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a IFAE and BIST, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona
b CERN, Theory Division, Geneva, Switzerland
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Abstract

One main obstacle for any beyond the SM (BSM) scenario solving the hierarchy problem is
its potentially large contributions to electric dipole moments. An elegant way to avoid this
problem is to have the light SM fermions couple to the BSM sector only through bilinears,
f̄f . This possibility can be neatly implemented in composite Higgs models. We study the
implications of dynamically generating the fermion Yukawa couplings at different scales, relating
larger scales to lighter SM fermions. We show that all flavor and CP-violating constraints can
be easily accommodated for a BSM scale of few TeV, without requiring any extra symmetry.
Contributions to B physics are mainly mediated by the top, giving a predictive pattern of
deviations in ∆F = 2 and ∆F = 1 flavor observables that could be seen in future experiments.
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1 Introduction

An attractive solution to the hierarchy problem is to require that the Higgs is not an elementary
particle, but a composite state arising from some strongly-coupled sector at TeV energies. This
possibility has important implications for the theory of flavor. Contrary to models with an elemen-
tary Higgs in which the structure of Yukawa couplings can have its origin at very high energies, as
large as the Planck scale, in composite Higgs models the origin of flavor must be addressed at much
lower energies. This is because the Higgs is associated with a composite operator of the strong
sector OH whose dimension dH must be larger than one to avoid the hierarchy problem,1 implying
that f̄LOHfR has dimension larger than 4, that is to say that the Yukawa couplings are irrelevant
at low energies. Therefore, if f̄LOHfR are generated at very high energies, e.g. the Planck scale,
fermion masses will be too small at the electroweak scale.

Different approaches to flavor in composite Higgs models have been considered. The most
popular one is partial compositeness, in which the SM fermions fi get masses by mixing linearly
with an operator of the strong sector:

Llin = εfi f̄iOfi . (1.1)

At the strong scale ΛIR ∼ TeV, which determines the mass-gap of the model, and at which the
Higgs emerges as a composite state, the fermion Yukawa couplings are generated with a pattern

Yf ∼ g∗εfiεfj , (1.2)

where 1 < g∗ . 4π characterizes the coupling in the strong sector. The appealing feature of
these scenarios, usually called “anarchic partial compositeness” [2], is the fact that the smallness of
the mixing εfi can simultaneously explain the smallness of the fermion masses and mixing angles.
Nevertheless, this approach also predicts flavor-violating higher-dimensional operators of order [3]

g2∗
16π2

g∗v

Λ2
IR

εfiεfj f̄iσµνfj gF
µν ,

g2∗
Λ2
IR

εfiεfj εfkεfl f̄iγ
µfj f̄kγµfl , (1.3)

where v ' 174 GeV. The operators in Eq. (1.3) lead for ΛIR ∼ TeV to large contributions to
the electron and neutron electric dipole moment (EDM), µ → eγ and εK , above the experimental
bounds [4] (see also Refs. [5–8]), as shown in Table 3. Taking ΛIR above the TeV is possible, but
at the price of fine-tuning the electroweak scale.2

An interesting alternative to the above approach is to consider the right-handed quarks to be
fully composite [11]. If the strong sector has an accidental SU(3) flavor symmetry and CP symmetry
(something not difficult to envisage as it occurs in QCD), the flavor bounds can be easily satisfied.
Indeed, in this case the whole flavor structure comes only from the linear mixing of the left-handed
fermions with the strong sector that must then be proportional to the SM Yukawas Yf , as in

1For the hierarchy problem what is in fact needed is that the dimension of the gauge-singlet term OHO†H is larger
than ∼ 4, to avoid relevant operators in the theory. In strongly-coupled theories with a large-N expansion this implies
dH ≥ 2, but this is not true in general. Nevertheless, bounds from conformal bootstrap [1] indicate that it is not
possible to have dH ∼ 1 together with Dim[OHO†H ] & 4. Being conservative, we will be considering here dH & 2.

2Alternative constructions have been recently proposed based on composite Twin Higgs in which the scale of
compositeness can be pushed up without introducing additional tuning in the Higgs potential [9]. It is also possible
to reduce some bounds by taking smaller g∗, but this implies reducing the UV cutoff (see for example Ref. [10]).
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models with minimal flavor violation (MFV) [12]. Therefore flavor bounds are easily satisfied for
ΛIR ∼ TeV. Nevertheless, due to the compositeness of the right-handed quarks, 4-fermion contact
interactions, as for example,

g2∗
Λ2
IR

(ūRγµuR)2 , (1.4)

lead to large deviation in dijets distributions, pp → jj, at high energies, and sizable production
cross sections for composite resonances in the multi-TeV mass range are predicted [13–15]. All these
effects have not been observed at the LHC and severely constrain these models. Similar results can
be found in variations of these ideas with other composite SM fermions [16].

Wrapping up, composite Higgs models must address the SM flavor structure at low energies,
giving then unequivocal predictions for flavor observables. The models proposed so far seem to
clash with some experimental data. Although extra flavor and CP symmetries could be imposed,
for example in the mixing terms εfi , to avoid certain experimental bounds, it is unclear how
these symmetries could emerge in the model. One needs to specify the dynamics of the model to
understand whether flavor and CP symmetries can arise accidentally at low energies.

Here we would like to put forward a deviation from the anarchic paradigm that can avoid
these severe flavor and CP-violating constraints. The idea is to assume that the operators Ofi of
Eq. (1.1), that mediate the mixing between the SM fermions and the Higgs, get an effective mass
at some energy scale Λfi � ΛIR ∼ TeV, and then decouple from the strong sector. This implies
that Yukawa-like couplings

Lbil ∼ f̄iOHfj , (1.5)

are generated at scales larger than ΛIR, avoiding in this way sizable contributions to flavor and
CP-violating observables. The hierarchies in the fermion spectrum of the SM and the small flavor
mixing angles could be now explained by the different scales Λfi instead of the small εfi . The larger
the Λfi , the smaller the Yukawa coupling for fi. Without imposing any extra symmetry in the
model, we will derive by simple power-counting which are the strongest flavor and CP-violating
constraints, independently of the details of the models. We find that top-mediated processes give the
largest contribution to flavor-violating observables. These are characterized by only two operators.
One operator generates the ∆F = 2 processes εK , ∆MBd and ∆MBs at a level close to the present
experimental constraints for ΛIR ∼ few TeV. The second operator leads to flavor-violating Z-
couplings, contributing simultaneously to K → µ+µ−, ε′/ε, B → (X)`` and Z → bb̄ with a size also
close to the experimental bounds. There are also important contributions arising from the scale at
which the charm and strange masses are generated, 107 − 108 GeV, leading also to sizable effects
to εK , and forcing dH . 2. Contributions to the neutron EDM are dominated by the top EDM,
being not far from the present experimental bound. On the other hand, in the lepton sector we find
that the dominant contribution to the electron EDM comes at the two-loop level from Barr-Zee
type diagrams [17], and is around the experimental bound, while µ→ eγ is found to be very small.
Therefore these scenarios provide realistic examples where the flavor and hierarchy problem can
be dynamically solved without contradicting the present experimental data, and which near future
experiments could be able to explore. Having proposed a different origin for fermion masses, we
also analyze the expected deviations in Higgs couplings.

Our approach to the small fermion masses is a reminiscent of the old Extended-Technicolor
idea [18], in which masses from Eq. (1.5) were generated from an extended gauge sector, or from
integrating heavy fermions [19]. Earlier attempts along these lines were considered recently in
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Figure 1: Energy scale at which the fermionic operators Ofi decouple from the strong sector.

