is non-split, i.e. of type I∗ns0 yielding a G2 gauge symmetry [6]. Thus,

F-theory on XSU(2) with the tuning (4.1) has the gauge group

G = SU(2)×G2 . (4.5)

Note that the Weierstrass form (4.3), like (3.9), are acceptable for choices of s1, s9 that

violate the effectiveness conditions (2.2). However, if in addition also (4.4) is to be satisfied,

i.e. if the model shall be deformable back to XSU(2), such models suffer from the same issue

discussed earlier and have problems with bad singularities at infinity. For example, there

should be no problem in tuning, for example, a G2 on a line [s9] = 1 and an SU(2) on a

conic [s1] = 2. This, however, would imply that [s8] = −2, i.e., that (4.4) breaks down.

As we see below, in this case there is insufficient matter to carry out the Higgsing that is

needed to deform the model to return to the SU(2) models where (3.9) is valid, explaining

the absence of a corresponding SU(2) model.

The matter content of the F-theory effective field theory can be derived from the

Weierstrass model (4.3). As we will discuss, due to the presence of the G2 gauge group,

matter representations arise both at codimension one, i.e. are non-local, as well as at codi-

mension two loci where the singularities of the elliptic fibration enhance. Before presenting

the details of this analysis, we summarize the derived matter spectrum in table 3. We

emphasize again that the spectrum only contains fundamental and adjoint representations,

which can be attributed to the smoothness of both gauge divisors s̃1 = 0 and s9 = 0 as

well as the standard form of the Weierstrass model. We note that there is an additional

Kodaira singularity of type III at the codimension two locus s̃1 = s̃2 = 0 that does not

give rise to matter fields.

Cancellation of 6D anomalies can be checked using the group theory coefficients

(AR, BR, CR) =
(
1, 0, 14

)
,
(
4, 0, 52

)
,
(
1, 01

2

)
, (4, 0, 8) for the G2-representations R = 7,14

and the SU(2)-representations R = 2,3, respectively, given for example in [28]. The coef-

ficients bSU(2) = [s1] = −3KB − S7 − S9 and bG2 = S9 enter the 6D GS-counterterms.
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Rep Multiplicity Fiber Locus

(2,7) x(2,7) = 1
2S9 · (−3KB − S7 − S9) I∗2 Vbf = {s̃1 = s9 = 0}

(1,7) x(1,7) = S9 · (−2KB + S7 − S9) − non-local

(2,1) x(2,1) = 1
2 (−4KB + 4S7 − 3S9)(−3KB − S7 − S9) I3

V2 ={s̃1 = 4s̃2s̃4 − s̃23 = 0}
∪Vbf

(3,1) x(3,1) = 1+ 1
2 (−3KB − S7 − S9) · (−2KB − S7 − S9) I2 VSU(2) = {s̃1 = 0}

(1,14) x(1,14) = 1 + 1
2S9 · (S9 +KB) I∗0 VG2

= {s9 = 0}

Table 3. Matter spectrum of F-theory on XSU(2) with the tuning (4.1) to a model with gauge

group G2 × SU(2). Shown are the multiplicities of full hypermultiplets in a 6D SUGRA theory.

Next, we explain the derivation of the matter spectrum given in table 3. We begin

with the non-local matter. As both the G2 and the SU(2) divisors are smooth, there

are g = 1 + 1
2S9 · (S9 + KB) adjoint matter fields in the 14 representation of G2 and

gSU(2) = 1 + 1
2(−3KB − S7 − S9) · (−2KB − S7 − S9) adjoints in the 3 representation of

SU(2), respectively. This yields the last two lines of table 3.

