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Abstract

A thin single-element THGEM-based, Resistive-Plate WELL (RPWELL) detector was operated with 150 GeV/c muon and pion
beams in Ne/(5%CH4), Ar/(5%CH4) and Ar/(7%CO2); signals were recorded with 1 cm2 square pads and SRS/APV25 electronics.
Detection efficiency values greater than 98% were reached in all the gas mixtures, at average pad multiplicity of 1.2. The use of
the 109Ωcm resistive plate resulted in a completely discharge-free operation also in intense pion beams. The efficiency remained
essentially constant at 98-99% up to fluxes of ∼104Hz/cm2, dropping by a few % when approaching 105 Hz/cm2. These results pave
the way towards cost-effective, robust, efficient, large-scale detectors for a variety of applications in future particle, astro-particle
and applied fields. A potential target application is digital hadron calorimetry.
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1. Introduction

The Thick Gas Electron Multiplier (THGEM) is a robust
radiation detection element suitable for applications requiring
large detection areas [1, 2]. The broad interest in THGEM-
based detectors has resulted in the development of production
techniques and concepts (e.g. [3, 4]), including the use of re-
sistive films and materials for reducing occasional discharge ef-
fects [5–7]. In this context, the experience gained with various
configurations of THGEM-based multipliers with resistive an-
odes [7–9] has led to the development of a particularly promis-
ing candidate - the Resistive-Plate WELL (RPWELL) [10]. It
is a single-sided copper-clad THGEM electrode, coupled to a
segmented readout anode (pads or strips) through a thin high
bulk-resistivity (∼108-1010 Ωcm) plate. Extensive laboratory
studies in Ne/(5%CH4) demonstrated discharge-free opera-
tion at high gas-avalanche gains and over a broad ionization
range [10]. Good performances in terms of efficiency and av-
erage pad multiplicity - studied in the context of future (Semi)
Digital Hadronic Calorimeter ((S)DHCAL) [11], were reached,
in Ne/(5%CH4) with 150 GeV/c muon and pion beams using a
thin 10×10 cm2 RPWELL, with a resistive anode (Semitronr

ESD225) of bulk resistivity of ∼109Ωcm [12]. In the present
article we report on new results of further beam studies of
this detector, extended to the low-cost Ar-based gas mixtures
Ar/(5%CH4) and Ar/(7%CO2). Detection efficiency values
of ∼98% were reached in all conditions, at average pad multi-
plicity of ∼1.2, in discharge-free operation, also with a high-
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intensity pion flux. The detector fulfill the requirements for
sampling elements in (S)DHCAL and has the potential for ap-
plications requiring robust, cheap, efficient large-scale detectors
with moderate spacial and energy resolutions.

2. Experimental setup and methodology

2.1. RPWELL detector, tracking and readout system

The 10×10 cm2 RPWELL detector, its SRS/APV25 read-
out system [13, 14] and the experimental setup at the CERN-
SPS/H4 beam-line, were detailed in [12] and are briefly de-
scribed here. The detector scheme, elements and operation
principle are shown in Fig. 1. The single-sided THGEM elec-
trode, 0.86 mm thick, had 0.5 mm diameter holes mechanically
drilled in an FR4 plate, copper-clad on one side. The holes were
arranged in a square lattice (Fig. 1-b), with 0.96 mm pitch, so
that they cover the underlying 1×1 cm2 anode pads, but not their
borders, where 0.86 mm wide metal bands are left, as described
in [8]. The plate was chemically etched, yielding 0.1 mm rims
around the holes, preventing sharp edges and eventual defects.
The THGEM electrode was coupled to the anode pads (Fig. 1-d)
through a 0.4 mm thick Semitronr ESD2251 static dissipative
plastic plate (2×109 Ωcm bulk resistivity). The electrical con-
tact between the resistive plate and the readout pads is essential
for efficient clearance of the avalanche electrons. Therefore,
the bottom of the resistive material was patterned with conduc-
tive pads (Fig. 1-c), individually connected to the anode pads
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(like in [12] but using 3MTM Electrically Conductive Adhesive
Transfer Tape 970732).

(a)

(b) (c) (d)

Figure 1: The 10×10 cm2 RPWELL detector scheme. The RP-
WELL structure (a): a single sided THGEM (b) coupled to the
readout anode through a resistive plate. The anode readout pads
(d) are coupled to conductive pads patterned on the resistive
plate (c). The metal bands in (b) are located above the underly-
ing pad borders (c,d).