Refs. [20] for composite Higgs models. In these models, however, Yukawa-like couplings were
generated at a single energy scale, and the light quark families were connected by potentially large
mixing angles. This leads to additional sizable new-physics effects and to bounds typically more
stringent than the ones we find here. Furthermore, the lepton sector, where the experimental
bounds are the most difficult to satisfy, was not considered.

We would like to close this section by stressing that in most scenarios beyond the SM (BSM)
that address the hierarchy problem, including supersymmetry, one generically finds large EDMs.
This is because fermions have linear couplings to BSM fields. For example, in supersymmetric
models fermions couple linearly to sfermions and gauginos, leading generically to sizable EDMs at
the one-loop level. Therefore, unless ad hoc symmetries are imposed in the BSM sector, the only
way to avoid these large contributions is to restrict the SM fermions to have bilinear couplings
to the BSM states, as the scenarios proposed here. In this case the dominant contributions to
EDMs arise at the two-loop level (see diagram Fig. 3) that can be accommodated just below the
experimental constraint.

2 Multiple flavor scales in composite Higgs models

Our framework for flavor shares many features of previous composite Higgs models with partly-
composite fermions via Eq. (1.1). The main crucial difference is the assumption that the operators
Ofi , which are the portals of the SM fermions to the strong sector, decouple at some scale Λfi ,
generating the Yukawa terms f̄LOHfR at that scale instead of at ΛIR as in the anarchic case. The
decoupling of the operator Ofi can be due to the fact that some of the constituents of Ofi get a mass
∼ Λfi , or that a dynamically generated mass-gap makes heavy all composite states created by Ofi
(those |Ψ〉 with 〈0|Ofi |Ψ〉 6= 0). Using the AdS/CFT correspondence, we can easily visualize this
type of scenarios by warped extra-dimensional models with several branes, as the example shown
in Fig. 5 of Appendix A. In what follows we will estimate the flavor structure of these scenarios
without restricting to any specific UV realization.
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The scale at which the Yukawa coupling for the SM fermion f = u, d, e, ... is generated is
determined by the scale Λf at which either OfR or OfL decouple from the strong sector. We choose
these scales following Fig. 1. This is our dynamical assumption. No further symmetries will be
imposed. Other options could also be possible, and we will consider later more economical models
with fewer scales Λf . Under the assumption of Fig. 1, the Yukawa structure will be the following.
Let us consider first the down-type quark sector. At the lowest scale Λb, we have only one pair of
operators OQL3

and ObR , to which only one linear combination of SM left-handed and right-handed
quarks can respectively mix with. We name these linear combinations the 3rd family left-handed
quark, QL3, and right-handed bottom, bR:

L(3)lin = ε
(3)
bL
Q̄L3OQL3

+ ε
(3)
bR
b̄RObR . (2.1)

Below Λb, after integrating out ObR , the following Yukawa-like operator is expected to be generated

L(3)bil =
1

ΛdH−1b

(ε
(3)
bL
Q̄L3)OH(ε

(3)
bR
bR) , (2.2)

where OH corresponds to the lowest-dimensional operator that at ΛIR projects into the Higgs,
〈0|OH |H〉 6= 0, and dH is its energy dimension. At a larger scale Λs � Λb, we have another pair
of operators OQL2

and OsR present, coupled to a different linear combination of SM fermions. By
an SU(3) rotation that does not affect Eq. (2.2) we can always go to the basis where this linear
combination contains only two quarks, QL3 and QL2 (this latter is identified with the second family
left-handed quark), and similarly for the right-handed sector, bR and sR:

L(2)lin = (ε
(2)
bL
Q̄L3 + ε(2)sL Q̄L2)OQL2

+ (ε
(2)
bR
bR + ε(2)sR sR)OsR , (2.3)

that below Λs, after integrating OsR , leads to

L(2)bil =
1

ΛdH−1s

(ε
(2)
bL
Q̄L3 + ε(2)sL Q̄L2)OH(ε

(2)
bR
bR + ε(2)sR sR) . (2.4)

Finally, at Λd, after integrating OQL1
and OdR , we expect the most general form

L(1)bil =
1

ΛdH−1d

(ε
(1)
bL
Q̄L3 + ε(1)sL Q̄L2 + ε

(1)
dL
Q̄L1)OH(ε

(1)
bR
bR + ε(1)sR sR + ε

(1)
dR
dR) . (2.5)

Now, at ΛIR we identify the matrix elements of OH with those of the SM Higgs H, which implies
the replacement 3

OH → g∗Λ
dH−1
IR H , (2.6)

in Eq. (2.2), Eq. (2.4) and Eq. (2.5). Then, for the down sector, we have the following “onion”
Yukawa structure

Ydown = g∗


ε
(1)
dL
ε
(1)
dR

ε
(1)
dL
ε
(1)
sR ε

(1)
dL
ε
(1)
bR

ε
(1)
sL ε

(1)
dR

ε
(1)
bL
ε
(1)
dR

(ΛIR

Λd

)dH−1
+ g∗

 0 0 0

0 ε
(2)
sL ε

(2)
sR ε

(2)
sL ε

(2)
bR

0 ε
(2)
bL
ε
(2)
sR

(ΛIR

Λs

)dH−1

+ g∗

 0 0 0

0 0 0

0 0 ε
(3)
bL
ε
(3)
bR

(ΛIR

Λb

)dH−1
, (2.7)

3For simplicity we are assuming a single coupling g∗, but in principle the couplings at the scales Λf could be
different.
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where the entries that are not shown are terms that can be neglected in the limit in which we take
Λd � Λs � Λb. Eq. (2.7) leads to the approximate down Yukawa matrix

Ydown '

 Yd αdsR Yd αdbR Yd

αdsL Yd Ys αsbRYs

αdbL Yd αsbL Ys Yb

 , (2.8)

where

Yf ≡ g∗ε(i)fLiε
(i)
fRi

(
ΛIR

Λf

)dH−1
, (2.9)

are approximately the SM Yukawas Yf ' mf/v. The αL and αR in Eq. (2.8) are ratios of epsilons:

αdsL ∼ ε(1)sL /ε
(1)
dL

, αdbL ∼ ε(1)bL /ε
(1)
dL

, αsbL ∼ ε(2)bL /ε
(2)
sL
, (2.10)

where L → R gives us the αR. Taking the largest values ε
(i)
fLi,Ri

∼ 1 and g∗ ∼ 4π, we can obtain

from Eq. (2.9) the largest values of Λf that allow to reproduce the SM fermion masses as a function
of dH , that we show in Fig. 2. For the particular case dH = 2, we have

Λf ∼
g∗
Yf

ΛIR , (2.11)

that, for ΛIR ∼ 3 TeV and g∗ ∼ 4π, gives

Λd ∼ 3× 109 GeV , Λs ∼ 108 GeV , Λb ∼ 3× 106 GeV . (2.12)

Eq. (2.8) can be diagonalized by unitary matrices whose structure is approximately

V down
L ∼

 1 αdsR
Yd
Ys

αdbR
Yd
Yb

1 αsbR
Ys
Yb

1

 , V down
R ∼

 1 αdsL
Yd
Ys

αdbL
Yd
Yb

1 αsbL
Ys
Yb

1

 , (2.13)

where we omit some ij-entries as they are of similar size as their transpose ji-entries.
We can proceed in a similar way for the up sector. The large Yukawa coupling of the top implies

that this must arise at ΛIR as in the anarchic case, so we associate Λt ∼ ΛIR. The Yukawa matrix
is expected to have the structure

Yup '

 Yu αucR Yu αutR Yu

αucL Yu Yc αctRYc

αutL Yu αctLYc Yt

 . (2.14)

We must point out however that there can be extra contributions coming from Λd,s,b. The most
important ones come from Λd where it is possible to generate