For G2, the fundamental representation 7 is in general non-local, as already discussed

in [20]. The multiplicity of this representation is given6 by the difference g′−g. Here g is the

genus of the G2-divisor s9 = 0 and g′ is the genus of the threefold cover7 of the curve s9 = 0

with branch points p given by the codimension two enhancement points s9 = ∆′ = 0 with

∆′ given in (4.3) [20]. Using the Riemann-Hurwitz formula for the genus g′ of a ramified

covering of a genus g Riemann surface [37],

g′ =
1

2
(2 +N(2g − 2) +

∑
p

(ep − 1)) , (4.6)

where N is the degree of the covering, p are its branch points and ep denotes the ramification

index at p, we obtain using N = 3 and ep = 2 at all p:

g′ − g = (−2KB + S7 − S9) · S9 . (4.7)

This follows as there are S9 · [∆′] = 2S9 · (−3KB + S7 − 2S9) identical branch points p and

since g = 1 + 1
2S9 · (S9 +KB). We note that (4.7) is precisely the multiplicity in the second

line of table 3.

The enhancement points Vbf = {s9 = s̃1 = 0} support bifundamental matter. The

(2,7) representation is self-conjugate, and thus allows for half-hypermultiplets; indeed,

as encountered in the context of non-Higgsable clusters [22], each such point supports a

half-hypermultiplet in this representation. The number of bifundamentals is thus given

by S9 · (−3KB − S7 − S9) yielding the first line in table 3. In addition to supporting

bifundamentals, at the intersection points s9 = s̃1 = 0 there must also be one additional

(2,1) representation at s0 = s̃1 = 0. As in the analysis of [20, 22], this can be seen by

6Thanks to D. Morrison for discussions on this point.
7This is expected as the gauge group G2 arises by acting with the outer automorphism Z3 on the Dynkin

diagram of SO(8).
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analyzing the matter structure through the monodromy cover; the G2 can be enhanced to

an SO(7), under which the 7 + 1 of G2 combine to a spinor 8 representation. Taking into

account the SU(2) fundamentals at the points V2 = {s̃1 = 4s̃2s̃4 − s̃23 = 0} of I3 fibers, we

obtain, using (2.2), the third line of table 3.

Deformations of I2 × I∗ns
0 Weierstrass models. Finally, we reverse our perspective

and apply the above results to describe how to deform an elliptic fibration with standard

I2 and I∗ns0 singularities, i.e. an F-theory geometry with SU(2) × G2 gauge symmetry,

to a “Higgsed” elliptic fibration with only an I2 singularity, i.e. an SU(2) gauge group,

but codimension two singularities giving rise to the discussed matter in the three-index

symmetric tensor representation. The idea is to start with the tuned geometry specified

by the Weierstrass model (4.3) and to view the original model defined by XSU(2) as a

deformation thereof. To this end, we introduce the deformation parameter

ε := s8 − as9 (4.8)

describing the deviation from the tuning (4.1). The class of s8, expressed in terms of the

classes of the SU(2) and G2 divisors s̃1 and s9, respectively, reads

[ε] = 2[s9] + [s̃1] + 2KB , (4.9)

which imposes a minimal degree of s̃1 and s9 for the deformations ε to exist. In addition,

this implies that the degree of ε is completely fixed if the degrees of s̃1 and s9 are given.

Employing the parametrization of the Weierstrass model (4.3) in terms of the sections

s̃1, s̃2, s̃3, s4 and s9 as well as the definition of ε, we express the deformed Weierstrass

model (3.9) as

f =

(
−1

3
s̃22 + s̃3s̃1

)
s29 +

(
1

3
s̃2s̃3 − 3s̃1s̃4

)
s9ε+

(
s̃2s̃4 −

1

3
s̃23

)
ε2 , (4.10)

g =

(
− 2

27
s̃32 +

1

3
s̃2s̃3s̃1 − s̃4s̃21

)
s39 +

(
s̃1

(
s̃2s̃4 −

2

3
s̃23

)
+

1

9
s̃22s̃3

)
s29ε

+

(
1

9
s̃2s̃

2
3 −

2

3
s̃22s̃4 + s̃1s̃3s̃4

)
s9ε

2 +

(
1

3
s̃2s̃3s̃4 −

2

27
s̃33 − s̃1s̃24

)
ε3 .

