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1. Introduction

The pxarCore library is currently used in all institutes contributing to the production
of the Compact Muon Solenoid (CMS) Phase I Pixel Detector [1] for pixel module func-
tionality tests, quality control, calibration of the detector parameters at operational
temperature as well as X-Ray measurements for absolute energy calibration, single hit
efficiency tests and others [2]. This document does not describe the actual test pro-
cedures and optimization algorithms but focuses on the configuration and operation of
the readout electronics as well as on the trigger and data acquisition (TDAQ) of the
detector modules. Various software packages are based on the pxarCore library such as
the standard test suite pXar including test routines and a graphical user interface, or
the pyXar package [3] implementing a convenient detector test framework in Python.

This document describes the pxarCore library, its working principles and functions,
and gives an introduction on how to build applications using the library as back-end for
reading out devices equipped with PSI46-type readout chips (ROCs). It is intended as
reference manual for both users and future developers or maintainers of the software.

In addition to the pxarCore software, the microprocessor code of the digital test board
(DTB) firmware is described, since it has been developed together with the software to
optimize the workflow and minimize time consumption for tests.

The document is structured as follows. Chapter 2 describes the prerequisites for
compiling and executing the software and gives a reference of all possible build options.
Chapter 3 provides an introduction to the DTB as the readout electronics the software
is designed for. This includes descriptions of both basic firmware functionalities and
the software running on the internal microprocessor. The software architecture of the
pxarCore library is described in detail in Chapter 4, while Chapter 5 gives an introduction
on how to use the library interface. Code examples and additional resources are given
in Chapter 6, while Chapter 7 provides some comprehensible code examples on how to
accomplish various typical tasks.

Chapter 8 describes the integration of the pxarCore library into the EUDAQ data
acquisition framework for test beam deployment of detector modules.

Finally, the Appendix A provides a reference of all pxarCore internal dictionaries for
registers, digital-to-analog converter (DAC) parameters, trigger sources, device names,
and other settings.

This document references the pxarCore library version 2.7 series, which has been
released on January 15, 2016 [4].

6



2. Installation

The pxarCore library is a multi-platform C++ software for x86-compatible processors
with support for Linux, OS X, and Windows operating systems. The library is dis-
tributed as source code only and has to be compiled on the desired platform as described
in the following sections.

2.1. Prerequisites

pxarCore has relatively few prerequisites and dependencies on other software, but some
features do rely on external packages. The required software packages are listed in the
following.

C++ compiler Compilation of the pxarCore source code requires a C++99 compliant
compiler and has been tested with GCC, Clang, and MSVC (Visual Studio 2012 and
later) on Linux (Scientific Linux 5 and 6, Ubuntu 14.04–15.10), OS X 10.7 and later; and
Windows 7 and 8.

CMake In order to configure the pxarCore build process and to generate the build files,
the cross-platform, open-source build system CMake is used. CMake is available for all
major operating systems from [5], and version 2.8.12 or above is required. On most Linux
distributions it can usually be installed via the built-in package manager (aptitude/apt-
get/yum etc.) and on OS X using packages provided by e.g. the MacPorts or Fink
projects.

libusb 1.0 In order to communicate with the digital test board (DTB) over the USB
port, the libusb library version 1.0 as well as its headers are needed.

On Mac OS X, the library can be installed using Fink or MacPorts. If using Mac-
Ports it might be necessary to install the libusb-compat package. On Linux libusb
might already be installed, otherwise the built-in package manager should be used to
install it. The necessary headers are often shipped separately from the library, and the
corresponding packages may be named libusb-1.0-dev or libusb-1.0-devel.

FDT2XX / FTDI library The DTB features a FTDI USB chip which requires a corre-
sponding driver to communicate over USB. There are two options available. The FTDI
library is a open source driver for the FTDI chips and is shipped with most Linux distri-
butions and can usually be installed via the package manager. The package is typically
called libftdi-dev or similar. However, this driver has shown performance problems in
the past and should only be used as fallback option in case the proprietary driver does
not work for some reason.

The proprietary driver provided by the FTDI company is called FTD2XX. Its bi-
naries and header files can be fetched from [6]. Version 1.1.12 or higher is required,
and the appropriate files for the operating system and system architecture have to be
downloaded. The driver library and header files should be placed in the usual install
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locations of the operating system, e.g. for a Linux distribution usually /usr/local/lib

and /usr/local/include are a good choice. The following files from the package are
required:

ftd2xx.h

WinTypes.h

libftd2xx.so

It might be necessary to create a symbolic link pointing to libftd2xx.so omitting any
versioning numbers such as

libftd2xx.so.1.1.12 -> libftd2xx.so

It has been reported, that some versions of the FTD2XX library require a recent version
of the glibc library and are thus not compatible with all Linux distributions.

On OS X it might be necessary to remove the FTDI driver provided by the operating
system by removing or renaming the file

/System/Library/Extensions/IOUSBFamily.kext/

Contents/PlugIns/AppleUSBFTDI.kext

Python, Cython, Numpy If the Python bindings of the pxarCore library are to be
used e.g. for pyXar [3], for the Python command line interface (CLI) (cf. Section 6.1),
or for writing short and simple scripts to program the detector and perform tests, the
Python 2.7 libraries, as well as Cython [7] in version 0.19 or later, and the Python-Numpy
package [8] are required.

Building pxarCore with GUI By default, the pxarCore library is built together with the
pXar graphical user interface (GUI) and test suite, which requires the ROOT package [9]
for histogramming. ROOT 5.34 as well as ROOT 6 are supported.

2.2. Downloading the source code

The pxarCore source code is hosted on github, together with the pXar GUI source code.
The recommended way to obtain the software is through git [10], since this allows to
easily update to more recent versions and to rebuild the software. In order to obtain the
source code, the git repository has to be cloned once via

git clone https://github.com/psi46/pxar.git pxar

or one of the available GUIs for git. This will download the repository and its full
development history into a newly created folder pxar and add the main development
repository as git remote origin. To update to the latest upstream version available, the
following command should be used inside the pxar directory:

git pull origin master
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For production systems like test stands or probe stations as well as in test beam exper-
iments it is highly recommended to stick with tagged stable versions instead of always
updating to the latest commit on the master branch. Tags can be checked out using

# Fetch all new tags and commits

git fetch origin

# List the available tags:

git tag

# Check out the selected tag:

git checkout v2.7.X

Alternatively, e.g. for installations without direct internet access, source tarball files
for tags and releases can be directly downloaded from the repository [4].

2.3. Configuration via CMake

In order to configure the build and to check for the presence of all dependencies, a
new folder (e.g. build) should be created and CMake run from there, pointing to the
CMakeLists.txt file in the root directory of the pxar repository. Graphical interfaces
to CMake or the MSVC project manager can be used instead of the command line tool.
On Linux, the following commands create a new folder and execute CMake:

mkdir build && cd build

cmake ..

CMake automatically searches for all required packages and verifies that all depen-
dencies are met using the CMakeLists.txt script. To select the modules to be built,
parameters can be supplied to CMake via

cmake -D<parameter>=<ON/OFF> ..

The corresponding settings are cached, so that they will again be used next time CMake
is run. The following CMake parameters relevant for the pxarCore library are available:

BUILD pxarui: (default: ON) Switch on/off building of the pxar GUI and all its tests.
This option requires the ROOT libraries to be available. In order to only build
the pxarCore library, this option should be turned off.

BUILD python: (default: OFF) Build the optional Python bindings for the pxarCore
library. This allows you to use the Python CLI, the pyXar software and custom
Python scripts accessing pxarCore functions. This option requires Python, Numpy
and Cython as additional dependencies (see Section 2.1).

BUILD tools: (default: OFF) Build additional tools such as the flash tool to update
the DTB firmware or the decoder executable running software-driven unit tests
on the pxarCore decoder modules.

9



USE FTD2XX: (default: ON) Switch to choose between the open source library for FTDI
chips libfdti and the closed source vendor supplied libFTD2XX. The latter one
has shown better performance than the open source library and is recommended
for now. If both libraries are found on a system, libFTD2XX is preferred, otherwise
the one available is used automatically.

INTERFACE USB: (default: ON) Switching on/off compilation of the USB interface
classes for DTB communication. If this switch is turned off the resulting pxarCore
library will not be able to access any DTB via USB!

INTERFACE ETH: (default: OFF) Switching on/off compilation of the Gigabit Ethernet
interface classes for DTB communication. Currently Ethernet is not supported by
the DTB firmware. Building the Ethernet interface requires the PCap libraries as
external dependency.

BUILD dtbemulator: (default: OFF) Switch off all real interfaces but build a emulator
hardware class on remote procedure call (RPC) level instead. This is equivalent
to setting both -DINTERFACE USB=OFF and -DINTERFACE ETH=OFF. The DTB em-
ulator class will deliver test data just as a real device would. This can be used to
test and debug the software without a physical device attached (cf. Section 4.6).

Thus, only building the pxarCore library and its Python bindings can be achieved via

cmake -DBUILD_pxarui=OFF -DBUILD_python=ON ..

By default, the installation path of the library is the lib folder inside the source directory.
In order to install to a different location, the INSTALL PREFIX parameter for CMake can
be used. e.g.

cmake -DINSTALL_PREFIX=/usr/local ..

in order to install the executables into the bin and the library into lib sub-directories
of /usr/local.

In case of configuration problems or errors it is recommended to delete the build
directory and to re-run CMake from scratch:

rm -r build/

In case this does not solve the configuration problem, the developers can be contacted via
the github bug tracker of the project [11]. A full CMake output from a clean build direc-
tory should be included in any bug report in order to provide the necessary information
for receiving help.

2.4. Compilation

On Windows, the cmake command produces a Visual Studio project which can be com-
piled from within the MSVC GUI. On Linux and OS X, the GNU make utility is used
for the library compilation and thus has to be installed, either via the package manager
(Linux) or the Xcode developer tools (OS X). With make, the compilation process is
started by executing
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make [-jX] [VERBOSE=1]

make install

after a successful CMake execution. Here, the optional parameter -jX allows to simul-
taneously execute the compilation on X CPU cores, while VERBOSE=1 switches the make
utility to high verbosity level.

In case of build errors it is recommended to delete the build directory and to re-run
CMake and make from scratch:

rm -r build/

In case this does not solve the build problem, the developers can be contacted via the
github bug tracker of the project [11]. The full CMake and make output from a clean
build directory should be included in the bug report.

2.5. DTB firmware

The pxarCore library is always build against a specific version of the DTB firmware. It
needs to include the correct interface headers to allow communication and have access
to all microprocessor functionality needed for its routines (cf. Section 3.3).

pxarCore tries to check the firmware version at start-up and will report version mis-
matches. For reference, the required firmware version is stored in the CMakeLists.txt

file in the pxar repository. The output of a successful comparison will be similar to

INFO: RPC call hashes of host and DTB match: 1895922356

while a failing hash comparison results in an error:

WARNING: RPC Call hashes of DTB and Host do not match!

CRITICAL: <hal.cc/CheckCompatibility:L383> Please update your DTB with

the correct flash file.

CRITICAL: <hal.cc/CheckCompatibility:L384> Get Firmware v4.6 from

https://github.com/psi46/pixel-dtb-firmware/tree/master/FLASH

All flash files for the different DTB firmware versions can be obtained from [12]. When
downloading files from the github website it has to be ensured that the actual raw file
is downloaded instead of a HTML document created by the github web server. The
compatible version for pxarCore version 2.7 is the DTB firmware version 4.6.

The file has then to be loaded onto the DTB Field Programmable Gate Array (FPGA)
with one of the following statements (assuming the current directory being the pxar

folder):

./bin/pXar -f /path/to/pixel-dtb-firmware/FLASH/FLASHFILE

./bin/flash /path/to/pixel-dtb-firmware/FLASH/FLASHFILE

where FLASHFILE should be replaced with the appropriate firmware file name. The
download to the FPGA will take a while, and the on-screen instructions should be
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followed. After all 4 status LEDs are off, the DTB should be power-cycled. Without a
power cycle the new firmware is only stored in the EEPROM but not yet loaded into the
FPGA. The flash executable is compiled when enabling the additional tool compilation
as described in Section 2.3.
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3. The Digital Test Board (DTB)

The DTB is the readout electronics for lab and test beam operation of PSI46 devices
such as single readout chip (ROC) assemblies, Compact Muon Solenoid (CMS) Pixel
detector modules or beam telescopes. It features an Altera FPGA, 2x64 MB DDR2
RAM, as well as USB2.0 and Gigabit Ethernet ports.