∆L(1)bil =
1

ΛdH−1d

ε
(1)
dL
Q̄L1ÕH(ε̃

(1)
tR
tR + ε̃(1)cR cR) , (2.15)

that leads to contributions to the entries (Yup)13 ∼ (Yup)12 ∼ Yd that can be slightly larger than
those in Eq. (2.14) since Yd > Yu. We absorb these contributions in Eq. (2.14) by a redefinition
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Figure 2: Upper bound on the scale Λf (for f = e, u, d, s, µ, c, τ, b, t from top to down) at which

the fermion Yukawas can originate from a bilinear term (Eq. (2.9) with ε
(i)
fLi,Ri

∼ 1, g∗ ∼ 4π and

for ΛIR = 3 TeV) as a function of dH , the dimension of the Higgs composite operator OH . To
derive the numerical results we identified the fermion masses with the running masses at 1 TeV [4],
neglecting the effect of running mf from TeV to Λf .

of αuc,utR . Similarly, Ydown can receive extra contributions from Λu,c,t. The largest expected one is
from Λc where we can have

1

ΛdH−1c

Q̄L2OHbR , (2.16)

that leads to (Ydown)23 ∼ Yc that is parametrically a factor Yc/Ys ∼ 10 larger than the corresponding
entry in Eq. (2.8). Again, we absorb this contribution in a redefinition of αsbR . We must add
however that if the strong sector had an SU(3) flavor symmetry, the contributions in Eq. (2.15)
and Eq. (2.16) would be zero, as they originate from the off-diagonal interactions in the strong
sector, OQL1

ÕHOtR,cR and OQL2
OHObR respectively.

Since the mass hierarchies in the up sector are larger than in the down sector, we have that the
CKM matrix VCKM is mainly dominated by the down rotation:

VCKM ∼ (V down
L )† , (2.17)

impliying the following conditions on the αL’s of the down-Yukawa matrix:

αdsR
md

ms
' (VCKM)21 ' λc , αsbR

ms

mb
' (VCKM)32 ' λ2c , αdbR

md

mb
' (VCKM)31 ' λ3c , (2.18)

where λc ' 0.22 is the Cabibbo angle. From the estimate

md

ms
∼ ms

mb
∼ λ2c , (2.19)
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we obtain using Eq. (2.18) that αds,dbR must be slightly larger than one, in particular,

αdsR ∼ αdbR ∼ 1/λc , αsbR ∼ 1 . (2.20)

This can be easily accommodated by having ε
(1)
sR,bR

slightly smaller than one (and a suppression of
Eq. (2.16)). On the other hand, the αL are not constrained at all by the CKM angles, and could even

be very small if some mixings are zero. For example, this could be the case if ε
(1)
sL,bL

≈ 0 due to some

accidental discrete symmetry at Λd, as discussed in Appendix B. Notice that in the limit ε
(1)
sL,bL

→ 0

the rotation matrix V down
R is not anymore given by Eq. (2.13) but by Eq. (B.1). Nevertheless, we

emphasize that the framework for flavor proposed here does not need any accidental symmetry to
pass the phenomenological constraints, as we discuss below.

3 Implications in flavor and CP-violation physics

At each scale Λf we have potentially new flavor-violating contributions, arising from higher-
dimensional operators made of SM fermions. We can estimate these effects using power-counting
arguments, since no flavor symmetries are assumed in our scenarios. The most important higher-
dimensional operators are 4-quark operators, that contribute to ∆F = 2 transitions, 2-quark-2-
Higgs operators that generate ∆F = 1 effects, and dipole operators contributing to processes such
as µ→ eγ or EDMs. We collect the most important experimental bounds in Table 1.

3.1 ∆F = 2 transitions

We start considering 4-quark operators arising at the lowest scale Λt ∼ ΛIR. These are operators
containing only top components, QL3 and tR, namely 4

Y 2
t x

2
t

Λ2
IR

(QL3γ
µQL3)

2 ,
Y 2
t

Λ2
IR

(QL3tR)(tRQL3) ,
Y 2
t /x

2
t

Λ2
IR

(tRγ
µtR)2 , (3.1)

where we defined xt = ε
(3)
tL
/ε

(3)
tR

.
Let us first look at the implications in the down sector, whose flavor constraints are the strongest.

These are only coming from the first operator of Eq. (3.1) that, after rotating to the physical basis
using Eq. (2.17),5 gives a contribution to the operators Qsd1 , Qbd1 and Qbs1 , as defined in Table 1,
with a coefficient

C(Qsd1 ) ' Y 2
t x

2
t

Λ2
IR

[
(V †CKM)23(VCKM)31

]2
' 10−7

x2t
Λ2
IR

eiθCKM , (3.2)

where θCKM denotes the complex phase appearing in the product of the CKM elements, and

C(Qbd1 )

[(V †CKM)33(VCKM)31]2
=

C(Qbs1 )

[(V †CKM)33(VCKM)32]2
=

C(Qsd1 )

[(V †CKM)23(VCKM)31]2
. (3.3)

4These estimates are valid even if Λt > ΛIR and the top partners are heavier than ΛIR. Nevertheless, for top
partners lighter than ΛIR, as could be needed in these scenarios to obtain a viable Higgs mass and minimize the
amount of tuning [21,22], the 4-fermion operators get enhanced. For a discussion see Ref. [8].

5In an abuse of notation we will be using the same notation for the quarks in the physical and interaction basis.
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Observable Operator Re part Im part Reference

∆MK ; εK

Qsd1 = (sLγ
µdL)2 1.1× 103 1.7× 104

[12, 23]Qsd2 = (sRdL)2, Q̃sd2 = (sLdR)2 7.3× 103 1.2× 105

Qsd4 = (sRdL)(sLdR) 1.2× 104 2.0× 105

∆MBd ;SψKS

Qbd1 = (bLγ
µdL)2 6.6× 102 9.5× 102

[12, 23]Qbd2 = (bRdL)2, Q̃bd2 = (bLdR)2 1.2× 103 1.7× 103

Qbd4 = (bRdL)(bLdR) 1.6× 103 2.3× 103

∆MBs ;Sψφ

Qbs1 = (bLγ
µsL)2 1.4× 102 2.4× 102

[12, 23]Qbs2 = (bRsL)2, Q̃bs2 = (bLsR)2 1.3× 102 2.2× 102

Qbs4 = (bRsL)(bLsR) 3.4× 102 5.9× 102

∆MD; |q/p|, φD
Qcu1 = (cLγ

µuL)2 1.3× 103 3.2× 103

[12, 23]Qcu2 = (cRuL)2, Q̃cu2 = (cLuR)2 2.5× 103 5.8× 103

Qcu4 = (cRuL)(cLuR) 4.2× 103 9.5× 103

(QLi(YupY†up)ijγ
µQLj)

2 5 [23]

b→ s`+`− (sLγ
µbL)H†i

←→
D µH 23 16 [24,25]

KL → µ+µ−,
K+ → π+νν, ε′/ε

(sLγ
µdL)H†i

←→
D µH 225 [6, 26]

Z → bb (bLγ
µbL)H†i

←→
D µH 5.5 |δgbL | . 10−3 [27, 28]

B → Xsγ

mb sLσ
µνeFµνbR 8.9 35 18

[7]mb sRσ
µνeFµνbL 18 16

mb sLσ
µνgsGµνbR 4.3 17 8.6

mb sRσ
µνgsGµνbL 8.5 8.5

B → Xdγ

mb dLσ
µνeFµνbR 47 19 37 24

[7]mb dRσ
µνeFµνbL 30 30

mb dLσ
µνgsGµνbR 22 9 18 12

mb dRσ
µνgsGµνbL 14 14

K → 2π, ε′/ε ms sL,Rσ
µνgsGµνdR,L 35 [7]

