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Abstract

Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets
identified asb-jets are performed using an integrated luminosity of 3.2 fb−1 of proton–proton
collisions with a centre-of-mass energy of

√
s= 13 TeV recorded by the ATLAS detector at

the Large Hadron Collider. No evidence of anomalous phenomena is observed in the data,
which are used to exclude, at 95% credibility level, excitedb∗ quarks with masses from
1.1 TeV to 2.1 TeV and leptophobicZ′ bosons with masses from 1.1 TeV to 1.5 TeV. Contri-
butions of a Gaussian signal shape with effective cross sections ranging from approximately
0.4 to 0.001 pb are also excluded in the mass range 1.5–5.0 TeV.
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1 Introduction

Many extensions to the Standard Model (SM) predict the existence of new massive particles that couple
to quarks or gluons. If produced in proton–proton (pp) collisions at the Large Hadron Collider (LHC),
these new beyond-the-SM (BSM) particles could decay into quarks (q) or gluons (g), creating resonant
excesses in the two-jet (dijet) invariant mass distributions [1–6]. If the new particle couples to theb-quark
and decays intobb̄, bqor bg pairs, a dedicated search for dijet resonances with one or both jets identified
as originating from ab-quark (“b-jet”) could greatly increase the signal sensitivity.

Prior resonance searches in dijet events containingb-jets were performed by the CDF [7] and CMS [8,
9] experiments, probing the mass ranges 200–750 GeV and 1–4 TeV respectively. Excited heavy-flavour
quarks have been investigated in alternative decay modes aswell [10]. No BSM phenomena have been
observed yet. The increase in centre-of-mass energy of thepp collisions at the LHC from

√
s = 7 and

8 TeV to 13 TeV provides a new energy regime in which to search for such a heavy resonance. This
is particularly true for heavy states coupling tob-quarks from the proton sea, when compared to states
produced by valence quarks. The parton luminosity to createa 2 TeV object increases by an additional
factor of 2–3 forbb̄ andbg overqq̄ andqg pairs, when increasing the centre-of-mass energy from 8 TeVto
13 TeV. The total production rate for dijet BSM signals can become large enough to allow a good signal
sensitivity even with a relatively small data sample. In this paper the search for a new narrow resonance
decaying tob-quarks with the ATLAS detector, using 3.2 fb−1 integrated luminosity of proton–proton
collisions at

√
s= 13 TeV, is reported. The mass range 1.1–5.0 TeV is probed.
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Figure 1: Leading-order Feynman diagrams for the two processes considered:gb→ b∗ → bg andqq̄→ Z′ → bb̄.

The results are interpreted in the context of two benchmark processes shown in Figure1: an excited
heavy-flavour quarkb∗ and a new gauge bosonZ′. Excited quarks are a consequence of quark compos-
iteness models that were proposed to explain the generational structure and mass hierarchy of quarks [11,
12]. The Z′ boson arises in many extensions to the SM with an additionalU(1) group. TwoZ′ mod-
els are considered, one with SM-like fermion couplings in the Sequential Standard Model (SSM) and a
leptophobicZ′ model [13, 14]. All benchmark model decays are expected to result in a narrow resonance
superimposed on a smoothly falling dijet invariant mass distribution. This search divides the events into
samples with one or two jets identified asb-jets to enhance the signal sensitivity to the benchmark models
b∗ → bg andZ′ → bb̄. In addition, the results are interpreted in the context of possible Gaussian-shaped
signal contributions to the dijet invariant mass spectra where one or both jets are identified as b-jets. The
results, presented in terms of the the cross section times acceptance times branching ratio (σ × A× BR),
are quoted for contributions with widths of up to 15% of the resonance mass.
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2 The ATLAS detector