A crosspoint switch allows monitoring of signals via several LEMO outputs and a
68-pin SCSI cable connects the detector devices. Data lines are separated by ground
for defined impedance. This also allows the usage of long cables, e.g. for mounting in
X-Ray tubes where space constraints prevent the user from placing the DTB directly
next to the detector module.

Generic IO pins are available on the board, which could be used for connecting external
devices such as temperature sensors. This, however, would require the appropriate
firmware modules to be implemented by the user.

The intergrated analog-digital converter (ADC) can be used for both the digitization
of input data from analog detector modules, and to sample signals provided by the
crosspoint switch. The crosspoint switch can map signals from in- and outputs of the
DTB to either the LEMO connectors or to the internal ADC which can sample the
data and thus acts as “digital scope”. The crosspoint switch configuration is changeable
remotely via software.

Deserializer modules for both 160 MHz and 400 MHz signals for single ROC and mod-
ule readout with Token Bit Manager (TBM) are provided, and inputs for external trigger
signals and an externally generated clock are available.

3.1. Connectors

The available sockets and connectors on the DTB are shown in Figures 1 and 2. The
power LED should be on as soon as the DTB is connected to a 6 V power supply. When
connecting the DTB to the power supply, the four status LEDs light up in a circular
pattern indicating a correctly loaded firmware. If the status LEDs do not come on, the
firmware has to be flashed via the JTAG connector on the board since no firmware could
be loaded from the EEPROM.

During operation, the detector power LED is turned on as soon as the supply volt-
ages (analog and digital) to the detector are activated (automatically at start-up via
pxarCore::initDUT() or manually using pxarCore::Pon()). The high voltage (HV)
LED turns on with the sensor bias being switched on (via pxarCore::HVon()), and the
toggling of the HV relay can be heard.

The status LEDs are used to signal different states of the DTB. LED 1 is active while
a data acquisition (DAQ) session is running. LED 3 is used to signal activity of the
trigger test loops (cf. Section 4.4.2). The other LEDs are currently unused.

The digital and analog probe outputs D1, D2 and A1, A2, respectively, can be used
to monitor different signals as described in Section 5.2.
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Figure 1: The DTB front panel featuring (from left to right) the USB2.0 port, the Gigabit
Ethernet connector, the digital scope outputs D1, D2, the clock and trigger
inputs, four status LEDs, the HV and detector power LED, the AC connector,
and the DTB power and CRC LEDs.

Figure 2: The DTB rear panel featuring the HV sensor bias port, the two analog differ-
ential signal probes, and the 68-pin SCSI connector.
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Figure 3: Summary of the output data format of CMS Phase I Pixel Detector modules.
The data stream from the ROCs is prepended and appended with the header
and trailer from the TBM, the pixel address encoding differs for the ROC of
the detector layer 1 and layers 2-4.

3.2. Deserializer Modules

There are different firmware modules available sampling the incoming data stream from
the sdata lines, depending on the DUT attached to the DTB. The correct module has
to be set up and activated in order to receive data from the detector. The detector data
format is summarized in Figure 3.

All modules process the DTB sdata input channel from the device under test (DUT)
and write their output directly into a ring buffer set up in the DTB RAM via direct
memory access (DMA). This buffer has to be allocated beforehand as described in Sec-
tion 4.2.

DESER160: The 160 MHz deserializer module samples data coming directly from one
or more ROCs. It regards the Token In and Token Out signals and chops the
datastream accordingly. In order to properly sample the signal, the deser160phase
DTB parameter specifying the relative phase for the sampling point has to be set
correctly. This can be done best by operating a single digital ROC and looking
at the sampled signal. The phase should then be adjusted until the correct ROC
header patterns 0x7f8 can be recognized. This is automatically done e.g. by the
pXar Setup Test.

DESER400: The 400 MHz deserializer module features a 5-to-4 bit decoder to reverse
the encoding of the TBM. Subsequently, the signal is split into the two contained
160 MHz signals from the TBM cores, and a decoder module decodes the data by
identifying ROC headers and pixel hits. The data format is changed and added
with identifier bits marking each part of the data. These identifiers are used by the
pxarCore decoder modules later on (cf. Section 4.3). This however means, that the
original 0x7f8 patterns from the ROC headers are removed, and the former header
bits are used for information from the deserializer, such as the XOR eye pattern of
the 400 MHz signal as indicated in Figure 4. The DESER400 is self-aligning using
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Figure 4: Output data format of the DESER400 deserializer module The first four bits
of each 16 bit word are identification markers (yellow), while the input data
occupy the lower bits (blue). Additional internal error states of the deserializer
module are inserted into unused bits (red).

the idle patterns sent by the TBMs. The sampling frequency (measurement time)
of the phase detector can be configured using the deser400rate DTB parameter
with the possible settings

• 0: 75 ns

• 1: 175 ns (default)

• 2: 375 ns

• 3: 775 ns.

For multi-channel TBMs (TBM09 or TBM10 type) two DESER400 modules are acti-
vated, and for Layer 1 modules featuring two TBM10 chips, eight data lanes with
four DESER400 modules are available.

ADC: The sdata signal can be re-routed to the DTB-internal ADC via the crosspoint
switch. The ADC then samples the incoming analog 40 MHz ROC data and writes
the data into memory. This allows operation of analog PSI46V2 devices with the
DTB.

3.3. The DTB Microprocessor Interface

This section is intended to give a detailed description of the available functions of the
DTB microprocessor. For operating DUTs using the pxarCore library, the information in
this section is not necessary but might however help in understanding problems occurring
during programming or readout of the devices.

The FPGA of the DTB features an emulated Nios II microprocessor [13] (the so-
called softcore CPU) which is capable of executing user code, providing interfaces to
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the FPGA functionality and the communication interfaces of the DTB (USB, Ethernet).
The Softcore CPU is running at a clock speed of 75 MHz and is thus not powerful and
fast enough to do data processing or decoding on the DTB. Therefore, all data recorded
by the DTB is always transferred to the host PC and analyzed there.

However, the Softcore CPU is very convenient for executing simple commands such
as starting the pattern generator or reprogramming a DAC. Therefore it is mainly used
to control the functionality of the DTB FPGA, to start and stop data acquisition and
to send Inter-Integrated Circuit (I2C) commands to the DUT.

A set of functions has been implemented to ease the recording of large amounts of
data, scanning through various parameters without too much communication overhead.
These functions are described in the following sections. Section 3.3.1 introduces the Nios
cache for detector parameters while Sections 3.3.2–3.3.4 describe the implemented Nios
functions exploiting these capabilities for performing fast loops over multiple pixels and
DAC settings.

3.3.1. Mask and Trim Bit Caching

The pixel unit cells (PUCs) of the PSI46 ROC generation only have one register for the
mask/enable bit and the four-bit pixel-by-pixel threshold adjustment (the so-called trim
bits). After chip start-up, all PUCs have to be programmed with appropriate trim bits
to provide a uniform threshold over the whole ROC. However, these settings are lost
when masking a pixel since this PUC register is overwritten when setting the mask bit.
Thus when re-enabling a previously masked pixel the trim bits need to be programmed
again. If the trim values are only known on the host PC side this becomes problematic
and causes a large communication overhead when re-trimming every pixel.

To overcome this limitation, all trim bits are cached in the DTB RAM and are accessi-
ble to the Nios II Softcore CPU. This allows to mask the full chip and then quickly trim
single pixels without communication overhead. The default behavior of the test loops
described in Section 3.3.2 is to only enable and trim one pixel at a time keeping all others
masked. This behavior can be disabled using the flag FLAG FORCE UNMASKED as
described in Section 5.3.

In order to cache all trim and mask bit information, the Nios II needs to learn about
the devices to be programmed. First, the I2C addresses of all devices of interest have to
be provided. Calling the function
CTestboard::SetI2CAddresses(vector<uint8 t> &roc i2c)

sets up the data I2C storage structures in the Nios II stack. It stores all ROC I2C
addresses to be accessed later by test loop functions for retrieving data for a specific
ROC. Then, for every ROC configured via SetI2CAddresses(...) the trim values have
to be provided using
CTestboard::SetTrimValues(uint8 t roc i2c, vector<uint8 t> &trimvalues)

This function uploads all trim values of the ROC defined by the parameter roc i2c

to the Nios II storage. Trim values should be provided as linearized vector ordered
according to their pixel address (col 0, row 0; col 0, row 1; etc.). The value represents
the four trim bits for every PUC. Values larger than 15 are interpreted as masked and
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the mask bit of the respective PUC will be set.
When using the pxarCore library, all trim and mask bits are automatically transferred

and updated from the DUT object (cf. Section 4.4) before a test loop function is called.

3.3.2. Test Loops

The so called Test Loops are a set of Nios II interface commands which implement often-
used loops over pixels or digital-to-analog converter (DAC) parameters directly in the
Nios II. Instead of disabling one pixel and enabling the next one via the host PC, the
respective I2C commands are sent directly from the Nios II Softcore CPU. This comes
with a major speed improvement compared to execution on the host PC via USB, which
has a latency of a few milliseconds for every block of commands sent to the DTB.

The functions are designed to be easy to handle, both when using pxarCore or just
interfacing the firmware directly. The naming scheme describes the scope as well as the
action of the command:
CTestboard::Loop<# ROCS><# Pixels><Action>(...)

For example calling the function LoopSingleRocAllPixelsCalibrate(...) would
send calibrate pulses to all pixels of one ROC, while calling the test loop function
MultiRocOnePixelDacDacScan(...) would perform a two-dimensional DAC-DAC scan
for one pixel on multiple ROCs of a module in parallel.

Before the test loops can be used, the trim bit information has to be cached. This
information is provided via the functions described in Section 3.3.1.

The behavior of the test loops can be influenced by using the pxarCore flags which
will be described in Section 5.3. This allows to e.g. perform cross talk measurements or
to send the calibration pulse through the sensor pad.

When using the pxarCore library, the appropriate and most efficient loop is picked
automatically via the loop expansion described in Section 4.4.3. The user just has to
set up the DUT and request certain test data via the application programming interface
(API) functions, e.g. pulse height information for all values of a DAC and for all pixels
of the attached device.

Depending on their functionality, the test loops expect a certain set of parameters.
Always required are the I2C address(es) of the device(s) to be tested, the number of
trigger signals to be send for every step, and the flags with which this loops should be
executed. For one-dimensional DAC scans in addition the DAC register, range and step
size has to be provided, in case of two-dimensional DAC scans this set of parameters
also has to be provided for the second DAC to be varied.

The test loops allow DAC scans with a step size different from one (sparse scans,
cf. Section 4.4.2).

3.3.3. Loop Interrupts

Running the test loops might produce a lot of readout data, especially since the data
volume increases linearly with the number of triggers, DAC scanning range or the number
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of pixels to be tested. The DTB RAM is limited to 128 MB of which about 90 MB are
available to the ring-buffered DAQ storage.

Since the Nios II Softcore is not capable of running multiple threads, it is not possible
to read out data from the ring buffer while a test loop is running since both operations
require access to the RPC interface. The solution chosen is to interrupt the test loop
whenever the fill level of the RAM has reached a certain limit and return to the host
PC. The RAM can then be read out and the loop resumed. This approach minimizes
communication overhead, maximizes test execution speed, and does not require any
additional monitoring or controlling on the host PC side.