D → KK,ππ mc cL,Rσ
µνgsGµνuR,L 27 [7]

Neutron EDM

md dLσ
µνeFµνdR 39

|dn| < 2.9× 10−26 e cm [7,29,30]

mu uLσ
µνeFµνuR 14

md dLσ
µνgsGµνdR 48

mu uLσ
µνgsGµνuR 18

mc cLσ
µνgsGµνcR 15

mb bLσ
µνgsGµνbR 8.4

mt tLσ
µνgsGµνtR 3.7

Electron EDM me eLσ
µνeFµνeR 480 |de| < 0.87× 10−28 e cm [29]

µ→ eγ mµ µσ
µνeFµνeR,L 900 BR(µ→ eγ) < 5.7× 10−13 [29]

τ → µγ mτ τσ
µνeFµνµR,L 34 BR(τ → µγ) < 4.4× 10−8 [29]

τ → eγ mτ τσ
µνeFµνeR,L 37 BR(τ → eγ) < 3.3× 10−8 [29]

Table 1: Experimental bounds on new physics contributions to flavor and CP-violating operators.
The bounds are computed at an energy scale µ = 1 TeV and are expressed as constraints on the
Λ scale (in TeV units) parametrizing the coefficients of the operators as C = 1/Λ2. Separate
bounds for the real and imaginary part of the coefficients are given. When the bounds are highly
asymmetric, separate ones are listed for a positive and a negative value of the coefficient.
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Eq. (3.3) leads to interesting consequences. It predicts no new phases in K − K̄ and B− B̄ mixing
beyond the SM one. Furthermore, it implies that the contributions to the three observables εK ,
∆MBd and ∆MBs are all of the order of the present experimental sensitivity. Indeed, by looking
at the constraints on ∆F = 2 operators reported in Table 1, we find that the three observables
εK , ∆MBd and ∆MBs give roughly the same bound. The correlation Eq. (3.3) also arises in MFV
scenarios, and a bound has been derived on the size of these effects (see Table 1) that leads in our
case to

ΛIR & 5xt TeV . (3.4)

For xt ∼ 1/2 we can accommodate Eq. (3.4) for values of ΛIR as low as those needed to pass
EWPT, ΛIR & 3 TeV [8,27]. The correlations in Eq. (3.3) are an interesting smoking gun for these
scenarios of flavor, that could be tested in the future with a better determination of the observables.
In particular, we must observe a different value of ∆MBd,s from the SM one, with the ratio fixed:

∆MBd

∆MBs

' ∆MBd

∆MBs

∣∣∣∣
SM

. (3.5)

The impact in the up sector is negligible, since the mixing angles (∝ Yu,c/Yt) are much smaller
than in the down sector. The largest effect comes from the third operator in Eq. (3.1), which gives
a contribution

C(Qcu4 ) ' Y 2
t

Λ2
IR

(V up
R )∗32(V

up
L )31(V

up
L )∗32(V

up
R )31 ∼

Y 2
u Y

2
c /Y

2
t

Λ2
IR

' 10−15
1

Λ2
IR

, (3.6)

where we have taken αL,R ∼ 1. This is many orders of magnitude below the experimental bound
for ΛIR ∼ TeV.

Let us now move to the effects at the scales Λf � ΛIR. It is clear that contributions at Λb are
smaller than those of Eq. (3.1), as they are suppressed by a larger scale Λb � ΛIR. Contributions
from Λc and Λs can however be sizable as they involve second family quarks. The most relevant
contributions are 6

g2∗ε
(2) 4
cL

Λ2
c

(QL2γ
µQL2)

2 ,
g2∗ε

(2) 3
cL ε

(2)
tL

Λ2
c

(QL2γ
µQL3)(QL2γµQL2) ,

g2∗(ε
(2)
sL ε

(2)
sR )2

Λ2
s

(QL2sR)(sRQL2) . (3.7)

Using Eq. (2.9), we can trade the scales Λc,s by ΛIR, and write Eq. (3.7) for dH = 2 as

Y 2
c x

2
c

Λ2
IR

(QL2γ
µQL2)

2 ,
Y 2
c x

2
cα

ct
L

Λ2
IR

(QL2γ
µQL3)(QL2γµQL2) ,

Y 2
s

Λ2
IR

(QL2sR)(sRQL2) , (3.8)

where xc = ε
(2)
cL /ε

(2)
cR . After rotating to the physical basis, the operators in Eq. (3.8) give respectively

C(Qsd1 ) ' Y 2
c x

2
c

Λ2
IR

[
(V †CKM)22(VCKM)21

]2
' 4× 10−7

x2c
Λ2
IR

, (3.9)

C(Qsd1 ) ' Y 2
c x

2
cα

ct
L

Λ2
IR

(V †CKM)222(VCKM)21(VCKM)31 ' 1.6× 10−8
x2cα

ct
L

Λ2
IR

, (3.10)

C(Qsd4 ) ' Y 2
s

Λ2
IR

(V †CKM)22(V
down
R )21(V

down
R )∗22(VCKM)21 ' 9× 10−10

αdsL
Λ2
IR

. (3.11)

6Notice that contributions to the Q2 and Q̃2 operators require two Higgs insertions and are thus highly suppressed.
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∆F = 2 t partly-comp. s partly-comp. bilin. mixing (2nd fam.) bilin. mixing (1st fam.) Anarchic

Qsd1 ΛIR & 5xt ΛIR & 4xt ΛIR & 1.8xc
√
αctL ΛIR & 0.2xd ΛIR & 4xt

Qsd2 – ΛIR & 1
√
g∗ · · ΛIR & 1

√
g∗

Q̃sd2 – ΛIR & 0.5
√
g∗αdsL · · ΛIR & 1

√
g∗

Qsd4 – ΛIR & 5
√
αdsL ΛIR & 5

√
αdsL ΛIR & 5

√
αdsL ΛIR & 10

Qbd1 ΛIR & 5xt ΛIR & 6xt · · ΛIR & 6xt

Q̃bd2 – ΛIR & 0.3
√
g∗αdsL · · ΛIR & 0.6

√
g∗

Qbd4 – ΛIR & 0.4
√
αsdL ΛIR & 0.3

√
αdbL · ΛIR & 0.8

Qbs1 ΛIR & 5xt ΛIR & 7xt ΛIR & 0.6αcbR xc · ΛIR & 7xt

Q̃bs2 – ΛIR & 0.4
√
g∗ · · ΛIR & 0.4

√
g∗

Qbs4 – ΛIR & 1 ΛIR & 0.1
√
αsbL · ΛIR & 1

Qcu1 · · · · ΛIR & 1xt

Qcu2 · · · · ΛIR & 0.7
√
g∗

Qcu4 · · · · ΛIR & 1.1

Table 2: Bounds on ΛIR for the different scenarios considered in the text. The effects are separated
according to their origin: from the top (or strange) partial compositeness at ΛIR, or from the UV
scale Λf at which the second and first families get bilinear mixings to the Higgs. The results are given
in TeV. Entries with a ”·” correspond to negligible bounds, while ”–” means that the corresponding
operator is not generated. The most relevant constraints are highlighted in boldface.

The first contribution is real and therefore only affects ∆MK , while the other two can be complex
and contribute to εK . Their experimental bounds lead to 7

ΛIR & 0.6xc TeV , ΛIR & 1.8xc

√
αctL TeV , ΛIR & 5

√
αdsL TeV . (3.12)

To derive these bounds we have assumed that the contributions Eq. (3.10) and Eq. (3.11) have
maximal complex phase ∼ π/4, as we will assume throughout the article. The bounds in Eq. (3.12)
are roughly comparable to the one in Eq. (3.4), and can be accommodated for ΛIR of few TeV.
These extra contributions to εK spoil the correlation in Eq. (3.3), but preserve Eq. (3.5). Indeed,
it is easy to realize that contributions at Λc,s to B physics (and also D physics) are negligible.