The ATLAS experiment [15] at the LHC is a multi-purpose particle detector with a forward-backward
symmetric cylindrical geometry and a near 4π coverage in solid angle.1 It consists of an inner tracking
detector surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electro-
magnetic and hadronic calorimeters, and a muon spectrometer. The inner tracking detector covers the
pseudorapidity range|η| < 2.5. It consists of, in ascending order of radius from the beam-line, silicon
pixel, silicon microstrip, and transition radiation tracking detectors. The pixel detectors are crucial forb-
jet identification. For the second LHC data-taking period, anew inner pixel layer, the Insertable B-Layer
(IBL) [ 16, 17], was added at a mean sensor radius of 3.2 cm from the beam-line. Lead/liquid-argon (LAr)
sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A had-
ron (steel/scintillator-tile) calorimeter covers the central pseudorapidity range (|η| < 1.7). The end-cap
and forward regions are instrumented with LAr calorimetersfor EM and hadronic energy measurements
up to |η| = 4.9. The first-level trigger is implemented in hardware and uses a subset of the detector in-
formation to reduce the input rate from the nominal LHC collision rate to an acceptance rate of 100 kHz.
This is followed by a software-based trigger that reduces the rate of events recorded to 1 kHz.

3 Data and simulated event samples

The data used in this analysis were collected by the ATLAS detector inpp collisions at the LHC with a
centre-of-mass energy of 13 TeV during 2015. Events were recorded using a jet-based trigger requiring
at least one jet with a transverse momentumpT of at least 360 GeV. The full dataset corresponds to an
integrated luminosity of 3.2 fb−1 with an associated uncertainty of 5% after applying qualitycriteria to
the data. The measurement of the integrated luminosity is derived, following a methodology similar to
that detailed in Ref. [18], from a calibration of the luminosity scale using a pair ofx–y beam-separation
scans.

Monte Carlo (MC) simulated event samples are used to model the expected signals and study the com-
position of SM background processes. The QCD dijet process is simulated with Pythia8 [19] using the
A14 tuned parameter set [20] for the modelling of the parton shower, hadronization and underlying event.
The leading-order (LO) parton distribution function (PDF)set NNPDF2.3 [21] is used for the generation
of events. The renormalization and factorization scales are set to the average transverse momentumpT of
the two leading jets. The EvtGen decay package [22] is used for bottom and charm hadron decays.

The three signal samples are generated with Pythia8 using the A14 set of tuned parameters and the
NNPDF2.3 PDF set. For theb∗ model, the compositeness scale is set to the excited-quark mass and
85% of decays are tobg. The remaining decay modes are to a SM gauge boson (Z boson,W boson or
photon) and ab-quark. In the SSMZ′ model, theZ′ boson has the same couplings to SM fermions as
the SMZ boson and the bottom quark decay branching ratio BR(Z′ → bb̄) is 13.8%. The leptophobic
Z′ model differs by having vanishing couplings to leptons. The corresponding value of BR(Z′ → bb̄) is

1 ATLAS uses a right-handed coordinate system with its originat the nominal interaction point (IP) in the centre of the
detector and thez-axis along the beam pipe. Thex-axis points from the IP to the centre of the LHC ring, and they-axis
points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane,φ being the azimuthal angle around thez-axis.
The pseudorapidity is defined in terms of the polar angleθ asη = − ln tan(θ/2). Angular distance is measured in units of
∆R≡

√

(∆η)2 + (∆φ)2.
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18.9%. For both, only decays tob-quark pairs are simulated. The intrinsic decay width isΓ ∼ 0.6% of
the resonance mass for theb∗ model andΓ ∼ 3% of the mass for the SSMZ′ boson.

The generated samples are processed with the ATLAS detectorsimulation [23], which is based on the
GEANT4 package [24]. To account for additionalpp interactions from the same or close-by bunch cross-
ings, a number of minimum-bias interactions generated using Pythia8 and the MSTW2008LO PDF [25]
set are superimposed onto the hard scattering events. The MCsamples are re-weighted to match the
collisions per bunch crossing observed in the data.

4 Event reconstruction and selection

Jets are reconstructed from noise-suppressed topologicalclusters [26] of energy deposited in the calor-
imeters using the anti-kt algorithm [27] with a radius parameter of 0.4. Jet energies and directionsare
corrected by the jet calibrations derived from

√
s = 13 TeV simulation, andpp collision data taken at√

s = 8 TeV and
√

s = 13 TeV, as described in Ref. [28]. Jets are required to havepT > 50 GeV. Events
where any of the three leading jets withpT > 50 GeV is compatible with non-collision background or
calorimeter noise are removed. Events are preselected in the same way as in the dijet analysis of Ref. [5],
requiring that thepT of the leading jet is greater than 440 GeV to ensure full trigger efficiency. An ad-
ditional requirement is placed on the jet pseudorapidity,|η| < 2.4, to ensure tracker coverage forb-jet
identification. The analysis is performed in an unbiased dijet mass range ofmjj > 1.1 TeV. To reduce
the background from QCD multijet processes and enhances-channel processes, the rapidity difference
y∗ = (y1− y2)/2 between the two leading jets is required to be|y∗| < 0.6. Herey1 andy2 are the rapidities
of the leading and sub-leading jet respectively.