In the test loops, the fill status of the DAQ ring buffer is checked before each block
of triggers is sent. If it is above the threshold of 85% (set by LOOP MAX FILLLEVEL in
the firmware) the DAQ is suspended, all loop iterators such as the current DAC values
and the address of the pixel which is currently calibrated, are stored, and an interrupt
flag is set by the function LoopInterruptStore(...). The RPC test loop function
returns false signaling an interrupted loop execution. The host PC software now has
to fetch all buffered data and can then simply invoke the same test loop function again.
At the loop startup, the function LoopInterruptResume(...) is called to check for
any previously interrupted loops and to load the iteration parameters again. Every test
loop function has a unique ID to ensure that the correct loop is resumed. This means,
if one loop command is interrupted and another loop command called afterwards, this
loop will reset the interrupt status and start from the beginning. The total number
of interrupts and resumes is limited to 150 as a precaution against endless loops (set
by LOOP MAX INTERRUPTS in the firmware). This allows for the collection of about 120
Million triggers with a standard CMS Pixel TBM08c module in one loop.

After successfully finishing the full loop, the test loop functions return true, the host
PC software reads the remaining data from the RAM, and merges the data from all
interrupts to have the full test data available.

The pxarCore library automatically takes care of fully executing a loop through all
interrupts, collecting the data and returning it as one consistent block.

3.3.4. DAC Calibration

The full range of 8 bit DACs on the ROC is realized by using multiple transistors in
parallel. Turning on or off an additional transistor when incrementing or decrementing
the DAC value results in a nonlinear shape of DAC response at these positions in the
DAC range.

The response can be corrected and linearized by flipping the DAC values at the bound-
aries of activating an additional transistor. The correction is automatically performed in
the Nios II test loops when scanning over DACs in one or two dimensions. This behavior
can be disabled using the flag FLAG DISABLE DACCAL (cf. Section 5.3).
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Figure 5: Typical setup of the pattern generator containing a ROC reset signal, a Cali-
brate pulse, and trigger and readout token. The delay between Calibrate and
Trigger has to match the WBC setting of the chip plus a chip version-dependent
constant offset (5 or 6), and the pattern generator has to be stopped with a
delay of 0 BC. One BC is equivalent to one clock cycle of the 40 MHz clock
(i.e. 25 ns).

3.4. Pattern Generator

The Pattern Generator is a firmware module that allows to send configurable patterns
of signals to the attached devices. It consists of a register bank with 256 addresses, all
of which can be programmed with one or more signals to be send. After every signal, a
programmable delay is inserted, the pattern generator stops when a delay of zero is set
as outlined in Figure 5.

A typical example of a pattern generator setting would be the operation of a detector
with calibration pulses. The trigger has to be sent out at a fixed time after the calibrate
pulse, defined by the configured trigger latency of the detector (via the WBC setting). The
pattern generator would then contain both the Calibrate signal with the correct delay,
the subsequent trigger signal and possibly also the token if not generated by a TBM.

Multiple pattern generator signals at once can be sent by separating their names with
a semicolon. This of course excludes signals which are sent on the same line (e.g. CTR
patterns: calibrate, reset, trigger).

Possible Pattern generator signals can be found in Table 8 in the appendix. Since the
default trigger source of the DTB is the pattern generator in direct mode bypassing the
TBM emulator described below, an initial pattern generator setup should be provided
at start-up of the DTB via pxarCore::initTestboard(...), but can be changed any
time using the API call pxarCore::setPatternGenerator(...) (cf. Section 5.1.1).
The total length of a pattern is calculated as the sum of all pattern delays configured.
The trigger frequency for the pattern generator has to be larger than the pattern length.
This restriction is enforced by the pxarCore library and a warning is printed if the
supplied frequency is adjusted.
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3.5. TBM Emulator

The TBM emulator is part of the DTB firmware and simulates a full TBM. This can
be particularly useful when operating single ROCs without TBM, e.g. in test beams.
In this case, the readout token for the ROC has to be generated by the DTB, following
every trigger which is sent out. This can be either done using a Pattern Generator, or,
when using external triggers, via the TBM emulator.

The TBM emulator also adds header and trailer words to every event, containing
useful information like the current trigger number (8 bit) and the phase of the trigger
arrival time relative to the 40 MHz clock. This information is stored in the decoded
events and can be retrieved directly from the objects (cf. Section 4.8).

3.6. Trigger Sources

The DTB accepts triggers from a range of sources, a full list is given in Table 6 in
the appendix. External triggers are accepted via the LEMO port of the DTB as TTL
signal. Other sources include the Pattern Generator and an internal trigger generator
for random and periodic triggers. The trigger source to be used can be changed us-
ing pxarCore::daqTriggerSource(...), multiple trigger sources can be activated by
providing all names separated by a semicolon (e.g. extern;pg dir).

Triggers can be configured to either go to the TBM emulator or bypass it and go
directly to the attached devices. When operating devices featuring a physical TBM, a
direct trigger source has to be chosen.

A special case are Single Events which allow to send single signals out without changing
e.g. the pattern generator setup. Using pxarCore, these signal can be injected using the
API call pxarCore::daqSingleSignal(...).
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4. Software Architecture

pxarCore is a library aiming at simplifying the usage and communication with the DTB
in order to qualify, calibrate, and operate PSI46-type devices. It provides a set of easy-to-
use functions for high-level application programming, e.g. for designing a DAQ software
for test beam measurements or for lab calibrations. Instead of interfacing the DTB
firmware directly, the pxarCore library should be used for any high-level applications.
It includes many safety and consistency checks and tries to abstract the internal DTB
structure and functionalities and allows transparent access to the attached devices.

Some functionality of the DTB requires in-depth knowledge about the underlying
technologies used (FPGA firmware, USB communication, pattern generators, TBM em-
ulator, trigger routing, correct procedure and order of commands for detector setup,
etc.). pxarCore tries to implemented all of this in the “correct” way in order to provide
a reference implementation for other software.

pxarCore is a shared library compiled using CMake and compatible with most common
operating systems. All data is exchanged via STL containers and pxar C++ class objects.
pxarCore is well-maintained (and maintainable), documented, and checked regularly for
memory leaks. It compiles with a minimum set of external dependencies (libusb-1.0,
libftdi/ftd2xx) under Linux (SL5/6, recent desktop distributions), Windows, and Mac
OS X. The API is considered stable, only extensions for new functionalities are added
but no backward incompatible changes applied. Even major changes to the internal
structure of pxarCore do not (and did not) affect the API. External code can rely on the
functions provided by the API, there is no need to rework user code after an upgrade to
a later API version.

This section is organized according to the structure of the library outlined in Figure 6.
First, Section 4.1 describes the communication of the library with the DTB. Section 4.2
introduces the hardware abstraction layer (HAL), while Section 4.3 provides details on
the process of data retrieval and decoding. Section 4.4 describes the public C++ API
and Section 4.5 introduces the Python interface. The DTB emulator code is presented
in Section 4.6, and Sections 4.7 and 4.8 provide technical details on the implementation
of exceptions and data types, respectively.

4.1. Communication with the DTB

The DTB possesses two interfaces for communicating with host PCs. The Gigabit Ether-
net port is currently not supported by the firmware, but efforts are ongoing to implement
the functionality. pxarCore already provides an Ethernet interface for DTB communica-
tion which has to be switched on at build time (cf. Section 2.3). The default interface for
the operation of the DTB is the USB 2.0 port. For Linux, two libraries are available to
establish the connection with the FTD232 chip on the DTB, the proprietary libFTD2XX

library provided by the vendor, or the open source alternative libfdti. Currently the
proprietary library is preferred over the open alternative due to a better performance
(cf. Section 2.1).

On the protocol level, all communication is handled by a remote procedure call (RPC)
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Figure 6: Architecture of the pxarCore library. The DTB is connected via USB or Eth-
ernet, with RPC being the communication layer. The HAL abstracts RPC
calls to functions used by the API layer. The API handles all configuration,
user input checks, and data packaging. It is the interface to all user code such
as a GUI, CLI, or tests.
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interface. Both communication partners implement a set of routines which can be called
by an identifier and a set of parameters. There are tools available to generate updated
versions of the interface files for the DTB Nios II Softcore code and the pxarCore RPC
code [14]. The generate.sh tool calls the RPC generator which parses the interface
header file (pixel dtb.h) of the DTB for the RPC EXPORT preprocessor directive and
generates interface implementations for both the DTB and pxarCore. The pxarCore
interface in core/rpc has then to be updated with the generated file and the header in
the same directory adapted accordingly. This step should only be necessary after adding
new functions to the Nios II Softcore interface. The firmware’s software revision number
should be updated if the RPC interface is changed.

4.2. Hardware Abstraction Layer

The hardware abstraction layer aims to provide a transparent layer to the underlying
hardware. While the API level of pxarCore abstracts most data handling and configu-
ration for the user, the HAL is responsible for bundling all calls to the DTB which are
necessary to perform a certain action, thus the HAL is the only class with direct access
to the RPC call stack.

In principle, another implementation of the HAL library could be written to allow
operating different readout hardware without the need to rewrite the pxarCore class
interface or the configuration and data handling.

Beside combining RPC calls to sequences such as writing parameters, flushing the
RPC interface cache, and retrieving information, the HAL also takes care of the data
acquisition process by setting up and supervising the decoding chains described in the
subsequent sections.

A key element to this is the pxar::daqStart() function which sets up the DTB for
data acquisition, allocates the DTB RAM and initializes all decoding chains with the
correct parameters received from the API class. The HAL is also responsible for the
event building. In case of a DAQ with multiple channels (such as a full CMS Pixel
Detector module), the HAL functions take care of properly combining the channels into
single events by concatenating the content.

Since the test loops described in Section 3.3.2 produce a huge amount of data (some-
times several GB of raw data for tens of millions of triggers) the HAL implements the
condenseTriggers() function which already combines all events belonging to the same
DAC setting and pixel (usually configured in the API test call as nTriggers) in order to
reduce the amount of data kept in the PC RAM. It either sums the number of responses
of a given pixel (efficiency mode) or calculates mean and variance of the pulse heights
returned.

4.3. Data Readout & Decoding

The data decoding is performed using separate classes for every task in the decoding
chain, which are connected via output operators (>>) as shown in Figure 7. First, the
raw data is retrieved from the DTB by so-called data sources, and the individual events
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Figure 7: Structure of a single pxarCore data pipe showing the necessary modules. The
data is retrieved from a data source and passed through the event splitter and
event decoder. The data sink outputs decoded events.

are recovered by the event splitters. Finally, the actual event content is decoded. The
classes are used for the pxarCore-internal data decoding of all tests, but can as well
be used by external programs as demonstrated in the decoder tool provided in the
repository (cf. Section 6.3).

4.3.1. Data Sources

The first step in the decoding process is the retrieval of raw data by so-called data
sources. Every data source is responsible for one DAQ channel, for TBM operation
multiple data sources are instantiated. The following data sources are available:

dtbSource : This is the standard data source for all data which is directly retrieved from
the DTB. It accesses the RPC interface and requests data blockwise. The size of
the data blocks is defined as DTB SOURCE BLOCK SIZE and is set to 8192 words
by default. The transmission speed or readout performance does not depend on
this value. When the buffer is empty the dtbSource throws an dsBufferEmpty()

exception which is caught by the calling functions in the pxar::HAL. The dtbSource
belongs to the HAL library.

evtSource : This is a data source which allows to inject already recorded raw data into
the decoding modules. It is e.g. used to perform offline decoding of test beam
data which has been retrieved online as raw data and immediately stored without
decoding. This class is part of the pxarCore decoder.

All data sources have to be initialized with a set of parameters describing the data to
be expected. The data source itself will not make much use of this information, but the
subsequent processors retrieve the parameters via the output operators. The following
parameters are required:

src: (dtbSource only) the RPC class handle for the DTB connection.
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daqchannel: the DAQ channel to read from. This parameter is not strictly necessary
for the evtSource but allows to distinguish several decoding instances running in
parallel in the log output.

tokenChainLength: the number of ROCs per event expected in this particular data
channel. This parameter is internally used to accommodate for modules which
have bypassed ROCs as well as for multiple ROCs daisy-chained to one DESER160
input (beam telescopes).

offset: an additional offset for numbering the ROCs found in the data stream. If channel
0 contains 8 ROCs, the offset parameter for the channel 1 data source should be
set to 8 in order to start the ROC numeration at 8.

tbmtype: type of the TBM used. This parameter expects a correct device identifier
from the Device Dictionary (see Section 5.7).

roctype: type of the ROCs used. This is of special importance since some ROC types
require special treatment of their data, such as inverting the pixel ID for an early
prototype chip, or the linear address space of the layer 1 ROC. This parameter
expects a correct device identifier from the Device Dictionary (see Section 5.7).

endlessStream: this setting prevents the data source from throwing the dsBufferEmpty
exception. The source will continue polling for new data until it can return the
next block.

daqflags: this parameter allows to specify additional flags which can influence the de-
coding process (cf. Section 5.3).