Finally, we also have contributions arising at Λd. The most relevant ones are those to the
operator Qsd4 . For dH = 2 we have

C(Qsd4 ) ' Y 2
d α

ds
L α

ds
R

Λ2
IR

' 9× 10−10
αdsL
Λ2
IR

, (3.13)

where we have used Eq. (2.20). This contributions are as sizable as Eq. (3.11).

7In computing the bounds on operators generated at Λf � ΛIR, running effects should also be taken into account.
These include the running of Yf (which decrease at high energy), as well as the running of the 4-fermion effective
interactions (which determine a mild increase in the bounds for the Q4 operators). These two effects partially
compensate each other. Since the numerical impact is not large, for simplicity we will not take into account the
running in our estimates.
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The above conclusions however drastically depend on dH . For dH > 2 we have that the con-
tributions from Λc,s,d are enhanced, with respect to Eqs. (3.9)–(3.11) and Eq. (3.13), by a factor

(Λf/ΛIR)2dH−4. Therefore dH > 2 can only be consistent with the experimental bounds if Λf ∼ ΛIR

that corresponds to the anarchic scenario. This implies that generating the mass for the charm,
strange or down from bilinear mixing at Λf � ΛIR is only possible for dH . 2.

3.2 Neutron EDM

Dipole operators can also be induced at Λf . These operators are strongly constrained, in particular
from the measurement of the neutron EDM, which place a bound on quark dipole operators of the
form

cqedm q̄Lσ
µνgsGµνqR , (3.14)

or analogous operators involving the photon field-strength (see Table 1). In the anarchic case the
current measurements lead to very severe bounds, ΛIR & 48 (g∗/4π) TeV from the down-quark
EDM, and ΛIR & 18 (g∗/4π) TeV from the up-quark EDM. These bounds were calculated under
the assumption that dipole operators are induced at the one-loop level and therefore must carry a
factor g2∗/16π2 [4], as it occurs in holographic descriptions of the model [3]. Obviously, for maximal
coupling g∗ ∼ 4π this loop factor is of order one, not introducing any extra suppression. Hereafter
we will also follow this assumption for our estimates.

In our scenarios for flavor the contributions to cu,dedm are all very small, due to either small
mixings or a large scale Λf suppressing the processes. In fact, the main contribution to the neutron
EDM comes from a top EDM that can be induced at ΛIR with a size

ctedm '
g2∗

16π2
mt

Λ2
IR

. (3.15)

According to the bound in Table 1, we obtain ΛIR & 3(g∗/4π) TeV, implying that we expect in
these scenarios a neutron EDM below, but not much smaller than, its present experimental limit.

Contributions originating at Λf are much smaller. The reason is that EDM operators must
involve the Higgs field that at high energies corresponds to the composite operator OH of dimension
larger than one. Therefore the contribution to EDMs is suppressed by dH + 1 powers of Λf . For
example, at Λb, we expect a bottom-EDM from the operator

g2∗
16π2

ε
(3)
bL
ε
(3)
bR

ΛdH+1
b

Q̄L3OHσµνgsGµνbR , (3.16)

which gives

cbedm '
g2∗

16π2
mb

Λ2
b

. (3.17)

This is much smaller than present bounds unless Λb ∼ ΛIR.

3.3 ∆F = 1 transitions

Similarly to EDMs, contributions to flavor dipole transitions can also be present, the most relevant
ones being sR,Lσ

µνeFµνbL,R that contributes to b → sγ, and sR,Lσ
µνgsGµνdL,R that contributes

12



to ε′/ε. The estimates of these effects are similar to the ones for the neutron EDM in Eq. (3.16),
leading to small contributions to these observables.

There are also non-dipole contributions to ∆F = 1 transitions arising from operators like

s̄Lγ
µdLH

†←→D µH that on the EWSB vacuum give flavor-changing Z-couplings, which are severely

constrained by KL → µ+µ− and ε′/ε, or equivalent operators with the bottom, s̄LγµbLH
†←→D µH,

which give contributions to the processes B → `+`−, X`+`−. The largest contribution arises from
top operators induced at ΛIR that give

(g∗ε
(3)
tL

)2

Λ2
IR

Q̄L3γ
µQL3iH

†←→D µH '
g∗Ytxt

Λ2
IR

(
(V †CKM)33 b̄L + (V †CKM)23 s̄L + (V †CKM)13 d̄L

)
γµ

×
(

(VCKM)33 bL + (VCKM)32 sL + (VCKM)31 dL

)
iH†
←→
D µH , (3.18)

similarly to the anarchic case. Interestingly, Eq. (3.18) shows that the contributions to KL → µ+µ−

(and ε′/ε), B → (X)`` and corrections to Zb̄LbL are correlated and all are close to the experimental
bounds; we obtain respectively the constraints

ΛIR & 4
√
g∗xt TeV , ΛIR & 3

√
g∗xt TeV , ΛIR & 5

√
g∗xt TeV . (3.19)

We must point out however that there is another dimension-six operator contributing to these

observables, Q̄L3σ
aγµQL3H

†σa
←→
D µH, that in the case of a custodial PLR symmetry in the strong

sector cancels the contribution from Eq. (3.18) [31]. This symmetry is present in simple models of
composite Higgs and for this reason these effects could be further suppressed.

Finally, there can be also contributions to operators like s̄LγµdLDνF
µν
Z , where FµνZ is the field-

strength of the Z. These operators, however, are suppressed by a factor g2/g2∗ with respect to those
in Eq. (3.18).

3.4 Electron EDM, µ→ eγ and τ → µγ

Assuming that the origin of the lepton masses is the same one as for the down-type quark masses
described above, we expect Ylepton and the rotation matrices to have the same structure as Eq. (2.8)
and Eq. (2.13) respectively, with the obvious replacement d, s, b→ e, µ, τ . The corresponding αL,R
for the lepton sector are free parameters, that we will take to be order one for our estimates.

The main experimental constraints on possible effective operators induced at the scales Λe,µ,τ
are the electron EDM, µ→ eγ and τ → µγ, that come from similar dipole structures:

ceedm eLσ
µνeFµνeR , cmeg eLσ

µνeFµνµR , ctmg µLσ
µνeFµντR , (3.20)

and analogous ones obtained interchanging the chiralities, L ↔ R. In the anarchic case the first
two operators in Eq. (3.20) put the most severe constraints (see Table 3). In our scenarios, however,
we find that these contributions are very small for the same reason as for the neutron EDM. The
largest contribution arises at Λτ , and give for dH = 2

ceedm '
( g∗

4π

)2
(V lepton
L )∗31(V

lepton
R )31

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YeYτ
g2∗

me

Λ2
IR

, (3.21)
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∆F = 1 t partly comp. b partly comp. s partly comp. Anarchic