To identify jets originating fromb-hadrons (b-tagging) a multivariate algorithm that combines information
about the impact parameters of inner detector tracks associated with the jet, the presence of displaced
secondary vertices, and the reconstructed flight paths ofb- andc-hadrons associated with the jet [29, 30]
is employed. Theb-tagging working point with 85% efficiency, as determined when integrating over all
jets in a simulated sample oftt̄ events, is chosen because it gives the highest signal sensitivity. As the
average jet energies in this analysis are larger than intt̄ events and theb-tagging efficiency drops with jet
pT, the per-jet efficiencies are below 85% and are roughly 50% for jets with apT of 1 TeV.

Theb-jet identification algorithm is applied to the two leading jets, and events are categorized as inclusive,
single b-tagged “1b” or doubleb-tagged “2b”, in order to enhance the sensitivity of different signal
compositions. The “1b” category is defined inclusively, including events from the “2b” category.

The per-eventb-tagging efficiencies as functions of the reconstructed invariant mass are shown in Fig-
ure2. Efficiencies are for benchmark models with differentb∗ andZ′ resonance masses, after the event
selection is applied. The tagging efficiency forZ′ events in the inclusive “1b” category is higher than for
b∗ events because this process has moreb-quarks in the final state. At high mass, the gluon from the decay
of the b∗ has a higher probability to produce abb̄-pair, which causes the event tagging efficiency to be
comparable for theZ′ andb∗. The tagging efficiency in the “2b” category is about 2.5 times lower at low
mass and a factor 10 lower at high mass compared to the inclusive “1b” category for the sameZ′ events.
The average light-flavour jet rejection factor for jets passing the kinematic selection is approximately 30
for jet transverse momenta up to∼ 1 TeV.

Correction factors are applied to the simulated event samples to compensate for differences between data
and simulation in b-tagging efficiencies and mis-identification rates. These corrections were derived from
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Figure 2: The per-eventb-tagging efficiencies after the event selection as a function of the reconstructed invariant
mass for simulated samples with six differentb∗ andZ′ resonance masses.

comparisons of samples ofb-quark-enriched events in data and simulation [31]. The average combined
signal acceptance and efficiency is around 20% for theb∗ benchmark in the “1b” category and drops with
increasing mass from 9% at 1.5 TeV to 2% at 5.0 TeV for theZ′ signals for the “2b” category.

5 Dijet mass spectrum

The dijet mass spectrum is predominantly composed of jets arising from QCD interactions. Figure3
shows the comparison between data and Pythia8 multijet MC simulation. The simulated distributions are
normalized to the number of events observed in the data in each category separately. The bin widths are
chosen to approximate themjj resolution as derived from simulated QCD processes, which range from
3% at 1.0 TeV to 2% at 5.0 TeV. Good agreement between the shapes of the Pythia8 multijet predictions
and the data is found. The inclusive distribution, not restricted in the inner tracking detector acceptance,
was analysed in Ref. [5].

The dijet background estimation does not rely on the simulation as it is obtained directly from a fit to the
mjj distribution. The following parameterization ansatz is adopted to fit the distribution in themjj range
from 1.1 TeV up to the last data point of the inclusive, “1b” and “2b” mass distributions separately,

f (z) = p1(1− z)p2zp3, (1)

wherepi are free parameters andz= mjj/
√

s. This ansatz was used in previous searches [5] and is found
to provide a satisfactory fit to leading-order Pythia8 multijet MC simulation at

√
s= 13 TeV. Employing

Wilks’ theorem [32], a log-likelihood statistic is used to confirm that no additional parameters are needed
to model these distributions for a data set as large as the oneused for this analysis.