We readily check that (4.10) reduces to (4.3) in the limit ε→ 0. Its I2 singularity is located,

in the employed parametrization, at

t = −s̃1s39 + s̃2s
2
9ε− s̃3s9ε2 + s̃4ε

3 = 0 (4.11)

with ordinary triple point singularities at s9 = ε = 0.

In field theory, the above deformation corresponds to a Higgsing of the SU(2)×G2

theory. Indeed, we see that the spectrum in table 3 exactly reproduces the SU(2) spectrum

in table 2 as

x4 = x(2,7) + 2(x(1,14) − 1) , x3 = x(3,1) + 2x(2,7) + x(1,7) + x(1,14) − 1 ,

x2 = 2x(1,7) + x(2,7) + x(2,1) , (4.12)
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where the −2 and −1 in the multiplicities take into account the fields eaten up by the

massive gauge bosons. This corresponds to the group theoretical breaking

SU(2)×G2 ⊃ SU(2)3 −→ SU(2) , (4.13)

where we first embed the regular subgroup SU(2)2 into G2 and then break to SU(2). The

relevant representations branch as

(1,14) ∼= (1,1,3)⊕ (1,3,1)⊕ (1,2,4) −→ 3⊕ 3 · 1⊕ 2 · 4 ,
(2,7) ∼= (2,1,3)⊕ (2,2,2) −→ 4⊕ 2⊕ 2 · (3⊕ 1) ,

(1,7) ∼= (1,1,3)⊕ (1,2,2) −→ 3⊕ 2 · 2 ,
(3,1) ∼= (3,1,1)→ 3 , (2,1) ∼= (2,1,1)→ 2 . (4.14)

Here, we denote by ∼= the presentation of SU(2) × G2 irreducible representations as (re-

ducible) representations of its subgroup SU(2)3. The embedding of the final SU(2) gauge

group into SU(2)3 is such that representations of the middle SU(2) go to multiple copies of

singlets and the tensor product of the representations of the two outer SU(2)’s is formed,

i.e. (R,R′,R′′)→ dim(R′) · (R⊗R′′).

The Higgs fields leading to the particular branching (4.14) transform in the SU(2)×G2-

representation (2,7). There are 17 vector multiplets before and three after Higgsing. The

14 vector multiplets that get massive in the Higgsing transform according to the first line

in (4.14) as one 3, three singlets 1 and two 4’s of the final SU(2). They eat up hypermulti-

plets in the broken (2,7) in the corresponding representations in the second line of (4.14).

Thus, for this Higgsing to be possible there have to be four half-hypermultiplets in the real

representation (2,7).8 The Higgs VEVs have to be turned on along the singlet components

in the second line of (4.14). As just mentioned, three SU(2)-singlet hypermultiplets are

eaten up by the massive vector multiplets. Thus, also three complex Higgs VEVs have to

be fixed by supersymmetry. It would be interesting to understand this condition explic-

itly on the level of D-term constraints in the 6D effective SUGRA theory, which should

describe the full moduli space of the resulting Higgsed theory being parametrized by all

singlets in the breaking (4.14) with three fields fixed by D-flatness. Note that in the case

mentioned above, for example, where on P2 we can tune a G2 factor on a line, [s9] = 1,

and an SU(2) on a conic, [s1] = 2, there are only two half-hypermultiplets in the (2,7)

representation, explaining the inability to Higgs the model in this and other such cases,

and correlating with the absence of an appropriate SU(2) model violating the effectiveness

constraints from (2.2).

4.2 UnHiggsing SU(2) with 4 to SU(2)3 with trifundamentals

We conclude with a brief discussion of a different unHiggsing of the SU(2) model defined by

F-theory on XSU(2) leading to a theory with three SU(2) gauge algebras on three different

divisors and with a matter spectrum which necessarily has to contain a trifundamental rep-

resentation besides the standard adjoint, fundamental and bifundamental representation.