sLσ
µνeFµνbR – ΛIR & 0.12g∗ ΛIR & 0.12g∗ ΛIR & 0.12g∗

sRσ
µνeFµνbL – · ΛIR & 0.8g∗ ΛIR & 0.8g∗

sLσ
µνgsGµνdR – · ΛIR & 0.5g∗ ΛIR & 1.1g∗

sRσ
µνgsGµνdL – · ΛIR & 1.1g∗ ΛIR & 1.1g∗

sLγ
µbLH

†i
←→
D µH ΛIR & 3

√
g∗xt (*) ΛIR & 0.4

√
g∗xb ΛIR & 0.4

√
g∗xb ΛIR & 3

√
g∗xt

sLγ
µdLH

†i
←→
D µH ΛIR & 4

√
g∗xt (*) ΛIR & 0.50

√
g∗xb ΛIR & 0.5

√
g∗xb ΛIR & 4

√
g∗xt

∆F = 0 t partly-comp. b partly-comp. s partly-comp. Anarchic

bLγ
µbLH

†i
←→
D µH ΛIR & 5

√
g∗xt (*) ΛIR & 0.6

√
g∗xb ΛIR & 0.6

√
g∗xb ΛIR & 5

√
g∗xt

Neutron EDM t partly-comp. b partly-comp. s partly-comp. Anarchic

dLσ
µνeFµνdR – ΛIR & 0.24g∗

√
αdbL ΛIR & 1.2g∗

√
αdsL ΛIR & 2.5g∗

uLσ
µνeFµνuR · · · ΛIR & 0.9g∗

dLσ
µνgsGµνdR – ΛIR & 0.3g∗

√
αdbL ΛIR & 1.5g∗

√
αdsL ΛIR & 3.2g∗

uLσ
µνeFµνuR · · · ΛIR & 1.2g∗

cLσ
µνgsGµνcR · · · ΛIR & 1g∗

bLσ
µνeFµνbR – ΛIR & 0.6g∗ · ΛIR & 0.6g∗

tLσ
µνeFµνtR ΛIR & 0.24g∗ · · ΛIR & 0.24g∗

Leptons t party comp. τ partly-comp. µ partly-comp. Anarchic

eLσ
µνeFµνeR ΛIR & 1.6

√
g∗xt ΛIR & 0.5g∗

√
αeτL α

eτ
R ΛIR & 2g∗

√
αeµL α

eµ
R ΛIR & 32g∗

µσµνeFµνeL,R · ΛIR & 1.2g∗
√
αeτL,Rα

µτ
R,L ΛIR & 5g∗

√
αeµL,R ΛIR & 19g∗

τσµνeFµνµL,R · ΛIR & 0.7g∗
√
αµτL,R ΛIR & 1.3g∗ ΛIR & 1.3g∗

τσµνeFµνeL,R · · ΛIR & 0.1g∗
√
αeµL,R ΛIR & 0.4g∗

Table 3: Bounds on ΛIR from assuming that the top, bottom, etc. are partly composite at ΛIR.
The results are given in TeV. Entries with a ”·” correspond to negligible bounds, while ”–” means
that the corresponding operator is not generated. The most relevant constraints are highlighted in
boldface. If a custodial PLR symmetry [31] is present in the top mixings, the bounds denoted by (*)
are absent.
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γh
e e

tL 〈h〉

Figure 3: A representative two-loop contribution to the electron EDM. The double-line represents
a resonance from the strong sector.

which is extremely small. Similarly, for µ→ eγ and τ → µγ, we get at Λτ :

cmeg '
( g∗

4π

)2
(V lepton
L )∗32(V

lepton
R )31

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YeYτ
g2∗

mµ

Λ2
IR

, (3.22)

ctmg '
( g∗

4π

)2
(V lepton
L )∗32

g∗vΛIR

Λ3
τ

∼
( g∗

4π

)2 YµYτ
g2∗

mτ

Λ2
IR

, (3.23)

that are several orders of magnitude below the experimental bound.
Additional contributions to the electron EDM can come from Barr–Zee-type 2-loop diagrams [17]

as shown in Fig. 3. These involve CP-violating one-loop induced vertices such as H†D2
ρHF̃µνF

µν

arising from the strong sector, mainly from a loop of top resonances.8 The estimate of the size of
these couplings are very model dependent. In the particular motivated case of a pseudo-Nambu–
Goldstone boson (PNGB) Higgs these couplings cannot be generated from the strong sector alone,
as they are protected by the global symmetry under which the Goldstone Higgs transforms. There-
fore we need a SM particle to be involved in the loop. We can take as an estimate the con-
tribution involving the tL (see Fig. 3) that induces the vertex H†D2

ρHF̃µνF
µν with a coefficient

∼ e2xtYtg∗/(16π2) (omitting powers of ΛIR). Using the results of Ref. [32], in which the Barr–Zee
contribution to the electron EDM is computed in the presence of CP-violating Higgs interactions
to the top, −iκ̃tYt(tγ5t)h/

√
2, and found |κ̃t| < 0.01, we have, after the proper rescaling for our

case,
xtYtg∗

Λ2
IR

. 0.01
Y 2
t

m2
t

, (3.24)

that leads to the bound
ΛIR & 1.6

√
g∗xt TeV . (3.25)

The size of this correction is thus comparable with the present experimental bounds and should
be visible in future experiments. Notice that in the cases in which the Higgs is not a PNGB, this
effect is enhanced by a factor g∗/Yt.

8There is also the possibility to have a vertex involving a Z, but this contribution to the EDM is suppressed as
a consequence of C invariance that makes only the (very small) vector part of the Z coupling to the electron to
contribute [17].
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Barr–Zee-type contributions to µ → eγ are also sizeable in anarchic models [33], but in our
scenarios for flavor these contributions are very small since the Higgs flavor-changing couplings to
leptons are highly suppressed –see Section 5.

4 Alternative scenarios

Although so far we considered a scenario in which the different fermion masses arise at different UV
scales Λf , we could also consider simpler cases with fewer UV scales or with more particles than
the top with masses arising from partial compositeness at ΛIR. In the following we present several
alternative scenarios pointing out in which cases there is a clash with the experimental bounds.

• First-family masses generated at the same scale Λ1:

We could take the economical assumption that all first-family fermion masses arise at the
same scale Λ1 ∼ Λd ∼ 3 × 108 GeV, corresponding to the scale of the heaviest fermion, the
down quark. The fact that me < mu < md could be accommodated in this case by taking the

mixing terms ε
(1)
eR,eL and ε

(1)
uR to be slightly smaller than one. None of the estimates made in the

previous section are changed in this case. The reason is that none of the main contributions
were originating at Λu or Λe, as these were very small.

• Second-family masses generated at the same scale Λ2:

Similarly, we could assume that all second-family fermions get their masses at one single scale
Λ2 ∼ Λc ∼ 106 GeV. Again, it is easy to show that the estimates of the previous section are
not affected. Of course, contributions at the scale Λ2 to up quark and electron EDM, as well
as µ → eγ are larger now as Λ2 � Λs,µ, but these are still few orders of magnitude below
the experimental bounds. Contributions to ∆F = 2 4-fermion interactions are however not
affected, since for dH ' 2 they can be written, using Eq. (2.9), as a function of Ys and ΛIR,
independently of Λs.

• Partly-composite third-family fermions at ΛIR:

Following the above approach of family reunion, we can consider the case in which all third
family fermions are, analogously to the top, partly composite, i.e., having their masses arising
at ΛIR.