The results of the fits are shown in Figure4. The fits of this ansatz to the data without considering
systematic uncertainties returnp-values of 0.73, 0.90 and 0.66 for the inclusive, “1b” and “2b” categories
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Figure 4: Dijet mass spectra overlaid with the fits to the background function together with the results from
BumpHunter and benchmark signals scaled by a factor of 50. The most discrepant region is indicated by the
two blue lines. The lower panels show the significances per bin of the data with respect to the background fit, in
terms of the number of standard deviations, considering only the statistical fluctuations. The distributions are shown
for the (a) “1b” and (b) “2b” categories.

respectively. Thep-value was calculated as a goodness-of-fit measure using aχ2 test statistic determined
from pseudo-experiments.

The lower panels of Figure4 show the significances of bin-by-bin differences between the data and the
fit. These equivalent Gaussian significances are calculatedfrom the Poisson probability, considering only
statistical uncertainties.

The statistical significance of any localized excess in the dijet mass distribution is quantified using the
BumpHunter algorithm [33]. The algorithm compares the binnedmjj distribution of the data to the fitted
background estimate, considering contiguous mass intervals in all possible locations, from a width of two
bins to one-half of the distribution. For each interval in the scan, it computes the significance of any excess
found. The algorithm identifies the intervals 1493–1614 GeVin the “1b” and 3596–3827 GeV in the “2b”
sample, indicated by the two vertical lines in Figure4, as the most discrepant intervals. The statistical
significance of these outcomes is evaluated using the ensemble of Poisson outcomes across all intervals
scanned, by applying the algorithm to many pseudo-data samples drawn randomly from the background
fit. Without including systematic uncertainties, the probability that fluctuations of the background model
would produce excesses at least as significant as those observed in the data, anywhere in the distribution,
is greater than 60% in the “1b” and “2b” categories. Thus, there is no evidence of localized contributions
to the mass distribution from BSM phenomena.
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6 Systematic uncertainties

Uncertainties in the parameters of the fitted background function Eq. (1) are evaluated by fitting the an-
satz to pseudo-data drawn via Poisson fluctuations around the fitted background model. The uncertainty
in the prediction in eachmjj bin is taken to be the root mean square of the function value for 10000
generated pseudo-experiments. To estimate an uncertaintydue to the choice of background parameter-
ization, one additional degree of freedom,zp4 log(z), is appended as a multiplicative factor to the nominal
ansatz (Eq. (1)), and the difference between the estimated parameters from the two fits is taken as an
uncertainty.

The uncertainty in the jet energy scale is estimated using various methods in 8 TeV data, corrected to
the new centre-of-mass energy by taking the difference between the 8 TeV and 13 TeV runs into account
using MC simulation [28]. The jet energy scale uncertainty used in this analysis relies on a set of three
nuisance parameters [34]. For untagged jets it is within the range 1–5% for jet transverse momenta greater
than 200 GeV.

The relative additional uncertainty in the energy scale ofb-tagged jets is estimated using the MC samples
and verified with data following the method described in Ref.[35]. The ratio rtrk of the sum of track
transverse momenta inside the jet to the total jet transverse momentum measured in the calorimeter is
used for this estimate. The double ratio ofrtrk from data and simulation is formed and compared for
inclusive jets andb-jets. The estimated relative additional uncertainty for jets with 200< pT < 800 GeV
is found to be less than 2.6%, and this value is subsequently used in the higherpT regions. This relative
uncertainty is applied in addition to the nominal jet energyscale uncertainty. The maximum uncertainty
for b-tagged jets is estimated to be 6% and is conservatively applied to all pT regions.

The uncertainty in the jet energy resolution is estimated using the same method as the untagged jet energy
scale uncertainty and relies on an additional Gaussian smearing of the reconstructed jet energies in MC
simulation. For jets withpT > 50 GeV, the uncertainty is less than 2%.