8The number of half-hypers in the (2,7) is given, according to table 3, by S9 · (−3KB − S7 − S9) ≥
S9 · (−2KB − S9) for [s8] ≥ [s9]. E.g. for B = P2 all models of the form (4.3) have at least 5 half-hypers.
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The unHiggsing is preformed by imposing that the divisor t = 0 defined in (3.2)

factorizes as

t = s4s
3
8 − s3s28s9 + s2s8s

2
9 − s1s39

!
=

3∏
i=1

(ais8 + bis9) . (4.15)

This imposes the obvious constraints of the form

s4 = a1a2a3 , s3 =−a1a2b3−a1a3b2−a2a3b1 , s2 = a1b2b3+a2b1b3+a3b1b2 , s1 =−b1b2b3 .
(4.16)

We note that under this tuning, the Weierstrass model (3.9) that is obtained by the special

solution (3.5) develops six singularities of Kodaira type I2. This is attributed to the fact

that the simple solution overspecializes the complex structure of XSU(2), leading to spurious

singularities.

A more general Weierstrass form is obtained over a UFD using the tuning (3.4). In

this case, imposing the conditions (4.16) introduces three singularities of Kodaira type I2
along the three divisors

ti := ais8 + bis9 = 0 , i = 1, 2, 3 . (4.17)

The resulting Weierstrass model is algebraically very complex. Instead of presenting it here,

we just mention its key properties. A careful analysis of its codimension two singularities

reveals that the resulting model has matter in the fundamental representations w.r.t. all

three SU(2) factors as well as in all possible bifundamental representations of two SU(2)’s.

Most notably, at the codimension two locus s8 = s9 = 0 the three SU(2) divisors ti = 0

intersect. Employing the fact that the Weierstrass model is not of the standard I2 form

following from Tate’s algorithm, it can be argued that there is trifundamental matter

located at these points. This is also required by the Higgsing back to the original SU(2)

model specified by XSU(2).

We will return to analyzing SU(2)3 models with trifundamental matter and their

(un-)Higgsings in future work [18].

5 Conclusions

In this paper we have presented an explicit construction of a class of Weierstrass models

that realize matter in the three-index symmetric (4) representation of SU(2). For 6D F-

theory models, this matter is localized at triple point singularities in the curve C carrying

the gauge group. Such singularities have a contribution ga = 3 to the arithmetic genus of C,

matching with the formula (1.1) and the conjectured interpretation of this formula in [13].

To our knowledge, this represents the first explicit realization in the F-theory literature of

any matter representation with a genus contribution g > 1 through a Weierstrass model.

In the Weierstrass models studied here the gauge group lives on a curve of the form

t = Aξ3 +Bξ2η+Cξη2 +Dη3, where the triple point singularities are found at the locus of

points satisfying ξ = η = 0. This is closely parallel to the framework of [15, 16], where two-

index symmetric matter was found to live on curves of the form t = Aξ2+Bξη+Cη2. Here,

as in those papers, the vanishing of the discriminant ∆ to order N for an IN singularity
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depends on the singular structure of t, and the Weierstrass model does not take the simple

form that follows when one starts from the general Tate model for an IN singularity on

a general divisor t and transforms to Weierstrass form. This matches with the analysis

of [16], in which transitions between theories with different matter content were studied.

It was found there that for 6D theories, a transition between two models with distinct

matter representations and a given gauge group occurs when the model passes through a

superconformal fixed point. Indeed, by continuity it seems impossible to change matter

representations without such a transition when the gauge group is kept fixed. Thus, for

example, tuning a Tate type model with an SU(N) gauge group on a smooth curve C

and then taking a singular limit of C cannot change the matter content, so the full genus

contribution must still come from adjoint matter in any model where the Weierstrass model

comes from the generic Tate IN form. This explains the necessity for the remarkable

algebraic structure involved in the realizations of the symmetric matter representations

found in this and previous works.