While the dtbSource will fetch the data automatically via the supplied DTB handle, the
evtSource buffer needs to be filled explicitly via the AddData() member functions which
accept either a single 16bit word or a vector of such words.

Data sources can be instantiated with their default constructor, not supplying any
configuration parameters. The internal state of the source is then initialized to not con-
nected and it will not respond to inquiries until it is properly configured and connected.
This allows to allocate member objects but only configure them at run time with the
required parameters.

4.3.2. Event Splitters

The subsequent step in the decoding chain is the splitting of events. The data stream
contains special marker bits (depending on the configuration) which indicate the start
and end of single events. The event splitter routines search for these markers and keep
on requesting more data from the data sources until the next event marker is found.

This data is packed in a pxar::rawEvent (see Section 4.8), and additional information
such as flags for missing event start or end markers are stored.

The default class for event splitting is the dtbEventSplitter which provides sub-
routines for splitting of data streams recorded without a TBM, with the TBM emulator,
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and with a physical TBM. For the latter, in addition to packing the data, the channel
ID is stored in unused bits of the TBM header word for later reference.

In addition to this flexible event splitter, the passthroughSplitter class can be
used to just pass through all data provided without checking for event markers. Data
is retrieved from the source until the dsBufferEmpty exception is thrown. This can
be useful if the data is already separated into single events. The implementation
of the pxarCore decoder in EUDAQ described in Section 8 makes use of this split-
ter routine, since all events are already separated at data acquisition time using the
pxarCore::daqGetRawEvent(...) function.

If only raw event data is requested, this is the endpoint for the decoding chain where
the object is retrieved by the data sink.

4.3.3. Event Decoders

The central part of the data pipe is the actual decoding accomplished by the dtbEvent-
Decoder class. It uses the configuration parameters supplied via the data source to select
the correct decoder module. The event decoder is also the module collecting all statistics
which can be fetched via pxarCore::getStatistics(), as described in Section 5.10.

First, a new pxar::Event object is instantiated, the next pxar::rawEvent is requested
from the splitter routines, and the statistics are updated with the flags from event
splitting. Then the presence of any TBM in the data is checked via the configured TBM
type.

If a TBM is present, its header and trailer are analyzed. The data is stored in the
header and trailer members of the pxar::Event from where all status information can
be retrieved via member functions (cf. Section 4.8). The TBM event ID is stored and
compared to the expected event number in the local counter. The TBM header and
trailer are then removed from the data, and the pxar::rawEvent is passed on to the
ROC data decoders.

The dtbEventDecoder class contains modules for every type of PSI46 chip, both digital
and analog. The decoder modules iterate over the data and check every word for the
appearance of a ROC header identifier. If found, the word is treated as new ROC,
otherwise, the data is treated as possible pixel data. The actual translation from the
pixel gray code or address levels into column and row addresses is performed in the
pxar::pixel class itself which provides constructors for the different input data types
as described in Section 4.8.

For analog data, the ultra black and black levels are retrieved from the ROC headers
and averaged using a running-average of the last 1000 events. Since the initial values set
by the class constructor might not suit the particular setup, it is of special importance
that the first word of analog event data contains the first ROC header, otherwise wrong
levels will be used for the average, and the address levels cannot be calculated. Also see
Section 5.11 for further information on analog ROCs.

At the end of the decoding process, the final event undergoes a validity check. This
includes checks for the total number of ROC headers, and collects the statistics about
empty events. Additional information such as a possible NoTokenPass or PKAMReset bit
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in the TBM trailer is used to correctly react on special situations. With this bit set, no
token has been sent by the TBM and hence no ROC headers are expected in the data
stream.

In addition to the actual data decoding, the dtbEventDecoder also collects the read-
back information and makes it available via the pxarCore::daqGetReadback() function
as described in Section 5.9. For data recorded by the DESER400 modules described in
Section 3.2, the XOR sum indicated in Figure 4 is collected from the ROC headers if
the FLAG ENABLE XORSUM LOGGING flag is set. The data can be fetched from
the pxarCore library via the pxarCore::daqGetXORsum(uint8 t channel) API call.

If the FLAG DUMP FLAWED EVENTS flag is passed via the data source, the dt-
bEventDecoder will keep the last seven events in a ring buffer and prints them in case
of an event exhibiting problems. This allows to inspect the broken event itself as well
as the preceding and successive events. As described in Section 5.3, this should only be
used if necessary since the decoding process is slowed down significantly. The printout
is restricted to the first 100 erroneous events.

4.3.4. The Data Sink

In order to retrieve data from the decoding pipe, a data sink has to be used. The
dataSink class provides an interface to all possible modules in the decoding chain and
returns objects of the selected type. The return data type has to match the output type
of the module to be connected, e.g.
dataSink<Event*> pump;

The pxar::rawEvent and pxar::Event data types are returned as pointers, and the
actual objects have to be copied by the requesting code. Data obtained directly from
the data source is returned word by word as fixed-size uint16 t integers.

4.3.5. Building the Decoding Chain

The full decoding chain is built from the classes described above by creating instances
and connecting them with the output operator >>. The decoding chain always has to
start with a data source and end with a data sink. The pxarCore library automatically
sets up all necessary decoding chains depending on the configuration of the DUT (see
Section 4.4.1).

An example of how to interface the decoder modules from user code is provided in the
example code decoder described in Section 6.3.

Decoding chains are very flexible and the output can be changed at run time. It
would for example be possible to hook up the same decoding chain to two different
data sinks, and then request every odd event as decoded pxar::Event and all others as
pxar::rawEvent.

4.4. Application Programming Interface

The application programming interface is the central interface through which all calls
from tests and user space functions are routed in order to interact with the hardware.
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The API provides a set of high-level functions from which the “user” (or test implemen-
tation) can choose without needing deep knowledge about the readout electronics and
device programming procedures. This approach allows to hide hardware-specific func-
tions and calls from the user space code and automatize e.g. start-up or data acquisition
procedures. All input from user space is checked before programming it to the devices to
minimize the probability of a misconfiguration and thus corrupt test data. This includes
DAC names (valid register?), DAC values (within range of this register?), pattern gen-
erator validity (having a zero delay to end the pattern), trigger frequency, DTB power
limits, and many more. Register addresses have an internal look-up mechanism so the
user only has to provide e.g. the DAC name to be programmed as human-readable string
(see Section 5.7).

Unless otherwise specified1 all data returned by API functions is fully decoded and
stored in C++ structures using standard containers such as vectors to ease further
handling and plotting. Most functions return a vector containing pxar::pixel objects
storing the readout data. All data is pre-processed and already reduced to average
values, e.g. the result of a test requesting 100 triggers to every pixel will just be one
value per pixel, averaged over all 100 measurements. A more detailed description of this
processing is given in Section 4.4.4.

All detector parameters are stored in the API member pxarCore:: dut() and can be
retrieved or altered via API calls as described in Section 4.4.1.

Calls to test functions are automatically expanded in a way that they cover the full
device in the most efficient way available. Instead of scanning 4160 pixels one after
another the code will select the function to scan a full ROC in one go automatically.
This expansion procedure is described in detail in Section 4.4.3.

Every API function available is well-documented and states the required input pa-
rameters, the return values as well as possible exceptions which might be thrown during
execution. The function documentation can be either retrieved from the auto-generated
Doxygen documentation [15], the github repository code viewer [16] or from the source
code directly (in core/api/api.h).

4.4.1. Device Under Test

The pxarCore library keeps track of all settings sent to the detector by storing them in
the so-called device under test (DUT) class pxar::dut. The DUT class represents the
hardware attached to the DTB. In idle state, the detector is kept in a quiet configuration
(i.e. all pixels masked, double columns detached from the readout) and only for tests or
data acquisition the settings are read from the DUT class object and programmed into
the detector.

In order to change the detector configuration, the user space code interacts with the
pxarCore:: dut() object and alters its settings. All settings contained in the DUT
are programmed into the devices automatically before the next test is executed. This
approach allows both the efficient execution of many RPC calls at once and the retrieval

1some DAQ functions allow this, see Section 4.4.5
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of actual device configuration at any time during the lifetime of the pxarCore object.
From the DUT settings also further internal configurations such as the correct deserializer
module (cf. Section 3.2) or the required number of DAQ channels are derived.

The DUT has to be initialized once at start-up via the pxarCore::initDUT(...) API
function and can be altered any time. The initialization function accepts a set of vectors
containing all important parameters for the detector. For every TBM Core, a set of
register settings in the form of a std::pair(<register name>,<register value>) as
well as the type of the TBM used has to be provided. Leaving the TBM register vector
empty will configure a detector without physical TBM.

For every ROC in the setup, a set of parameters have to be provided via std::pair(<DAC
name>,<DAC value>) entries. In addition, every ROC needs 4160 pixel configurations
which contain initial settings for the mask bit, the trim bits and the enable state which
adds it to the test range. The loop expansion of the test functions reads these enable

settings from all pixels and adjusts the test range accordingly (cf. Section 4.4.3).
All name parameters are accepted as human-readable strings and are interpreted using

the pxarCore dictionaries (see Section 5.7). All attached devices must have the same
revision, i.e. it is impossible to configure modules with a mixed set of psi46digv2 and
psi46digv2.1 ROCs.

4.4.2. Test Functions

In order to ease tests of detector modules and ROCs, a set of test functions has been
implemented into the pxarCore library. The main goal of these functions is to offload
functionality to the DTB Nios II Softcore CPU for faster execution. This is especially
important for tests where pixels constantly have to be masked or trimmed, and DAC
register values are changed regularly. Implementing such an algorithm on the PC host
side would entail a large overhead of USB traffic with latencies of the order of milliseconds
per call.

The test functions implemented in the Nios II Softcore CPU provide the possibility of
looping over a range of parameters (being it pixels or DAC values) in the most efficient
way, recording the data and then downloading the full raw data to the host PC. All
decoding and other involved processing, such as averaging of pulse heights or threshold
calculation is done on the PC side due to the lack of computing power on the FPGA.
The functions should be able to carry out almost all desired tests and are additionally
configurable using a set of combinable flags which are described in Section 5.3.

There are three types of return values. The test can either return an averaged pulse
height for every pixel, an efficiency value as number of responses per pixel, and a thresh-
old value for a certain DAC register with configurable threshold requirement (cf. Sec-
tion 4.4.2). Figure 8 shows the matrix of implemented test functions for the three output
variables. It is possible to just loop over all active pixels (“Map”), to loop over active
pixels and one DAC register (“1D DAC”) or over active pixels and two DAC registers re-
spectively (“2D DAC”). A 2D DAC with additional threshold DAC is not implemented
since the data volume and test execution time would exceed reasonable limits and is
unlikely to be needed at all.
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Figure 8: Test matrix of implemented test functions in the pxarCore library. Rows repre-
sent the different data output formats (just number of responses, the averaged
pulse heights, or a threshold value) while the columns are the different scopes
of the test (just calibrating, calibrating for every DAC value in a certain range,
calibrating while scanning two DACs)
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There are a few things which need to be considered when running a test function. The
following paragraphs will provide more details on the functionality and configuration
possibilities.