The uncertainty introduced by the application of theb-tagging algorithm is the largest systematic un-
certainty in the analysis. The uncertainty in the measured tagging efficiency ofb-jets is estimated by
studyingtt̄ events in 13 TeV data for jetpT up to 200 GeV [31]. The uncertainties in the measured rate
of mistaggingc-jets and light-flavour jets are estimated in 8 TeV data. The uncertainties are extrapolated
to 13 TeV, taking into account the addition of the new IBL system as well as reconstruction and tagging
improvements. An additional term is included to extrapolate the measured uncertainties to the high-pT re-
gion of interest. This term is calculated from simulated events by considering variations on the quantities
affecting theb-tagging performance such as the impact parameter resolution, percentage of poorly meas-
ured tracks, description of the detector material, and track multiplicity per jet. The dominant effect on the
uncertainty when extrapolating at high-pT is related to the different tagging efficiency when smearing the
tracks impact parameters based on the resolution measured in data and simulation. The difference in the
impact parameter resolution is due to effects from alignment, dead modules and additional material not
properly modelled in the simulation. The impact of theb-tagging efficiency uncertainty increases with jet
pT and reaches 50% above 2 TeV.
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σ times acceptanceA times branching ratio BR, including kinematic acceptance andb-tagging efficiencies, for the
b∗ model. The dashed line shows the cross section calculated from theory. The plot shows the case with a single
b-tag.

7 Results

Due to the absence of a signal, 95% credibility-level upper limits are set on the cross section for new
processes that would produce a contribution to the dijet mass distribution withb-tagging. The signal
shapes are taken as provided byb∗ → bg andZ′ → bb̄ production processes.

The limits onb∗ andZ′ cross sections are shown in Figures5 and6. The limits were obtained using
a Bayesian method [36]. The Bayesian credible intervals were calculated using a posterior probability
density from the likelihood function for the observed mass spectrum obtained by a fit to the background
(Eq. (1)), while the signal shape was derived from MC simulations. The limit is interpolated between
discrete values of the mass to create a continuous curve. Thesystematic uncertainties associated with the
uncertainty in the integrated luminosity, jet energy scale, jet energy resolution,b-tagging and alternative
fit functions are all included in the limit-setting.

Figure5 shows that theb∗ model, with the decay tog + b(b̄), is excluded forb∗ masses from 1.1 TeV up
to 2.1 TeV at leading-order in QCD. Figure6 shows that the leptophobicZ′ → bb̄ model with SM-like
couplings to quarks is excluded up to 1.5 TeV at leading-order in QCD. The present data are not sufficient
to provide an exclusion limit for the SSMZ′ model.

As shown in Figure7, narrow resonance contributions of various widths with visible cross sectionsσ ×
A× BR ranging from approximately 0.4 to 0.001 pb are excluded inthe mass range 1.5–5.0 TeV. These
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limits should be used when long low-mass off-shell tails from PDFs and non-perturbative effects on the
narrow resonance signal shape can be safely truncated or neglected and, after applying the selection
described in Section4, the reconstructed mass distribution approximates a Gaussian distribution. For a
detailed description of how to use these limits, see the instructions in Ref. [37]. To estimate theb-tagging
efficiency, invariant-mass-dependent correction factors as given in Figure2 can be used.

8 Summary

A search for new resonances decaying to jets with a single or double b-tag in pp collisions with the
ATLAS detector at the LHC is presented. The dataset corresponds to an integrated luminosity of 3.2
fb−1 collected at

√
s = 13 TeV in 2015. The studies use the dijet invariant massmjj in the range of 1.1–

5.0 TeV withb-tagging applied to the leading and sub-leading jets and categorize the events according to
their b-jet multiplicity.

The background from jets initiated byb-quarks is well described by the leading-order parton-shower
models. The dijet background is also well described by the analytic fit function with three parameters
which is used in the light-flavour dijet analysis [5].

No evidence of a significant excess of events is found compared to the expectations of the Standard
Model. The largest observed local excess is less than 2σ for both the single and doubleb-tag channels.
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The expected contribution from theb∗ model is excluded in the mass range 1.1–2.1 TeV at leading-order
in QCD using the singleb-jet channel. The results can not exclude contributions from the SSMZ′ → bb̄
model in the mass range 1.1–5.0 TeV in the doubleb-jet channel. For the leptophobicZ′ model with
SM-like couplings to quarks, the mass range 1.1–1.5 TeV is excluded at leading-order in QCD in this
channel.

This analysis excludes generic high-mass particles decaying to two jets, where one or two jets originate
from b-quarks, with visible cross sections ranging from 0.4 to 0.001 pb in the mass range 1.1–5.0 TeV.
The exclusion limits are applicable for resonances exhibiting a Gaussian shape and width similar to the
b∗ or Z′ models. The limits were calculated assuming that the width of the Gaussian signal is 15%, 10%
or 7% of its mass.
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