Another remarkable feature of the analysis here is that the Weierstrass form of the

U(1) models of [19] that we have used does not seem to fit in the general classification

given in [21]. In that paper a general argument was given suggesting that any F-theory

model with an Abelian factor should have a Weierstrass description of the form

y2 = x3 +

(
c1c3 − b2c0 −

1

3
c22

)
x+

(
c0c

2
3 −

1

3
c1c2c3 +

2

27
c32 −

2

3
b2c0c2 +

1

4
b2c21

)
. (5.1)

The Weierstrass models for U(1) theories with charge q = 3 matter we consider here, do

not, however, seem to take this form [19]. In fact, we would have a problem if they did.

It was argued in [21, 30] that in any U(1) model of the form (5.1), taking b → 0 gives

an unHiggsing to an SU(2) model. The resulting SU(2) model, however is always in the

form that follows by starting with a generic Tate I2 construction, with the SU(2) realized

on the divisor {c3 = 0}, and transforming to Weierstrass form. It seems then from the

discussion above and the analysis of [16] that any such SU(2) can only have gR > 0 matter

coming from adjoint representations and cannot include exotic matter such as three-index

symmetric matter representations. Thus, the existence of these constructions seems to

suggest that there must be a more general class of U(1) models than those constructed

in [21]. We can understand this further by considering that in [21] the form (5.1) arose

from a situation where the extra section had an explicit description through

[x, y, z] =

[
c23 −

2

3
b2c2,−c33 + b2c2c3 −

1

2
b4c1, b

]
. (5.2)

Comparing to the expressions for the section [x1, y1, z1] in appendix A, we find that in our

case there is a similar description, where identifying b ≡ z1 = s7s
2
8 − s6s8s9 + s5s

2
9 the

section can be described in the form

[x, y, z] =

[
c23 −

2

3
bc2,−c33 + bc2c3 −

1

2
b2c1, b

]
. (5.3)

Understanding better how to construct more general classes of U(1) models with higher

charges that allow unHiggsing to non-Abelian SU(2) models with exotic matter representa-

tions may shed light on the general construction of Weierstrass models where gauge groups
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are realized on singular divisors. A natural starting point, for example, is the complete

intersection U(1)3 model in [38]

This paper has presented a novel and specific example of a rather remarkable geometric

and algebraic structure that can arise in F-theory, adding to the small set of explicit classes

of Weierstrass models known that realize exotic matter representations. There are many

ways in which it would be interesting to expand on these developments, both in terms of

this and other specific realizations and in terms of more general theoretical structures.

For the specific class of representations studied here, namely the 4 of SU(2), it would

be interesting to analyze the dual heterotic models in cases with a smooth heterotic dual,

as was done for the two-index symmetric representation of SU(3) in [16]. Also following

the lines of [16], it seems that analogous constructions to those found here can be realized

explicitly through exotic matter transitions in a further unHiggsed non-Abelian theory;

results on this will be presented elsewhere [18].9

In principle, the methods used here could be used to construct larger exotic SU(N)

representations. To follow the same logic as that presented here for higher-dimensional

representations of SU(2), for example, we would need to identify models with U(1) gauge

fields and matter fields transforming under representations of charge q > 3. More generally,

it would be desirable to address the general challenge of classifying the algebraic structures

that can be used in the Weierstrass model to construct general gauge groups over singular

divisors, and to bring together algebraic, geometric, and field theory understandings of

these more exotic matter representations along with their Higgsings and unHiggsings to

theories with Abelian or higher-rank non-Abelian gauge theories. This seems like a rich

arena for exploration, with highly intricate and nontrivial structure in the Weierstrass

models encoding these features, and we anticipate that further study of these questions will

lead to additional novel results and increased understanding. Finally, getting a systematic

handle on the types of codimension two singularities that can be realized in Weierstrass

models for elliptically fibered Calabi-Yau manifolds would be an important step towards

completing the systematic classification of such geometries [22, 39–43].
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We apply Nagell’s algorithm to the cubic (2.1) with respect to the point ĉ0 ∩ E to

obtain a birational map to its WSF. We determine the functions f , g of this WSF to be

given by

f =
1

48

(
24
(
2
(
s2s4s

2
8 + s1

(
s27 − 3s4s9

)
s8 + s5 (s4s5 + s2s7) s9 + s3 (s5s7s8 + s9 (s2s8 + s1s9))