Execution Time The execution time for a certain test depends on several parameters.
First of all, all tests scale linearly with the number of triggers requested per combination.
Thus limiting the test to the necessary number of triggers for the precision required will
optimize the overall execution time. The timing also depends on whether the tests are
executed in serial or in parallel. Here, serial denotes testing every ROC in the DUT
sequentially, while parallel refers to running a test on all ROCs of the DUT (e.g. a full
module) at the same time. Measuring all ROCs in parallel is faster by a factor six or
more compared to serial execution. The reason for this is twofold. On the one hand, the
number of triggers (and thus loop iterations) is reduced by a factor nROCs if one trigger
generates data from every ROC in the chain. On the other hand, events generating
data from only one ROC still contain the headers from all other ROCs and thus a lot of
unnecessary data overhead which needs to be read via USB. Section 5.3 provides further
information on how to switch on or off serial execution of tests.

The overall test time also depends on the setting of the WBC register since the Nios II
loop needs to wait for this trigger latency after a calibrate pulse before a trigger signal
can be issued. Thus setting WBC to a very high value like 255 requires a waiting time
of 255 × 25 ns ≈ 6.3 us before every trigger in the loop. It has to be noted that setting
the WBC too low (< 20) is not recommended and might lead to unexpected behavior of
the ROC. The delay between calibrate and trigger signal is configured via the pattern
generator and should be set up automatically by the application used. The pxarCore
library itself does not explicitly check for a correct setup of the pattern generator and only
provides cross-checks for the total pattern length and a valid termination (cf. Section 4.4).

Finally, also reading data from the detector takes time. With the digital ROC interface
at 160 MHz the ROC header requires three 40 MHz clock cycles to be transmitted, every
pixel hit needs another six clock cycles. When running with a TBM, its header and
trailer add another seven clock cycles each [17]. For single ROC operation, the total event
readout time is usually covered by the length of the pattern generator (see above) but for
full modules with possibly multiple hits on every ROC this is easily exceeded. If the next
token for readout (or even a reset signal to ROCs or the TBM) is already sent out before
the event readout has finished the event gets chopped off and is considered incomplete.
The TBM internal trigger stack does not help here since the tests are triggering with a
fixed frequency and thus the stack goes into overflow after 32 consecutive events with
long readout. For this case, pxarCore tries to estimate the readout time per event
required for the current test and inserts additional delays between the triggers.

If, for some reason, this automatically introduced delay is not enough and the test
results in many decoding errors with corrupt data (e.g. event end markers missing) it
might be necessary to manually increase the delay. This can be done by supplying the
triggerdelay setting to the DTB as described in Section 5.3. This will add another
delay in units of 10 clock cycles for every trigger. The time between triggers scales
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Figure 9: Effect of the triggerdelay setting on the time between two calibrate signals
sent to the detector, measured with an oscilloscope. The behavior is linear with
an offset corresponding to the automatically calculated delay derived from the
pattern generator length. Figure by [18].

linearly with the delay introduced as can be inferred from Figure 9.

Threshold Measurements Some applications in the detector qualification require fig-
uring out the setting of a certain DAC register at which the pixels respond to an external
stimulus. This is usually referred to as “threshold” for this DAC register. To ease the
measurement of thresholds, an automated threshold scan is implemented in the pxar-
Core test functions. The pxarCore function executes a DAC scan over the specified
range of the selected DAC parameter and retrieves the full data block from the DTB.
For every pixel, this DAC is then scanned for the number of responses, and the DAC
value at which the response threshold level is reached (default is 50% of the transmitted
triggers, other levels can be configured) is returned as threshold value. The analysis of
the recorded data is executed in the Data Repacking Routines of the pxarCore library
as described in Section 4.4.4.

Since some DACs have a rising edge efficiency behavior while others feature a falling
edge when scanning the DAC range from low to high values, the slope of the threshold
curve to be measured can be specified using FLAG RISING EDGE (cf. Section 5.3).
The default assumed is a falling edge behavior.
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Sparse Scanning Another possibility to speed up tests is reducing the granularity of
scans over DAC registers. The pxarCore test functions allow the specification of a step
size for all 1D and 2D DAC scans. This effectively reduces the number of triggers to be
sent and thus the test execution time.

Application scenarios could e.g. be a fast threshold finding algorithm that first scans
the whole DAC range with a coarse granularity (e.g. ∆DAC = 8) to find the threshold
region, and then applies a fine grained scan with ∆DAC = 1 only in this region of
interest of 8-10 DAC units. This region of interest has to be defined by the user based
on the output of the sparse scan, and the test has to be repeated with the new limits
and stepping configuration.

An exemplary scenario could be the scan of all 4160 pixels of one single ROC for a
VCal DAC threshold of 50%. A scan over the full DAC range from 0 to 255 with a step
size of 1 DAC unit requires approximately 65 s (depending on other parameters). The
threshold could be determined with the same precision by first running a scan with a
step size of 8 over the full range (execution time 9 s) and an additional scan with step
size 1 within 10 DAC units around the found threshold from the coarse scan (execution
time 6 s). The total time for this test would then be just 15 s with a speedup factor of
four.

4.4.3. Loop Expansion

In the API function pxarCore::expandLoop(...), the pxarCore library provides a so-
called loop expansion algorithm which tries to figure out the most efficient way to deliver
the data requested. In order to do so, it checks which parts of the DUT are marked
for testing (i.e. ROCs and pixels which have the enable bit set) and then automatically
selects the correct test function to call on the Nios II. The Nios II code has loops available
to run either on single pixels or on full ROCs, both one by one (ROC after ROC) or
in parallel (requesting one pixel at a time from every ROC in the readout chain) as
described in Section 3.3.2.

For example, with a module and the same pixel set for testing on every ROC, the
loop expansion will call the function pxarCore::MultiRocOnePixel<...>(...) once
in order to get all the data requested. If there are five pixels configured for test-
ing on ROC 3 of a module, the expansion will execute five calls to the API function
pxarCore::SingleRocOnePixel<...>(...) and merge the data before delivery to the
calling code.

For user code this has some implications on the suggested usage of the test functions.
The most efficient way is always to request all data at once instead of running a set of
tests one after another. All interesting parts of the DUT should be marked as enable
using the pxarCore:: dut->testPixel(...) functions before the test is executed. It
is also not recommended to set up loops in user code to e.g. loop over all ROCs (which
can be done in parallel, see Section 4.4.2) but to run the test on all. It is also not
recommended to split the test itself e.g. by doing something like

for(uint8_t dac = dac_min; dac <= dac_max; dac++) {
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api->setDAC(mydac1,dac);

data = api->getEfficiencyVsDAC(mydac2,...)

}

instead of implementing a single call to the two-dimensional DAC efficiency function
pxarCore::getEfficiencyVsDACDAC(...) since it will invoke a series of tests including
all overhead from reprogramming the full DUT and allocating memory space on the
DTB.

Other approaches will of course also work but make the testing less efficient due to
overhead in USB communication, memory allocation, and more.

4.4.4. Data Repacking Routines

The pxarCore library provides four internal routines for data preprocessing and packag-
ing. The goal is to unify and compress the data read from the detector into a common
data format. All repacking functions work in a similar way. The pixels are sorted
and checked for their correct appearance order if FLAG CHECK ORDER has been set
(cf. Section 5.3). If this flag is set, the pulse height is marked with a negative sign in
case a pixel is found out-of-order. Usually this means it is a background hit and does
not stem from an internal calibration pulse.

The pxarCore::repackMapData(...) function takes care of data returned from tests
that do not alter any DAC settings and just returns a linear vector of all pixels found in
the data. Before returning, the vector of pixels is sorted according to the pixel addresses.
pxarCore::repackDacScan(...) processes one dimensional DAC scans and in addi-

tion to the previously described routine assigns every event to the correct DAC value
used to record this particular event. The returned data are a vector of pairs containing
both the corresponding DAC value and all responding pixels with their pulse height
average or response efficiency, depending on the test configuration.

The same is done by the pxarCore::repackDacDacScan(...) function in two dimen-
sions, and a structure reflecting the two DAC dimensions and their pixel responses is
returned.

The more involved functions are the repacking routines for threshold scans. In addi-
tion to the previously described functions, the additional DAC dimension is scanned for
the threshold level set by the test function (default is 50% of the triggers). The repack-
ing function pxarCore::repackThresholdMap(...) works similar as the 1D DAC scan
function pxarCore::repackDacScan(...) but treats the additional dimension differ-
ently. The full DAC range is checked for the current efficiency and the slope of the curve
to figure out the exact threshold point. This is done separately for every pixel found in
the data.

The spectrum of the DAC under investigation is scanned for every pixel, and the ab-
solute efficiency value as well as the slope is calculated at each point. By also comparing
the slope, fluctuations in the spectrum can be excluded from the threshold search by
requiring a specific slope sign: Either positive for rising edge searches or negative for
falling threshold edges. If the absolute value is above the configured threshold level and
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the slope exhibits the correct sign, the value is taken as the threshold DAC value for the
respective pixel.

Finally, pxarCore::repackThresholdDacScan(...) employs the same algorithm as
the previous function but allows for an additional DAC dimension to be scanned and
being returned.

All functions described here also handle data from sparse DAC scans.

4.4.5. Data Acquisition Functions

A set of dedicated functions for data acquisition (DAQ) is provided by the pxarCore
library. These functions are meant for data taking in test beams, X-Ray machines or
with cosmic rays, i.e. for all purposes that do not need involved algorithms changing
chip parameters like the test functions described in Section 4.4.2.

The DAQ functions prepare all low-level settings for the data acquisition and take
care of e.g. allocating RAM on the DTB, activating the appropriate number of DAQ
channels (single ROC, full module, dual-channel TBM...), and setting up and attaching
the correct deserializer module.

Other settings are left for the user to configure and choose, such as the trigger mode
(cf. Table 6), trigger patterns, frequency, or number of triggers. The following functions
are available:

daqStart() Sets up and initializes a new data acquisition session.

daqStop() Stops the running data acquisition.

daqStatus() Retrieves the status of the current DAQ session. For a running DAQ with
free buffer memory left, this function returns TRUE. In case of a problem with
the DAQ (not started, buffer overflow or full) it returns FALSE. This function is
supposed to be used for a continuous check e.g. in a DAQ thread.

daqStatus(level) As above, but in addition provides current the buffer fill level in per-
cent in the pass-by-reference variable level.

daqTriggerSource(source,rate) Selects the trigger source to be used, some sources allow
the specification of a trigger rate. Table 6 lists all possible parameters.

daqTrigger(nTriggers,period) Fires the previously defined pattern command list “nTrigg-
gers” times, the function parameter defaults to 1. The function returns the trigger-
ing period actually used after cross-check with the pattern generator cycle length.
This function will only return after all triggers have been sent!

daqTriggerLoop(period) Fires the previously defined pattern command list continu-
ously every “period” clock cycles (default: 1000). The function returns the trigger-
ing period actually used after cross-check with the pattern generator cycle length.

daqTriggerLoopHalt Halt the pattern generator loop which has been started using
pxarCore::daqTriggerLoop(...).
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The trigger frequency will be limited by pxarCore to the cycle time of the pattern
generator if used. However, if the programmed pattern starts with a ROC reset com-
mand all data might be deleted before the readout from the previous trigger is finished.
This would lead to chopped-off event data and thus to invalid data. In case the data
acquisition has to be interrupted it is not necessary to call pxarCore::daqStop() and
pxarCore::daqStart() every time. It is more convenient to just stop the triggers, read
out data and resume the triggers without stopping and restarting the data acquisition
itself. The start-up process is comparatively time consuming since the detector is re-
initialized and RAM newly allocated every time. It is recommended to check the status
of the DAQ and the RAM filling level regularly using pxarCore::daqStatus().

There are different ways of retrieving the recorded data. By default, all data are
passed through the decoder modules of pxarCore yielding fully decoded detector events.
In some cases this might not be desired, and other functions can be used to intercept
the data earlier in the data pipes:

“memory dump” : reads the data from the DTB RAM as it has been recorded and
returns it as a vector, pxarCore::daqGetBuffer(). If multiple DAQ channels are
opened (TBM operation) all channels are read and simply appended. It should be
noted that this might lead to event mixing as all DAQ channels are merged.

Raw detector data : data are read from the DTB, and split into single events but not
decoded (still raw 16bit integers). If multiple channels are active, data from all
channels are merged. The returned data type is a vector of pxar::rawEvent ob-
jects. Either a single event can be read using pxarCore::daqGetRawEvent() or all
events left in memory can be returned using pxarCore::daqGetRawEventBuffer().
This function throws a pxar::DataNoEvent exception if no event is found in mem-
ory.