– Partly-composite bottom: In this case there are new contributions to ∆F = 2 that have
the same structure as Eq. (3.1) but with the replacement tR → bR and Yt → Yb. Due to
the Yb suppression, one gets contributions much smaller than the present bounds. There
is also now a larger contribution to the bottom-quark EDM, arising at ΛIR:

cbedm '
( g∗

4π

)2 mb

Λ2
IR

, (4.1)

which saturates the experimental bound for ΛIR ∼ 7 (g∗/4π) TeV. Additional contri-
butions to the b → s and s → d transitions as well as to the Zbb coupling are also
generated, which are slightly suppressed with respect to the ones coming from the top
partial compositeness (see Table 3).
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– Partly-composite tau: In this case the most relevant observable is µ→ eγ that receives
at ΛIR a contribution of order

cmeg '
( g∗

4π

)2 mτ

Λ2
IR

(V lepton
L )∗23(V

lepton
R )13 ' αµτL αeτR

( g∗
4π

)2 Ye
Yτ

mµ

Λ2
IR

' 3× 10−4αµτL αeτR

( g∗
4π

)2 mµ

Λ2
IR

, (4.2)

and a similar contribution with αR ↔ αL. From Eq. (4.2) and the experimental bound
in Table 1, we get

ΛIR & 15
√
αµτL αeτR

( g∗
4π

)
TeV , (4.3)

which shows that these corrections can be close to the experimental bound, motivating a
better measurement of µ→ eγ as a probe for this scenario. Similarly, the electron EDM
and τ → µγ are also enhanced if the tau is partly composite, leading to the estimates

ceedm '
αeτL
αµτL

me

mµ
cmeg , ctmg '

1

αeτR

Yµ
Ye

mτ

mµ
cmeg , (4.4)

which saturates the present experimental bounds respectively for

ΛIR & 7
√
αeτL α

eτ
R

( g∗
4π

)
TeV , ΛIR & 8

√
αµτL

( g∗
4π

)
TeV . (4.5)

Similar bounds apply for αR ↔ αL.

In summary, if all the third-family fermions are partly composite at ΛIR, we could in the near
future see a positive result from searches for neutron and electron EDM, µ→ eγ or τ → µγ.

• Partly-composite second-family fermions at ΛIR:

As a last example, it can be instructive to consider a case where all except the first-family
fermions get their mass from partial compositeness at ΛIR.

– Partly-composite charm: If the charm is partly composite, there are new contributions
to εK , but they go exactly as those in Eq. (3.9). The are also larger contributions to
∆MD. We find that they can be a factor Y 2

t /Y
2
c ∼ 105 larger than those in Eq. (3.6),

nevertheless they are still below the experimental bound. The most important new
contribution arises for the charm-EDM:

ccedm '
( g∗

4π

)2 mc

Λ2
IR

, (4.6)

which saturates the experimental bound for ΛIR ∼ 13 (g∗/4π) TeV.

– Partly-composite strange: In this scenario we find the same contribution as in the anar-
chic case in K physics, shown in Table 3. Sizable contributions to the down-quark EDM
are also generated:

cdedm '
( g∗

4π

)2 ms

Λ2
IR

(VCKM)∗21(V
down
R )12 ' 0.2αdsL

( g∗
4π

)2 md

Λ2
IR

, (4.7)

which leads to the bound ΛIR & 19 (g∗/4π)
√
αdsL TeV.
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– Partly-composite muon: In this case the estimate for the contribution to µ → eγ and
electron EDM are enhanced with respect to those to the partly-composite tau (see
Eq. (4.2) and Eq. (4.4)) by a factor Yτ/Yµ ∼ 17. This pushes the bound on ΛIR beyond
the TeV scale, dominantly due to µ→ eγ.

We conclude that the option with partly-composite second family at ΛIR seems disfavored by
the present experimental data, mainly due to EDMs and µ→ eγ. A summary of all bounds
is presented in Tables 2 and 3.

5 Higgs couplings to fermions

The predictions for Higgs couplings depend on the origin of the fermions masses. Here we will
present the predictions for the models of flavor considered above. We will focus on models in which
the Higgs arises as a PNGB from the strong sector. These models, motivated by the lightness of
the Higgs, are able to provide quantitative predictions depending only on how the global group
G of the strong sector is broken. We will consider in particular the MCHM based on the G/H =
SO(5)/SO(4) coset [34]. Either in the case of partly-composite fermions at ΛIR or at a larger
scale Λf , the Higgs couplings depend on how the symmetry G is broken by Eq. (1.1), and this is
determined by specifying how Ofi is embedded into a representation of G. Therefore for both cases,
the Higgs couplings to fermions can be written as

ghff

ghSMff

=
1− (1 + n)v2/f2h√

1− v2/f2h
, (5.1)

where n = 0, 1, 2, ... and fh is the Higgs decay constant, fh ∼ ΛIR/g∗. For Ofi ∈ 4 (or 5) of
SO(5), as in the MCHM4 (MCHM5), one finds n = 0 (n = 1) [22, 35]. This is also the case
even if fermion masses come from bilinears f̄LOHfR with unknown UV origin. Indeed, in this case
we need to specify into which representation of G we embed OH , or, equivalently, to specify an
embedding for f̄LfR. This latter can be formally written as a product of the representations of
the individual embeddings for f̄L and fR. Therefore, by specifying these individual embeddings,
we can determine again the Higgs couplings. As an example, let us consider OH ∈ 5,14. Since
5 ∈ 4̄× 4 and 14 ∈ 5× 5, we find respectively n = 0, 1, as in the MCHM4 and MCHM5.

It is also interesting to analyze the predictions for flavor-changing Higgs couplings. The coupling
hτ̄µ is of special interest, as this is the one which experimental constraints have been presented
from h → τµ [36, 37]. We find however that contributions to this coupling are very small. For
example, even for the case of a τ partly-composite at ΛIR, we get

BR(h→ µτ) '
(
g2∗v

2

Λ2
IR

mµ

mτ

)2

BR(h→ ττ) ∼ 2× 10−4
(
g∗v

ΛIR

)4

, (5.2)

that is much below the present limit BR(h → µτ) < 1.51% from CMS [36] (1.85% from ATLAS
[37]). A larger effect is found if µ is partly composite at ΛIR:

BR(h→ µτ) '
(
g2∗v

2

Λ2
IR

√
mµ

mτ

)2

BR(h→ ττ) ∼ 4× 10−3
(
g∗v

ΛIR

)4

. (5.3)

This result is very close to the experimental bound, but we must in this case face the large contri-
bution to µ→ eγ discussed above.

18



6 Neutrino masses

In this section we would like to comment on the possible origin of the neutrino masses in these
scenarios. In principle, the origin of neutrino masses could be the same as the one discussed above
for the other fermions, if right-handed neutrinos are introduced in the SM. Nevertheless, a simpler
option is to assume that lepton number is broken at some UV scale Λν by higher-dimensional
operators:

1

Λ2dH−1
ν

L̄cOHOHL , (6.1)

where L generically denotes a left-handed lepton. Eq. (6.1) leads to neutrino masses of order

mν '
g2∗v

2

ΛIR

(
ΛIR

Λν

)2dH−1
. (6.2)

For dH = 2, g∗ ∼ 4π and ΛIR ∼ 3 TeV, Eq. (6.2) gives

mν ∼ 0.1− 0.01 eV for Λν ∼ 0.8− 1.5× 108 GeV . (6.3)

This scale Λν could be related to the scale at which other fermion masses are generated, for example,
to Λs or Λd. On the other hand, large mixing angles in the neutrino sector between two families
can be easy obtained by requiring the corresponding neutrino masses to be generated at the same
scale Λν .

7 Conclusions

In this work we have proposed a new realization of the flavor structure in composite Higgs scenarios.
The new construction is based on a departure from the usual partial compositeness framework for
the light (i.e. not the top quark) SM fermions, both in the quark and lepton sector. The main idea is
to assume that the light SM fermions get their mass through effective interactions involving fermion
bilinears, namely operators of the form f̄LOHfR, where OH is a composite operator associated
with the Higgs field. These Yukawa-like operators for the various fermion species are generated at
hierarchically different energy scales Λf , thus effectively giving rise to the hierarchy of SM fermion
masses and to the structure of the CKM matrix.