)
− s6 (s4s5s8 + s2s7s8 + (s3s5 + s1s7) s9))−

(
s26 − 4 (s5s7 + s3s8 + s2s9)

)
2
)

g =
1

864

((
s26 − 4 (s5s7 + s3s8 + s2s9)

)
3 − 36

(
2
(
s2s4s

2
8 + s1

(
s27 − 3s4s9

)
s8 + s5 (s4s5 + s2s7) s9

+ s3 (s5s7s8 + s9 (s2s8 + s1s9)))− s6 (s4s5s8 + s2s7s8 + (s3s5 + s1s7) s9))
(
s26 − 4s5s7 − 4s3s8

− 4s2s9) + 216
((
s22 − 4s1s3

)
s27s

2
8 + s24

(
s25 − 4s1s8

)
s28 − 2s7 (s2 (s3s5 + s1s7)− 2s1s3s6) s9s8

+
(
(s3s5 − s1s7) 2 − 4s1s

2
3s8
)
s29 + 2s4

(
−2s21s

3
9 + 2

(
s1s5s6 − s2

(
s25 − 2s1s8

))
s29

− s8
(
2s8s

2
2 − 2s5s6s2 + 2s1s

2
6 + s1s5s7 + s3

(
s25 − 4s1s8

))
s9 + (2s1s6 − s2s5) s7s

2
8

)))
(A.1)

We observe that there is no factorization of the discriminant ∆ following from f and g

indicating the absence of codimension one singularities and a non-Abelian gauge group.

Furthermore, we plug the coordinates of the rational section (2.4) into this map to

obtain its coordinates in WSF,

z1 = s7s
2
8 − s6s8s9 + s5s

2
9 , (A.2)

x1 =
1

12

(
12s21s

6
9 + 4

(
2s2

(
s25 − 3s1s8

)
− 3s1s5s6

)
s59 +

((
s26 − 4s5s7

)
s25 + 12

(
s22 + 2s1s3

)
s28 − 4

(
4s3s

2
5

+ s2s6s5 − 3s1
(
s26 + 2s5s7

))
s8
)
s49 − 2s8

(
−4 (s6s7 + 3s4s8) s

2
5 +

(
s36 − 10s3s8s6 + 4s2s7s8

)
s5

+2s8
(
9s1s6s7 + 6s1s4s8 + s2

(
s26 + 6s3s8

)))
s39 + s28

(
s46 − 2s5s7s

2
6 − 8s25s

2
7 + 12

(
s23 + 2s2s4

)
s28

−4
(
9s4s5s6 − s7 (5s2s6 + 6s1s7) + s3

(
s26 + 2s5s7

))
s8
)
s29 − 2s38

(
12s3s4s

2
8 + 2 (s7 (s3s6 + 4s2s7)