Decoded data: data are read, split into single events and fully decoded into pxar::pixel
objects containing the hit information. The return data format is pxar::Event

which holds the pixel information as well as additional information read from
TBM header and trailer. It is possible to either read single events with the
function pxarCore::daqGetEvent() or all events in memory using the API call
pxarCore::daqGetEventBuffer(). This function throws a pxar::DataNoEvent

exception if no event is found in memory.

In case multiple DAQ channels are active, the output of all channels will be com-
bined for every event. Thus every event retrieved from pxarCore (either as raw data or
decoded) will already contain all information available for a certain trigger. If a mis-
match between the different channels occurs, a pxar::DataChannelMismatch exception
is thrown. This is a fatal exception and should lead to a restart of the current data
acquisition.

If no events are available in the DTB buffer at the time of the request, a non-fatal
pxar::DataNoEvent exception is thrown indicating that no data was available. It has
to be noted that this is very different from returning an empty event, since the latter
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one would imply a correct trigger and token pass through the detector with no pixels
firing. This is of special importance in cases where an external trigger is used.

All data type classes defined within the pxar name space are described in Section 4.8.

4.5. Python Bindings

In addition to the C++ API, the pxarCore library provides a Python interface realized
using Cython. This allows writing of simple scripts carrying out complex tests in Python.
The Cython interface code is manually written instead of automatically generated. This
has proven to be more robust and efficient and is not a major effort to maintain.

All interface code can be found in the core/cython directory, and the compilation of
the interface has to be enabled explicitly via

cmake -DBUILD_python=ON ..

and requires Python, Numpy and Cython as additional dependencies (cf. Section 2.1).
The Python interface is currently used by e.g. the pxarCore Python CLI (Section 6.1)

or pyXar (Section 6.2). At the moment not all C++ API functions are available in
the Python interface since they were not required yet, but implementing new functions
is straightforward and not involved since all the infrastructure and data containers are
present already.

4.6. DTB Emulator

To allow detector-independent unit tests of the pxarCore library and the pxar GUI
software suite a DTB emulator class is available, which emulates a DTB on RPC-level,
responding to the different requests made by the software. This can be useful for software
development if no DTB is connected or available, as well as for unit and system tests
validating software changes. Furthermore, the generator can be used to provoke certain
error conditions and evaluate the response of the decoding algorithms.

The emulator produces pseudo data in the original detector raw format and passes
them through the normal pxarCore decoding chain. This approach includes almost all
software components and allows for the most complete system test possible without
actual hardware involved.

All tests from the GUI or any other application can be executed, and detector hit
maps, DAC scans, and other requests yield (more or less) sensible data which can be
analyzed as demonstrated in Figure 10. More involved algorithms such as trimming a
device will obviously not work as expected since no full chip simulation is implemented.
However, some advanced features are taken care of, such as the NoTokenPass register of
the TBM cores. These register values are picked up by the emulator and no ROC data is
returned for the respective channels. Also plain data acquisition is implemented, where
every call to pxarCore::daqGetEvent() will yield an event with some noise pixel hits.

In order to enable the DTB emulator at build time, CMake has to be called with

cmake -DBUILD_dtbemulator=ON ..

38



Figure 10: Analysis of the data returned by the DTB emulator for a 2D DAC-DAC scan.
The shape of the tornado stays the same irrespective of the DACs chosen to
be scanned.

as described in Section 2.3. Turning off the compilation of all interfaces available also
results in the DTB emulator being built.

All code of the DTB emulator can be found in the directory core/emulator. Tech-
nically this directory contains an alternative RPC interface class which is compiled and
linked by CMake instead of the one implementing USB and Ethernet connectivity (which
can be found in the core/rpc directory). The CMake code for switching between the
directories can be found in core/CMakeLists.txt.

4.7. Exceptions

STL exceptions are used to propagate information about problems, timeouts and decod-
ing issues to higher levels of the software package. User code such as test routines or
DAQ programs should be written such that exceptions are caught and handled correctly.
All exceptions thrown by pxarCore inherit from the pxar::pxarException class, which
itself is derived from the std::exception class of the STL.

Currently the following exceptions are implemented and used:

InvalidConfig : An invalid configuration exception is thrown if configuration parameters
supplied to pxarCore do not match or are otherwise invalid. This only covers severe
problems such as

• missing (crucial) parameters,

• inconsistent or mismatched configuration sets.
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In case of minor problems such as range overflow of a DAC parameter, no exception
is thrown but the DAC value is set to its maximum and a WARNING message is
issued (cf. Section 5.8).

FirmwareVersionMismatch : This exception class covers issues with DTB firmware
version mismatches between the pxarCore RPC and the Nios II Softcore interfaces
and requires the flashing of an alternative firmware to the DTB.

UsbConnectionError : This exception class covers read/write issues during the USB
communication or problems opening the connection to the specified test board. In
most cases this is either a hardware problem with the USB connection such as a
broken cable, or a problem with the operating system kernel.

UsbConnectionTimeout : This exception class is used to notify about communication
timeouts occurring during USB calls to the DTB.

DataException : This exception class is the base class for all pxar data exceptions. All
exceptions thrown due to problems with the handling and decoding of detector
data inherit from this exception.

DataNoEvent : This exception class is used in case a new event is requested but no
data are available. Usually this is not critical and should be caught by the caller.
When running a DAQ with external triggering and constant event polling from the
DTB it can not be ensured that data is always available, but returning an empty
event is not an option as it would mess up the trigger synchronization and lead to
event mixing. Throwing the exception circumvents this problem.

DataChannelMismatch : This exception class is used whenever multiple DAQ channels
are active and there is a mismatch in event number across the channels (i.e. channel
0 still returns one event but channel 1 is already drained).

DataMissingEvent : This exception class is used when the DAQ readout is incomplete,
e.g. one thousand triggers have been sent, but only 999 events could be retrieved
(missing events).

DataDecodingError : This exception class is used when a problem in data decoding
occurred, such as undecodable pixel addresses. This exception is internally caught
by the decoder classes and used for accumulating statistics as described in Sec-
tion 5.10. The DataDecodingError class contains a set of child classes to further
specify the type of decoding error which has been encountered. The full list in-
cluding short descriptions of the content and use cases can be obtained from the
Doxygen documentation [15] or the source code in core/api/exceptions.h.

4.8. Data Types

The pxarCore library implements a set of data types for simplification of data handling,
which are described in the following.
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pxar::pixel is a class for storage of pixel hit information. It contains a set of construc-
tors which decode Gray code pixel addresses into column and row information for
both digital and analog ROC data:

pixel(): default constructor, initializing all members to zero.

pixel(roc id,column,row,value): constructor for column/row coordinates. Param-
eters are just stored and not immediately sent to the DUT.

pixel(rawdata,rocid,invertedAddress): constructor for raw data from digital PSI46
devices. The invertedAddress flag notifies about the inverted pixel id present
in the PSI46digV1 version of the chip. The data is translated from Gray code
to column and row and stored. If the decoding fails, a DataDecodingError

exception or one of its child exceptions is thrown.

pixel(analogdata,rocid,ultrablack,black): constructor to decode analog level-encoded
data from PSI46V2 devices. The ultrablack and black levels are used to cal-
culate the five address levels for column and row decoding. If the decoding
fails, a DataInvalidAddressError exception is thrown.

The following member functions allow to retrieve information from the pxar::pixel
object:

roc() ID of the ROC the pixel hit was recorded on

column() Column address of the pixel

row() Row address of the pixel

value() Pulse height or averaged response efficiency for the pixel

variance() Variance of the averaged pulse height, if applicable.

Internally the mean value and variance are stored as compressed floating point
values in order to minimize the memory footprint of the object. Thus the member
variables can’t be altered directly but only through set-functions.

In addition the comparison operators == and < are overloaded for this class to be
able to easily compare pixel hits against each other. In both cases the ROC ID as
well as the pixel column and row are compared. Also the ostream operator << is
overloaded to ease printing of pixel information to stdout.

The encode() member function allows to retrieve encoded raw data from an ex-
isting pixel hit. This is mainly used by the DTB emulator to produce pseudo data
hits (cf. Section 4.6).

pxar::rawEvent holds undecoded event data. The member data holds 16 bit unsigned
integer values containing the event data. In addition, a flags field keeps track
of decoding problems when isolating this particular event, such as misplaced or
missing event start and end markers.

To allow adding data from different data streams into one raw event, the augmented
assignment operator += is overloaded for this class. Also the ostream operator <<
is overloaded to allow simple printing of raw event information to stdout.
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pxar::Event contains fully decoded event data. All pixel hit information is stored as
pxar::pixel objects in the pixels member of the class. In addition, TBM header
and trailer are stored and can be read either directly via the members header

and trailer or by means of the member functions which allow direct access to
information contained in the header and trailer data:

triggerCount() TBM Header Information: returns the internal 8 bit trigger/event
counter of the respective TBM core. This information is compared to an
internal event counter of the pxarCore library.

triggerPhase() TBM Emulator Header: returns the phase of the trigger relative
to the clock. This information is stored by the TBM emulator (cf. Section 3.5)
and is equivalent to the value returned by dataValue().

dataID() TBM Header Information: returns the Data ID bits for each TBM core
indicated in Figure 3. The ID specifies the content of the data value bits.

dataValue() TBM Header Information: returns the value for the data bits. The
contents has to be interpreted according to the data ID bit setting, for the
TBM emulator the bits contain the trigger phase described above.

hasNoTokenPass() TBM Trailer Information: reports if no token has been sent
to the ROCs and the event content should be discarded. This bit is also set
in case of a PKAM reset (see below).

hasResetTBM() TBM Trailer Information: reports if a TBM reset has been sent
in the corresponding CTR pattern.

hasResetROC() TBM Trailer Information: reports if a ROC reset has been sent
in the corresponding CTR pattern.

hasSyncError() TBM Trailer Information: reports if a sync error occurred.

hasSyncTrigger() TBM Trailer Information: reports if the event contains a sync
trigger.

hasClearTriggerCount() TBM Trailer Information: reports if the trigger count
has been reset.

hasCalTrigger() TBM Trailer Information: reports if the event contained a cali-
brate signal.

stackFull() TBM Trailer Information: reports if the TBM stack is full.

hasAutoReset() TBM Trailer Information: reports if a auto reset has been sent.

hasPkamReset() TBM Trailer Information: reports if a reset for the beam-scraping
event counter has been sent.

stackCount() TBM Trailer Information: reports the current 6 bit trigger stack
count.

To allow merging data from different data streams into one event, the augmented
assignment operator += is overloaded for this class. Also the ostream operator <<
is overloaded to allow simple printing of event information to stdout.
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pxar::pixelconfig : Class to store the configuration for single pixels, i.e., their mask
state, trim bit settings and whether they belong to the currently run test (”en-
able”). By default, pixelConfigs have the mask bit set, and the enable bit inactive.

pxar::rocconfig : Class to hold configuration data for one ROC. This comprises a
map with DAC registers and values, the chip type identifier as well as its I2C
address and an enable bit.

pxar::tbmconfig : Class to hold the configuration of one TBM core. Members are a
register map, the TBM device type identifier, the hub ID it responds on together
with the core identifier (α, β) and the token chain length(s).

The latter one define how many ROCs are present in every TBM token chain.
From this information, the expectation of ROC headers in the decoding modules
are derived. In addition, the member function NoTokenPass() checks the corre-
sponding register for the no token pass setting and returns its state. This is also
used by the decoder modules to adapt their expectation of ROC header data.

pxar::statistics : The statistics class hold a set of counters which are filled during
data decoding. The dtbEventDecoder is defined as friend class and is thus able
to directly increment the member variables for book keeping.