The detector electrodes were individually biased using
CAEN A1833P and A1821N HV power-supply boards, re-
motely controlled with a CAEN SY2527 unit. The voltage and
current in each channel were monitored and stored. All HV in-
puts were connected through low-pass filters. The RPWELL
bias (∆VRPWELL) with respect to the grounded anode was var-
ied throughout the experiment, while the drift voltage was kept
constant: ∆Vdri f t= 250 V - corresponding to a drift field of
∼0.5 kV/cm across the 5 mm drift gap. The detector was oper-
ated in Ar/(5%CH4) and Ar/(7%CO2) gas mixtures at atmo-
spheric pressure and room temperature, in gas-flow mode (50-
100 cc/min); measurements in Ne/(5%CH4) were taken for
comparison. The operation in the Ar mixtures required higher
voltages compared to the ones in Ne/(5%CH4) to obtain sim-
ilar gains. However, with respect to Ne, Ar has the advantage
of larger number of electron-ion pairs produced by a minimum
ionizing particle (at normal conditions 94 compared to 39 e-i
pairs/cm [15]) - allowing for a smaller drift gap for equal num-
ber of primary charges - and considerably lower cost (which
might be crucial for large-scale systems). The use of CO2 in-
stead of CH4 as a photon quencher is preferable because the
former is non flammable. The triggering, tracking and DAQ
system was the same as described in [12]. The RPWELL cham-
bers were placed along the beam line in-between the tracker
elements.

2.2. Working point: ∆VRPWELL, threshold and matching pa-
rameter

As described in [12], for each event the detector pads with
signal above threshold were grouped into clusters of neighbors.
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The global detection efficiency was then calculated as the frac-
tion of particle tracks matched to a cluster in the detector, while
the average pad multiplicity was the average number of pads
contained in each cluster. The detector working point was ad-
justed to optimize its performance in each gas mixture, target-
ing high global detection efficiency at low average pad multi-
plicity. The lowest-possible value (closest to 1) of the latter is a
prerequisite for valid particle counting, e.g. in a potential appli-
cation as a sampling element in DHCAL [8, 16]. The optimiza-
tion was done using a set of measurements with ∼100 Hz/cm2

wide (5×5 cm2) muon beam and a ∼13000 Hz/cm2 narrow
(2×2 cm2) pion beam. In both cases, only tracks hitting the
detector in a 4×4 cm2 central region were considered. Two im-
portant parameters in the analysis are the the threshold for zero
order suppression (ZSF) and the track-cluster matching param-
eter (W) (see details in [12]). The values of ZSF and W were
fixed at ZSF= 15 and W= 10 or 15 mm following the same
method described in [12].

3. Results

3.1. Detected charge, global detection efficiency and average
pad multiplicity
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Figure 2: The most probable value (MPV) of the charge mea-
sured by the RPWELL detector in ∼100 Hz/cm2 muon beam
for different ∆VRPWELL values in the three gas mixtures.

We studied the detector operation in Ne/(5%CH4),
Ar/(5%CH4) and Ar/(7%CO2) using ∼100 Hz/cm2 muon
beam. Fig. 2 depicts the most probable value (MPV) of the
detected charge, derived from the recorded Landau distribu-
tions as a function of ∆VRPWELL. It is important to note that
the effective measured charge is a few times smaller than the
avalanche charge; this results from the convolution of the long
signal rise time in the RPWELL (∼1-2 µs rise-time) and the
short shaping time of the APV25 chip (∼75 ns) - as described
in [12]. Fig. 3 shows the global detector efficiency as a func-
tion of the average pad multiplicity in the same data set shown
in Fig. 2. ∆VRPWELL values of 880 V, 1640 V and 1750 V
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Figure 3: The global detector efficiency versus average pad
multiplicity of the RPWELL detector in ∼100 Hz/cm2 muon
beam in the three gas mixtures (using the same data set shown
in Fig. 2).

in Ne/(5%CH4), Ar/(5%CH4), and Ar/(7%CO2) respectively,
gave very high detection efficiency (98-99%) and low pad mul-
tiplicity (∼1.2) in a stable condition.

3.2. Performance under low and high particle flux

The RPWELL performance was investigated with low-
rate muon and high rate pion beams reaching a flux of
∼4·105 Hz/cm2. The results are shown in Fig. 4. Note that in
order to keep a high efficiency at high particle fluxes, these mea-
surements were done using higher voltages than those optimal
for detecting low-rate muons. The values of ∆VRPWELL were
880 V, 1700 V and 1770 V in Ne/(5%CH4), Ar/(5%CH4) and
Ar/(7%CO2) respectively. The global detection efficiency
(Fig. 4) is stable until rates of ∼104Hz/cm2, consistently for
all three gas mixtures. It drops by a few % (to 94%) while
approaching rates of ∼105Hz/cm2, due to 30% gain loss (not
shown), possibly resulting from the charging up of the holes
and avalanche build-up limitations on the resistive anode (see
for example [17]). These results are in agreement with that pre-
viously shown in Ne/(5%CH4) [12]. The efficiency drop can
be mitigated using higher operation voltage.