The only field that does not follow this construction is the top quark, whose large Yukawa
coupling points towards a partial-compositeness origin at ΛIR ∼ TeV, the scale at which the Higgs
emerges as a composite state. The left-handed and right-handed top components are thus linearly
mixed with suitable composite operators, εfi f̄iOfi , following the usual anarchic flavor structure.

The new framework leads to a significant improvement of the compatibility of the composite
Higgs models with the flavor constraints. The most remarkable difference with respect to the
anarchic scenarios is the suppression of new-physics effects in dipole operators. The most severe
bounds of the anarchic scenario, namely the ones coming from the neutron and electron EDMs and
from µ→ eγ, are absent in the new framework (see Table 3).

The most important contributions in our scenario come from two flavor-violating operators
arising from the top partial compositeness. Up to an unknown coefficient expected to be of order
one, these are given by

1

Λ2
IR

(
gij d̄Liγ

µdLj
)2

,
g∗v

2

Λ2
IR

gij
(
d̄Liγ

µdLj
) gZµ

cos θW
, (7.1)
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Figure 4: Lower bounds on ΛIR on the various flavor scenarios. The first set of bounds corresponds
to our scenario with multiple flavor scales, the second and third sets assume partial compositeness
at ΛIR for the whole third and second family respectively, while the last set gives the bounds for the
anarchic flavor scenario. To derive the numerical values we have taken g∗ ' 3, xt ' xc ' 0.5, and
set all free αL,R parameters to one.

where
gij ≡ Ytxt(V †CKM)i3(VCKM)3j , (7.2)

and dLi denotes the left-handed down-type quark component in the i-th family. A remarkable
feature of these corrections is the fact that they automatically follow a MFV structure. The first
operator contributes to ∆F = 2 transitions and generates correlated effects in the εK , ∆MBd and
∆MBs observables, which are of the order of the present experimental sensitivity if we take ΛIR ∼
TeV and we allow for a slight reduction of the left-handed top compositeness, xt < 1. The second
operator of Eq. (7.1) gives flavor-changing Z-couplings. At present it only pushes the ΛIR scale in
the few TeV range. In the future it can be seen either in deviations in the decays K → µµ or
B → (X)``. This contribution can however be significantly smaller if the strong sector is invariant
under a custodial PLR symmetry, which protects the down-type quark couplings to the Z boson [31].

Additional contributions to ∆F = 2 operators can also be generated at the scales Λc,s,d at which
the second and first family quarks get their masses. These corrections however only give a sizable
effect on εK for ΛIR below the multi-TeV range, a much smaller contribution than the anarchic one.
It must however be stressed that these bounds depend on the coefficients of the effective operators
which are affected by some degree of uncertainty. These contributions to εK severely constrain the
maximal dimension of the OH operator, requiring dH . 2.

We also considered possible variations of the framework described above. For example, a more
economical scenario has been proposed in which each family is associated to a single flavor scale
at which the bilinear mass operators are generated. A few additional new-physics flavor effects
are generated in this case, which are of the same order of the experimental bounds. In particular,
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assuming τ partial compositeness at ΛIR (as the top and bottom) leads to corrections to the electron
EDM and to the lepton-number violating processes µ→ eγ and τ → µγ which could be visible in
forthcoming experiments. On the other hand, reducing down to ΛIR the scale at which the Yukawa
interactions are generated for the second family seems disfavored, since it leads to large corrections
to the neutron and electron EDMs as well as to µ→ eγ.

Finally, we have also presented the size of deviations in Higgs couplings, Eq. (5.1), predictions
for h→ τµ, and discussed the possible origin of the neutrino masses.

A comparison of the bounds in the various scenarios we considered in our analysis is shown in
Fig. 4 for a typical choice of parameters. We have also included for comparison the constraints for
the anarchic flavor scenario. Fig. 4 shows the main point of the article: there are natural scenarios
where the origin of flavor and electroweak scale can be determined dynamically, and where, without
tuning or imposing extra symmetries, contributions to flavor and CP-violating observables can
still be below (or better say, saturating) the present bounds, providing then a motivation for an
experimental improvement in the near future.
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A Warped five-dimensional models with multiple flavor scales

For AdS/CFT practitioners it can be useful to depict warped five-dimensional models which, by
means of the AdS/CFT correspondence, lead to the scenarios of flavor considered above.

As an example, we consider a model for the down-type quark sector and Higgs of the SM.
This is shown in Fig. 5. It corresponds to a warped extra dimension with 3 branes located at
different positions and therefore associated with 3 different energy scales Λd,s,b. We assume that
only one left-handed and right-handed quark can propagate up to the brane at Λb, what we call
the bottom quark, while two can propagate up to the brane at Λs. On the other hand, the three
quarks can be present on the brane at Λd. The warped extra dimension extends up to the brane at
ΛIR. The Higgs arises from a 5D scalar field whose zero-mode is mostly localized at ΛIR, as shown
with a dashed line in Fig. 5 (the more localized towards ΛIR, corresponds to larger values of dH).
Possible examples of wave-functions for the zero-modes of the quarks are also shown in Fig. 5 with
solid lines. Yukawa couplings come from the overlapping of zero-mode wave-functions. The small
overlapping of the Higgs wave-function with those of the quarks localized far away from ΛIR would
explain the smallness of these Yukawa couplings. The generalization to the up and lepton sector is
straightforward. If the up sector is included, one has to assure that the left-handed doublets reach
also the corresponding branes where the up-type quark masses are generated, e.g., QL3 = (tL, bL)T

must reach Λt.
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Figure 5: Five-dimensional model which, by AdS/CFT, corresponds to a model of flavor for the
down sector and Higgs of the SM giving the same Yukawa structure as Eq. (2.7).

B Mixing angles in the αds,db,sbL ≈ 0 limit

Although the elements of V down
L are fixed by the requirement of reproducing the CKM structure,

the elements of V down
R are free parameters and could be substantially reduced. In this Appendix we

want to show how small the off-diagonal entries of V down
R could be in the situation where αL ∼ 0.

Having αL ∼ 0 could arise from certain accidental symmetries at Λd,s. For example, if at Λd

there is a Z2 symmetry under which sL and bL are odd, this would imply ε
(1)
sL,bL

= 0. Similarly,

if at Λs this Z2 parity is still preserved but only for bL, we would have ε
(2)
bL

= 0. This would give

αdsL = αdbL = αsbL = 0. This accidental Z2 parity could arise from the dynamics of the model.
For example, if bL is mostly composite at ΛIR, its couplings at Λd,s will be suppressed (in warped
five-dimensional models this implies that the wave-function of bL is peaked toward the ΛIR brane,
having a small overlapping with the Λd,s branes).

Having αL ∼ 0 leads to a V down
R different from Eq. (2.13), where αL ∼ 1 was assumed. For

example, in the case αdsL = αdbL = 0 and αsbL ∼ 1 we get

(V down
R )31 ∼ αdsR α

sb
L

Y 2
d

YsYb
' (VCKM)21α

sb
L

Yd
Yb
' λcαsbL

Yd
Yb
,

(V down
R )13 ∼ αdbR

(
Yd
Yb

)2

' (VCKM)31
Yd
Yb
' λ3c

Yd
Yb
, (B.1)

(V down
R )12 ∼ (V down

R )21 ∼ αdsR
(
Yd
Ys

)2

' (VCKM)21
Yd
Ys
' λc

Yd
Ys
.

Notice that in this case the entries involving the first and third families are not symmetric, that is
(V down
R )13 � (V down

R )31. If αsbL = 0 as well, the estimate for (V down
R )31 coincides with the one for

(V down
R )13, namely

(V down
R )31 ∼ (V down

R )13 ∼ λ3c
Yd
Yb
. (B.2)

Analogous results can be found for the V up
L,R matrices.
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