All variables can either be retrieved as single values or as cumulative sum of error
groups:

info words read() Total number of 16 bit words read from the DTB memory.

info events empty() Number of events without a pixel hit.

info events valid() Number of events with at least one pixel hit.

info events total() Sum of the above two: total number of events read.

info pixels valid() Number of pixel hits which have been successfully decoded.

errors() Total number of errors encountered during decoding. This is the sum of
all errors listed below.

errors event() Number of errors encountered during event decoding. This is the
sum of all event decoding errors.

errors tbm() Number of errors encountered during processing of TBM header or
trailer. This is the sum of all TBM errors.

errors roc() Number of all errors encountered when processing the event content.
This is the sum of all ROC errors listed below.

errors pixel() Total number of errors encountered during decoding of pixel actual
data. This is the sum of all possible pixel data error states.

errors event start() Number of missing event start markers.

errors event stop() Number of missing event stop markers.
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errors event overflow() Number of events with overflow marker set. This bit is
set if the event readout was too long and the event has been chopped.

errors event invalid words() Total number of invalid 5 bit words detected by the
DESER400 module.

errors event invalid xor() Total number of events with invalid XOR eye diagram.
This information is stored in the ROC header, a pattern of only high bits
indicate that the 400 MHz signal dies not allow the separation of the high
and low state.

errors event frame() Total number of DESER400 Frame errors indicating a failed
synchronization of the deserializer module.

errors event idledata() Total number of DESER400 idle data errors. This indi-
cates that the DESER400 module received the TBM header and event data,
but the TBM trailer was missing.

errors event nodata() Total number of DESER400 no-data error. This indicates
that the DESER400 module only received the TBM header but no event data
and TBM trailer.

errors tbm header() Total number of events with flawed TBM header. This in-
dicates that the first event words do not contain the required TBM header
identifier bits.

errors tbm trailer() Total number of events with flawed TBM trailer. This in-
dicates that the last event words do not contain the required TBM trailer
identifier bits.

errors tbm eventid mismatch() Total number of event ID mismatches in the data
stream. The event ID provided by the TBM is cross-checked with a local
counter, independently for each of the active TBM channels. In case of a
mismatch, the error is recorded and the local counter is re-synchronized with
the TBM event ID.

errors roc missing() Total number of events with the wrong number of ROC
header(s). Headers can either be missing or pixel data can be misidenti-
fied as header in case of corrupt data. Both leads to the event being returned
as empty.

errors roc readback() Total number of misplaced ROC readback start markers.
The readback start marker should appear every 16 readouts. If a new start
marker appears before or after, it is counted as error and the readback cycle
counter is reset for all ROCs in the same token chain.

errors pixel incomplete() Total number of undecodable pixels due to missing data
missing. This error appears if less than 24 bits of event data are left and no
new pixel hit can be formed.

errors pixel address() Total number of undecodable pixels due to a non-existing
address outside the actual pixel array coordinates. These are mostly induced
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by bit errors in the data stream. Noisy pixels are known to sometimes produce
invalid addresses.

errors pixel pulseheight() Total number of undecodable pixels due to the pulse
height fill bit not being zero (cf. Figure 3). Since the fill bit is required to
always be zero, this indicates invalid pixel data.

errors pixel buffer corrupt() Total number of pixels with row 80. This invalid
address marks a special case and indicates a buffer corruption in the double
column buffers of the digital PSI46 chips.

The member function dump() prints a summary of all the variables to the INFO
logging level (see Section 5.8). To allow summation of statistics from different
sources the augmented assignment operator += is overloaded for this class.
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5. Configuration and Usage

This section provides an overview of the features and possibilities provided by the pxar-
Core library. It commences with a description of the start-up procedure of the DTB and
the attached devices in Section 5.1, followed by a reference for the DTB signal probe
outputs (Section 5.2). The different flags provided for tests and DAQ are described in
Section 5.3.

Furthermore, a description of peculiarities and special features in treating different
settings for the DTB (Section 5.4), the TBM registers (Section 5.5) and ROC DACs
(Section 5.6) are provided. The use of dictionaries is described in Section 5.7, and the
logging mechanism as well as its verbosity levels are introduced in Section 5.8. Section 5.9
describes the implementation of the readback data retrieval. The information provided
by the collected decoding statistics and the options to retrieve them are detailed in
Section 5.10. The section closes with a description for programming and reading out
analog PSI46V2 devices in Section 5.11.

5.1. Start-up Procedure

The start-up procedure of a pxarCore library instance is always the same. First, a
set of parameters for the connection to the DTB such as the USB ID of the board
has to be provided via the constructor of the class, pxarCore::pxarCore(...). With
this, the pxarCore object is initialized and the connection to the DTB is established.
After successfully connecting to the board, both the DTB and the attached devices are
configured as described in the following.

5.1.1. Initialization of the DTB

The first step after creating an instance of pxarCore is the preparation of the DTB for
I2C programming and DAQ. This requires a set of parameters, namely the signal delay
settings such clk, ctr, tin, sda, the detector supply voltage configuration and current
limit settings (va, vd, ia, id, given in Volts and Ampere, respectively) and the initial
pattern generator setup (cf. Section 3.4).

All inputs have to be provided via vectors of pairs with the setting name as human-
readable string, and the value of the parameter. The name look up is performed via the
central API dictionaries (cf. Section 5.7). All user inputs are checked for sanity including
range checks on the current limits and a validity check for the pattern generator command
list (delay = 0 at the end of the list). If the settings are found to be out-of-range, a
pxar::InvalidConfig exception is thrown (cf. Section 4.7).

The initial DTB configuration is performed by the pxarCore::initTestboard(...)

API function which has to be called at least once after creating a new instance. After
the initial setup, the DTB settings can either be changed by calling the same function
pxarCore::initTestboard(...) again with the updated parameters, or by using one
of the functions altering only a subset of the settings:

void setTestboardPower(...)
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void setTestboardDelays(...)

void setPatternGenerator(...)

5.1.2. Initialization of the DUT

After the DTB has been initialized, the DUT has to be configured using the API function
pxarCore::initDUT(...). If the DTB has not yet been initialized, this function returns
false and prints an error to the console.

The pxarCore::initDUT(...) function is overloaded several times for convenience,
featuring function calls with some parameters already predefined. The call described in
this document features all possible parameters, others can be found in the source code
at core/api/api.h.

The first argument of the function is a vector of hub IDs which are required for the
I2C protocol for programming the devices. For Layer 2–4 modules featuring one physical
TBM, only one value is necessary. Layer 1 modules require two vector entries for the
addresses of the two physical TBMs. The hub ID parameter is followed by the human-
readable TBM type. The TBM type defines e.g. the number of data acquisition channels
required (two 160 MHz signals for TBM08 and four channels for TBM09 and TBM10).

The subsequent TBM register settings should be provided in vectors, with one vector
being the parameter set for one single TBM core, i.e. not the physical TBM chip.

Next, the ROC type has to be defined, again as human-readable string. This is of
special importance since the pxarCore decoder modules are adapted according to the
chip type, e.g. to correctly handle inverted pixel IDs returned by PSI46dig chips, or to
decode signals from analog PSI46V2 chips, see Section 5.11.

The ROC DACs should again be provided as vectors, one per ROC in the DUT. The
DACs are followed by settings for all 4160 pixels of a ROC. These pixelConfig objects
(cf. Section 4.8) contain settings for the trim bits, the mask bit and an enable setting
which later on defines the test range.

Finally, a vector of ROC I2C addresses has to be provided. If the vector is left empty,
pxarCore assumes consecutive I2C addresses for all ROCs, starting with address 0.

The pxarCore::initDUT(...) checks all settings for validity. This includes DAC
ranges, position and number of pixels, number of TBM cores and hub IDs, I2C ad-
dresses, and more. A pxar::InvalidConfig exception is thrown if any critical errors
are encountered. Non-critical problems such as DAC value overflows are logged with
WARNING level (cf. Section 5.8) and corrected automatically.

All parameters are supplied via vectors, the size of the vector represents the number
of devices. DAC names and device types should be provided as strings. The respective
register addresses will be looked up internally via the dictionary mechanism described
in Section 5.7. String look-ups are case-insensitively, old and new DAC names are both
supported, and all possible names are listed in the Appendix in Table 5.
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5.2. Using the Signal Outputs

The DTB features LEMO outputs (cf. Section 3.1) which can be used as scopes for
several internal DTB signals. The signals are either provided as digital pulses, which
connect to the D1 and D2 outputs, or as analog differential signals on A1± and A2±.

The API call pxarCore::SignalProbe(std::string probe, std::string name) is
responsible for connecting a specific signal to the outputs and requires two strings as
arguments. The first string describes the port to be switched. Accepted values are D1,
D2, A1, and A2. The second argument is the signal itself, which also has to be supplied
as human-readable strings. The corresponding register value is looked up via the internal
dictionaries. The signal off turns off the output. In case the provided signal identifier is
invalid (i.e. it cannot be found in the dictionary) the output is turned off. The full list
of currently available signals can be found in the Appendix in Table 7.

5.3. Optional Flags for API Methods

Many functions of the pxarCore API such as the test functions or the DAQ function
accept a flags parameter. Several flags can be combined using a logical OR and allow to
change the behavior of the command to be executed. However, they do not change the
internal configuration of the library and do not affect or alter the DUT settings. The
flags are only valid for the current command called and have to be shipped again for the
next call to the API if desired.

The following list provides an overview of the currently available flags.

FLAG FORCE SERIAL: Flag to force the API loop expansion (see Section 4.4.3) to
perform tests ROC-by-ROC instead of executing the test for the full DUT (e.g.
a module) in one go. This flag should be used with care: it slows down the test
procedure considerably in two ways. On the one hand it basically starts several
(i.e. for a module 16) completely separate tests and only collects and merges the
data afterwards, right before returning it to the user. On the other hand it creates
a large overhead in collected data. Reading only one pixel of one ROC in a module
results in 16 ROC headers plus TBM header and trailer being sent for every pixel.
Without FLAG FORCE SERIAL there are 16 pixel hits in every event.

However, there might be some tests where simultaneous readout of all ROCs is not
desired, and where the flag has to be applied.

FLAG CALS: Flag to send the calibration pulses through the sensor via capacitive cou-
pling of the calibrate pad and the sensor instead of sending the signal directly to
the preamplifier. This can be used e.g. to test the bump bond connections between
sensor and ROC.

FLAG XTALK: Flag to enable cross-talk measurements. When enabling this flag for
a test, one pixel in the neighboring row of the same column of the pixel under
test is calibrated instead of the actual pixel under test. If the regarded row is the
uppermost in the chip, the row before will be selected for the calibration pulse,
otherwise the next higher row. This allows measurements of inter-pixel cross-talk.
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FLAG RISING EDGE: Flag to define the threshold edge for threshold scans. In thresh-
old scan functions (see Section 4.4.2), a DAC is scanned for an efficiency threshold,
and only the DAC value at which the defined threshold level is reached is returned.
Since there are both DACs with a falling edge and DACs with a rising edge be-
havior (and also some that exhibit both) in the spectrum, this flag allows to select
the edge on which the threshold measurement triggers.

In other test functions as well as the DAQ functions this flag has no effect.

FLAG DISABLE DACCAL: Flag to disable the standard procedure of flipping certain
DAC values before programming. This is done by default to flatten the DAC
response, taking into account the chip layout of the DAC transistor bank. This
function is implemented as Nios II look-up table as described in Section 3.3.4.

FLAG NOSORT: By default all data returned by pxarCore test functions are sorted
according to their ROC and pixel ID. This flag allows to disable sorting of the
output data. This flag should only be used in specific cases requiring the original
order of the data as read out from the DUT.

FLAG CHECK ORDER: Flag to check the order in which the pixels appear in the raw
detector readout. The readout follows a specific order defined by the ROC-internal
path of the readout token. The token starts at double column 1 and is subsequently
transmitted to the consecutive double columns until column 26, and then returned
to the periphery. Within one double column, the token is passed upwards in even
columns and is returning downwards (to lower row counts) in odd columns. Pixels
which are not appearing in exactly this order but in a different position in the
readout (e.g. expecting pixel (13,8) but receiving pixel (13,9) first) are flagged
with a negative pulse height. This flag can be used e.g. for pixel address tests
to make sure all pixels are answering with their correct address. When running
with FLAG FORCE UNMASKED in addition, all noise or background pixel hits
will be flagged as such by setting the negative pulse height. This allows to easily
separate the retrieved pixel data into calibrate hit and noise hit maps.