To demonstrate the electrical stability of the RPWELL, we
measured the current flowing through the anode using a sensi-
tive ammeter [18], while irradiating the detector with pions at
different rates. Fig. 5 shows the current and the pion rates as a
function of time. The measurement shown is in Ar/(7%CO2),
and similar results were obtained in all three gas mixtures. As
expected, the small current spikes, corresponding to the beam
spill-structure, grow smoothly in amplitude with the particle
rate. The measured value of the current should follow the sim-
ple expression: I = q · n · Φ · G(Φ), where I is the current, q is
the electron charge, n is the number of electron-ion pairs pro-
duced by a minimum ionizing particle in 5 mm of Ar [15], Φ is
the particle rate and G the detector gain (which depends on Φ
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Figure 4: Global detection efficiency of the RPWELL detec-
tor as a function of the incoming particle flux in Ne/(5%CH4),
Ar/(5%CH4) and Ar/(7%CO2). The values of ∆VRPWELL were
880 V, 1700 V and 1770 V respectively.

as explained above). Reversing the formula and using the mea-
sured value of the current, we can estimate the value of G. For
example for Φ=4·103 Hz we get G= 1.3×103, which is com-
patible with the value obtained from the measured charge MPV
(Fig. 2 which is taken at a similar particle rate), once taking into
account the effect of the electronics shaping time.
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Figure 5: Current flowing through the detector during pion runs
at different rates in Ar/(5%CH4). The beam spill-structure is
clearly visible.

3.3. Gain stability over time
A stable operation of the detector was demonstrated over

time, under 104-105 Hz/cm2 pion fluxes, as shown in Fig. 6.
The applied voltages were the same as those of the measure-
ments presented in section 3.2. No significant gain variations
(less than 5%) were observed along ∼1 hour of operation in all
three gas mixtures. The values of global detection efficiency
and average pad multiplicity during these measurements also
remained stable.
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Figure 6: Gain stability over time under a high-rate (104-
105 Hz/cm2) pion flux in Ne/(5%CH4), Ar/(5%CH4) and
Ar/(7%CO2). The values of ∆VRPWELL were 880 V, 1700 V
and 1770 V respectively.

3.4. Discharge probability

A discharge was defined as an abrupt increase in the current
supplied to the detector [12]. Discharge probability was mea-
sured during the high-rate pion runs presented in section 3.3.
No discharges were observed in any of the gas mixtures while
irradiating the detector with over 108 pions; therefore the result-
ing value of 10−8 is an upper limit for the discharge probability
in the present RPWELL configuration. Since pions are prone to
induce highly-ionizing secondary events, we have an additional
indication on the broad dynamic range of this detector.

4. Summary and discussion

A 6 mm thick (without readout) 10×10 RPWELL detec-
tor with a Semitronr ESD225 resistive plate coupled to
a pad readout anode was investigated for the first time in
Ar/(5%CH4) and Ar/(7%CO2) gas mixtures; its performance
was compared with that in Ne/(5%CH4). This thin, single-
stage detector was operated with 150 GeV/c muons and pions,
at fluxes reaching 4·105 Hz/cm2. High detection efficiency val-
ues, greater than 98%, at low average pad multiplicity of ∼1.2,
were demonstrated in all three gas mixtures, maintaining stable,
discharge-free operation, also at high pion flux. The efficiency
remained unaffected up to a pion flux of 104 Hz/cm2, above
which it decreased by a few % at ∼105 Hz/cm2. For example,
in Ar/(7%CO2) the RPWELL maintained a global detection
efficiency of 95% under a flux of 1.5·105 Hz/cm2 pions. The
lack of electrical instabilities over more than 108 pion events
sets an upper limit of 10−8 on the discharge probability - ∼ 2
orders of magnitude better than other THGEM-based configu-
rations (e.g. single- and double-THGEM, Resistive WELL and
Segmented Resistive WELL reviewed in [7]).

Compared to other detector technologies explored under sim-
ilar conditions, e.g. for the DHCAL, the performance of the

10×10 cm2 RPWELL detector, with respect to detection ef-
ficiency and pad multiplicity, is superior to that of 1×1 m2

RPCs [17, 19] and 30×30 cm2 GEM detectors [20]; it is simi-
lar to that of 1×1 m2 MICROMEGAS [21, 22]. The efficiency
dependence on the incoming particle flux is similar to that of
multi-gap RPCs based on semi-conductive glass [23]. Also in
terms of electrical stability the performance of the RPWELL
detector is similar to that of RPCs. These results pave the way
towards robust, efficient large-scale detectors for applications
requiring economic solutions at moderate spatial and energy
resolutions. A different application than digital counting (like
in DHCAL or RICH) could be that of a tracking detector with
strip readout. In this case it would require charge spreading over
a resistive layer to increase the spatial resolution (see for exam-
ple [24]). This detector configuration, as well as the RPWELL
technology scale-up and the investigation of other suitable re-
sistive materials are the subject of current R&D.
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