− 3s4
(
s26+2s5s7

))
s8+s6s7

(
s26−4s5s7

))
s9+s48

((
s26−4s5s7

)
s27+4 (2s3s7−3s4s6) s8s7+12s24s

2
8

))
,

y1 =
1

2

(
2s31s

9
9 + s1

(
2s2

(
s25 − 3s1s8

)
− 3s1s5s6

)
s89 +

((
s3s

2
5 − s2s6s5 + s1

(
s26 − s5s7

))
s25

+6s1
(
s22 + s1s3

)
s28 +

(
−2s22s25 + 2s1s2s6s5 + s1

(
3s1

(
s26 + 2s5s7

)
− 4s3s

2
5

))
s8
)
s79

−s8
(
2
(
s32 + 6s1s3s2 + 3s21s4

)
s28 − (s5s6s

2
2 +

(
6s3s

2
5 − 4s1

(
s26 + 2s5s7

))
s2 + s1

(
6s4s

2
5 + 2s3s6s5

− 9s1s6s7)) s8 + s5
(
3s4s

3
5 + 2s3s6s

2
5 − 3s2s7s

2
5 − 2s2s

2
6s5 + s1s6s7s5 + 2s1s

3
6

))
s69 + s28

(
s1s

4
6

−s2s5s
3
6 + s3s

2
5s

2
6 + 7s1s5s7s

2
6 + 9s4s

3
5s6 − 8s2s

2
5s7s6 + s1s

2
5s

2
7 + 6

(
s3

(
s22 + s1s3

)
+ 2s1s2s4

)
s28

−s3s
3
5s7 +

(
s22s

2
6−4s23s25−8s2s4s25−6s1s4s6s5 + 6s21s

2
7 + 2s2 (s2s5 + 7s1s6) s7 + s3

(
2s1

(
s26 + 2s5s7

)
− 6s2s5s6)) s8) s

5
9 − s38

(
s8 (6s2s8 − 5s5s6) s

2
3 − 5s6s7

(
s25 − 2s1s8

)
s3 + 5s7

(
s6s8s

2
2 + 2s1s7s8s2

− s2s5
(
s26 + s5s7

)
+ s1s6

(
s26 + 2s5s7

))
+ s4

(
5
(
2s26 + s5s7

)
s25 − 10 (s3s5 + s2s6) s8s5

+ 6
(
s22 + 2s1s3

)
s28
))

s49 + s48
(
2
(
s33 + 6s2s4s3 + 3s1s

2
4

)
s28 −

(
6s24s

2
5 + s23s

2
6 − 4

(
s22 + 2s1s3

)
s27

+ 2s3 (s3s5 − 3s2s6) s7 + 2s4
(
s2s

2
6 + 7s3s5s6 − 3s1s7s6 + 2s2s5s7

))
s8 + 5

(
s4s5s6

(
s26 + 2s5s7

)
+ s7

(
s7

(
2s1s

2
6 − s2s5s6 + s1s5s7

)
− s3s5

(
s26 + s5s7

))))
s39 − s58

(
3s8 (2s2s8 − 3s5s6) s

2
4 +

(
s46

+ (7s5s7 − 4s3s8) s
2
6 + 2s2s7s8s6 + s25s

2
7 − 8s3s5s7s8 + 6s8

(
s8s

2
3 + s1s

2
7

))
s4 + s7

(
s6s8s

2
3 −

(
s36

+ 8s5s7s6 − 6s2s7s8) s3 + s7
(
9s1s6s7 + s2

(
s26 − s5s7

))))
s29 + s68

(
3s8

(
−s26 − 2s5s7 + 2s3s8

)
s24

+ s7
(
2s36 + s5s7s6 − 2s3s8s6 + 4s2s7s8

)
s4 + s27

(
2s8s

2
3 − 2s26s3 − 3s5s7s3 + 3s1s

2
7 + 2s2s6s7

))
s9

+ s78
(
−2s28s34 + 3s6s7s8s

2
4 + s27

(
−s26 + s5s7 − 2s3s8

)
s4 + s37 (s3s6 − s2s7)

))
.
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The Weierstrass form (A.1) can be obtained from a Tate model with the following Tate

coefficients [19]:

a1 = s6 , a2 = −s5s7 − s3s8 − s2s9, a3 = − (s4s5 + s2s7) s8 − (s3s5 + s1s7) s9 , (A.3)

a4 = s1s3s
2
9 +

(
s2 (s5s7 + s3s8) + s4

(
s25 − 3s1s8

))
s9 + s8

(
s1s

2
7 + s3s5s7 + s2s4s8

)
,

a6 = −s21s4s39 −
(
s2s4

(
s25 − 2s1s8

)
+ s1 (s3 (s5s7 + s3s8)− s4s5s6)

)
s29 − s8

(
s4s8s

2
2 +

(
s1s

2
7 − s4s5s6

)
s2

+s1s4
(
s26+s5s7

)
+s3

(
(s2s5−s1s6) s7 + s4

(
s25−2s1s8

)))
s9−s28

(
s2s4s5s7+s1

(
s8s

2
4+s3s

2
7−s4s6s7

))
.
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[25] L.B. Anderson, I. Garćıa-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory

compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].
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