002141883 001__ 2141883
002141883 003__ SzGeCERN
002141883 005__ 20240223165028.0
002141883 0248_ $$aoai:inspirehep.net:1418048$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT$$pcerncds:CERN$$qINSPIRE:HEP$$qForCDS
002141883 035__ $$9http://inspirehep.net/oai2d$$aoai:inspirehep.net:1418048$$d2016-03-26T20:38:54Z$$h2016-03-27T04:00:34Z$$mmarcxml
002141883 035__ $$9Inspire$$a1418048
002141883 041__ $$aeng
002141883 088__ $$aCERN-ACC-2015-231
002141883 100__ $$0AUTHOR|(CDS)2068614$$9#BEARD#$$aCosta Pinto, Pedro$$iINSPIRE-00355468$$jJACoW-00039192$$uCERN
002141883 245__ $$aDevelopment and Production of Non-evaporable Getter Coatings for MAX IV
002141883 260__ $$c2015
002141883 300__ $$a3 p
002141883 520__ $$9JACoW$$aMAX IV is presently under construction at Lund, Sweden, and the first beam for the production of synchrotron radiation is expected to circulate in 2016. The whole set of 3-GeV ring beam pipes is coated with Ti-Zr-V Non Evaporable Getter (NEG) thin film in order to fulfil the average pressure requirement of 1x10⁻⁹ mbar, despite the compact magnet layout and the large aspect ratio of the vacuum chambers. In this work, we present the optimisations of the coating process performed at CERN to coat different geometries and mechanical assembling used for the MAX IV vacuum chambers; the morphology of the thin films is analysed by Scanning Electron Microscopy; the composition and thickness is measured by Energy Dispersive X-ray analysis; the activation of the NEG thin film is monitored by X-ray Photoemission Spectroscopy; the vacuum performance of the coated beam pipes is evaluated by the measurement of hydrogen sticking coefficient. The results of the coating production characterisation for the 84 units coated at CERN are presented.
002141883 540__ $$3publication$$aCC-BY-3.0
002141883 542__ $$3publication$$dThe Author(s)$$g2015
002141883 65017 $$2SzGeCERN$$aAccelerators and Storage Rings
002141883 6531_ $$2JACoW$$aphoton
002141883 6531_ $$2JACoW$$acathode
002141883 6531_ $$2JACoW$$aelectron
002141883 6531_ $$2JACoW$$avacuum
002141883 6531_ $$2JACoW$$acavity
002141883 690C_ $$aCERN
002141883 700__ $$aAhlbäck, [email protected]$$uLund U., MAX-lab
002141883 700__ $$aAl-Dmour, Eshraq$$iINSPIRE-00353523$$jJACoW-00051918$$uLund U., MAX-lab
002141883 700__ $$aBártová, [email protected]$$uCERN
002141883 700__ $$aGrabski, [email protected]$$uLund U., MAX-lab
002141883 700__ $$aHolliger, [email protected]$$uCERN
002141883 700__ $$aMarques Dos Santos, Sergio$$jJACoW-00062097$$msergio.daniel.marques.dos.santos@cern.ch$$uCERN
002141883 700__ $$aNistor, [email protected]$$uCERN
002141883 700__ $$aPasquino, [email protected]$$uLund U., MAX-lab
002141883 700__ $$aSapountzis, [email protected]$$uCERN
002141883 700__ $$0AUTHOR|(CDS)2071265$$9#BEARD#$$aTaborelli, Mauro$$iINSPIRE-00342580$$jJACoW-00003742$$uCERN
002141883 700__ $$aWevers, [email protected]$$uCERN
002141883 710__ $$5ATS
002141883 773__ $$cWEPHA019$$qIPAC2015$$wC15-05-03$$y2015
002141883 8564_ $$uhttps://accelconf.web.cern.ch/IPAC2015/papers/wepha019.pdf$$yJACOW
002141883 8564_ $$81186398$$s523463$$uhttps://cds.cern.ch/record/2141883/files/wepha019.pdf$$yPublished version from JACoW
002141883 960__ $$a13
002141883 962__ $$b2024999$$kWEPHA019$$nrichmond20150503
002141883 980__ $$aARTICLE
002141883 980__ $$aConferencePaper
002141883 999C6 $$a0-0-0-1-0-0-1$$t2016-02-01 22:09:10$$vInvenio/1.1.2.1260-aa76f refextract/1.5.44$$vcontent.pdf;1