The current implementation of FLAG CHECK ORDER only allows to check the
readout order if at least one full ROC is tested, not for single pixel tests (cf. 4.4.3).

FLAG FORCE UNMASKED: Flag to unmask and trim all pixels before starting the
test. This flag can be used to record background activity during tests, such
as a high-rate efficiency map using X-Rays as background. In addition with
FLAG CHECK ORDER this will return two sets of pixels: the actual efficiency
map with positive pulse heights, and the background map with negative pulse
height values.

FLAG DUMP FLAWED EVENTS: Flag to dump erroneous events during decoding.
With this flag active, every event which triggers a decoding error is printed to
stdout together with the previous and subsequent three events. This can be very
useful in tracing down errors in the data stream but slows down the decoding
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process significantly (roughly by a factor of 3) since additional ring buffers have
to be updated holding the history of events to be printed. To be used only if
absolutely necessary.

Currently the printout is limited to the first 100 erroneous events encountered
during one test or DAQ session.

FLAG DISABLE READBACK COLLECTION: Flag to disable the collection of read-
back data from ROC headers. This might be desirable when sending several million
triggers at once since the amount of readback data collected can be huge. Espe-
cially when operating analog PSI46V2 chips it should carefully be chosen whether
the readback data is collected or dropped since one readback value is recorded per
trigger per ROC header (cf. Section 5.9).

FLAG DISABLE EVENTID CHECK: Flag to disable cross-checking the TBM event id
against the local event counter of the pxarCore decoder modules. This flag allows
to e.g. only pass every n-th event to the decoder modules without provoking event
id mismatch errors.

FLAG ENABLE XORSUM LOGGING: Flag to enable the collection of XOR sum val-
ues from the DESER400 modules for every event. The XOR sum is written to the
ROC headers as described in Section 3.2 and can be recorded using this flag. The
XOR sum values of all ROC headers of the respective DAQ channel are collected in
one vector and can be retrieved once via the pxarCore::daqGetXORsum(channel)

API function for the selected DAQ channel.

5.4. DTB Delays

The DTB delays are programmed initially via the pxarCore::initTestboard(...)

function but can be altered any time by either calling the same function again or by
using pxarCore::setTestboardDelays(...). All values are checked for overflow, the
human-readable names are translated into register addresses via the dictionary mecha-
nism (cf. Section 5.7).

A full list of all available DTB settings can be found in the appendix in Table 3. The
setting level changes the signal gain for all outgoing DTB signals at once, individual
gain changes for single signals are currently not supported. The settings triggerdelay
and trimdelay are only active in test loops (cf. Section 4.4.2) and should be given in
units of 10 BC.

5.5. TBM Parameters

The TBM Core register settings have to be provided via the pxarCore::initDUT(...)

function at start-up. Afterwards, single register values can be changed via the DUT
object (cf. Section 4.4.1). All possible TBM settings are described in Table 4 in the
appendix.
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Some TBM settings are no actual TBM registers in the chip but pxarCore-internal
values which can be used to influence the behavior of the software. The settings nrocs
or nrocs1 and nrocs2 can be used to change the number of ROCs attached to a specific
token chain of the TBM core the settings are supplied for. This can e.g. be used if a
module does not feature 16 ROCs but is missing one ROC, and the token is bypassed.
With default settings this would lead to decoding errors, since one ROC header is missing
in the incoming data stream. Adjusting the nrocs parameter for the correct TBM core
can mitigate this. The TBM09 and TBM10 feature two token chains with four ROCs
each per TBM core, hence the two settings.

5.6. ROC Parameters

The ROCs feature digital-to-analog converters and registers which need to be set cor-
rectly in order to set the chip in a working state. Since all functions accepting ROC
parameters make use of the pxarCore dictionaries, parameters are supplied using their
human readable names and are not case sensitive. This eases code review and under-
standing of test procedures when reading code.

All common names for DACs are understood by the dictionaries. The names returned
for DACs are the ones defined in [19] for the PSI46digV2.1 chip and in [20] for older
digital chip prototypes.

5.6.1. DAC Programming

DACs are always programmed in the same order, which is defined by their ROC-
internal register number. This means that e.g. Vana will always be programmed before
VthrComp. This also ensures, that the RangeTemp DAC with register 255 is always the
last DAC to be programmed. This DAC is only available on analog PSI46V2 chips and
enables temperature readout via the lastDAC functionality (see Section 5.9).

If the WBC register is programmed, an automatic ROC reset command will be issued
after all DACs have been set in order to restart the bunch crossing counter with the new
offset defined by the WBC trigger latency.

All DACs are programmed directly at start-up of the DUT, i.e. when calling the func-
tion pxarCore::initDUT(...). DACs subsequently supplied via pxarCore::setDAC(...)
are also directly sent to the device.

5.7. Using the Dictionaries

To allow input variables being identified with their commonly used names instead of
easy-to-forget registers numbers, the pxarCore library provides dictionaries translating
the common names into their corresponding register values automatically. In addition,
the valid range for values of every register is stored, and input values are checked to
comply with them.

The dictionary includes DTB setting names, TBM registers, and ROC DACs as well as
device names (for TBMs and ROCs), the different signals for the DTB probe outputs,
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possible Pattern Generator signals, and trigger sources. A reference to all dictionary
entries can be found in the appendix of this document (Dictionary Reference, Section A).

Dictionaries can as well be used in user code. The header file to include can be found
at core/util/dictionary.h. A dictionary is instantiated and used e.g. via

// Get singleton register dictionary object:

RegisterDictionary * _dict = RegisterDictionary::getInstance();

// Translate the register name to its address:

uint8_t id = _dict->getRegister(name,ROC_REG);

// Read register value limit:

uint8_t regLimit = _dict->getSize(id, ROC_REG);

and similar for other dictionaries. The list of all available dictionary entries can be
fetched via their getAllNames directive:

// Get singleton trigger source dictionary object:

TriggerDictionary * _dict = TriggerDictionary::getInstance();

// Fetch all possible trigger sources from the dictionary:

std::vector<std::string> names = _dict->getAllNames();

This function only returns the preferred name for the respective dictionary entry, while
still all options and synonyms are understood in the lookup process.

5.8. Logging and Verbosity Levels

The pxarCore library employs a flexible logging system which allows to select and switch
logging levels at run time without requiring recompilation of the source code or a restart
of the program. The logging is implemented such that calls with a verbosity level lower
than the currently selected are not executed and thus do not affect the performance of
the program.

The verbosity level can be changed any time at run time by calling
Log::ReportingLevel() = Log::FromString(LEVEL);

where LEVEL is one of the below listed verbosity levels as string literal. In addition to
logging to the console, all logging messages can be redirected to a log file by supplying
a file pointer FILE* to the logging mechanism:
SetLogOutput::Stream() = filepointer;

When logging to file, the printing to std::cout is switched off by default. In order
to have the messages available in both the log file and on-screen, the duplication of the
logging screen has to be requested explicitly:
SetLogOutput::Duplicate() = true;

Currently the following verbosity levels are implemented:

QUIET: Turns off all messages except for the pxarCore constructor’s welcome message
and messages about opened or closed connections to DTBs.
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CRITICAL: This verbosity level contains all above messages plus critical errors which
occurred during the execution of a command. Critical messages are e.g. missing
events during readout or bad signal quality at the DTB inputs. In most cases,
CRITICAL messages are accompanied by an exception being thrown.

ERROR: Contains all above messages plus errors which are not critical. Not being
critical does not imply that the errors can be ignored, the error condition just does
not necessarily call for an immediate abortion of the command being executed.

WARNING: Contains all error messages plus information which is classified as warning
such as decoding problems with pixel addresses or similar.

INFO: This is the default verbosity level. It contains all error and warning messages
as well as additional information e.g. about the run time for a test. This level is
optimized to give useful information without flooding the console with messages.

DEBUG: The DEBUG level includes all INFO messages and above, but can include
additional messages for debugging purposes. Currently this level is not used by
pxarCore but can be populated by user code and scripts.

DEBUGAPI: This verbosity level is the highest pxarCore-internal debugging level and
contains information from API-level function calls such as the test functions (cf. Sec-
tion 4.4.2), data repacking routines (cf. Section 4.4.4), or the initialization functions
for DTB and DUT (cf. Sections 5.1.1 and 5.1.2, respectively).

DEBUGHAL: The HAL verbosity level includes all above messages and gives additional
information about functions called on HAL level (cf. Section 4.2). This can be
useful to see which routines are finally called and what the parameters are which
have been calculated or propagated. Also the low-level pxarCore::daqStart(...)
function resides in HAL and prints useful information on DEBUGHAL level.

DEBUGRPC: This logging level is quite verbose since it prints every single RPC call
sent to the DTB, together with all other messages from higher levels. This can be
very useful to compare pxarCore behavior with other software packages on a RPC
call-by-call level to find differences in how the hardware is programmed.

DEBUGPIPES: The DEBUGPIPES verbosity level can be used to look at the data
decoding routines bit-by-bit. Decoding information including TBM header and
trailer information will be printed for every single event read from the DUT. This
level is highly verbose and slows down the decoding procedure considerably. It is
advised not to enable this level during data acquisition of any kind, be it during
module production tests or in test beam. This setting is only to be used for
debugging purposes.

INTERFACE: This verbosity level is the lowest available and prints (together with all
other messages) information on the system’s interface level (USB or Ethernet).
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5.9. Retrieving Slow Readback Data

Most PSI46-type ROCs feature a mechanism to retrieve detector control data from the
chip via the normal data stream of ROC header and pixel hit information. The way
these values are transferred is different for analog and digital ROCs.

The pxarCore library automatically collects these data for all ROCs attached to the
readout whenever triggers are sent and the data stream is decoded, unless the collection
is disables using the appropriate flag (cf. Section 5.3). The readback values are only
collected if the data is decoded. If raw data is requested, no readback data is collected.
The cached readback data can be retrieved using the pxarCore::daqGetReadback(...)
function which yields one vector of readings for every ROC. The internal readback value
cache is reset once a new DAQ session or another test is started.

Digital PSI46digV2 ROCs and later: Readback Bits The digitally read out PSI46digV2
chips and later versions use an on-chip ADC to digitize different internal parameters of
the chip. The data is then sent out via the data bit D in the ROC header. The trans-
mission start is marked by the status bit S going high. The next 16 data bits form one
16 bit word representing the quantity selected via the readback register (cf. Table 5).
Possible values for the register can be found in [19].

Analog PSI46V2 ROCs: lastDAC For analog ROCs, the third word of the ROC header
is an analog value representing the setting of the last DAC programmed. When setting
the vrangetemp, an on-chip temperature reading can be retrieved since the pxarCore
library automatically programs this DAC last if supplied.

5.10. Using the Statistics Collection & Error Reporting

To allow an in-depth analysis of problems occurring during data acquisition, the pxar-
Core library features a statistics collection class embedded into the decoder modules.
An extensive set of parameters and error conditions are collected and can be retrieved
by the user.

The errors are classified according to their occurrence. Event errors are recorded if
the start or end bits of an event do not exist or are corrupted, an overflow is detected,
or error bits set by the deserializer modules are present in the event. This most likely
points to a problem with handling of the incoming data stream in the DTB. In most
cases the deserializer module failed to latch to the idle pattern or the data quality is too
bad to correctly decode the event.

If the TBM header or trailer is missing its identifier bits and thus is invalid, TBM
errors are recorded. Also, the trigger ID reported by the TBM is checked against an
pxarCore-internal event counter, and mismatches are registered and reported.

Errors appearing on ROC level are e.g. missing ROC headers or misplaced readback
markers (PSI46digV2 and later only).

All errors encountered when decoding pixel hits are classified as pixel errors. Usually
these are invalid pixel addresses, but also invalid pulse height fill bits, incomplete pixel
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hits (missing data) and corrupt pixel buffers are reported.
The latest pxar::statistics object can be retrieved by calling pxarCore::getStatistics()

after a test or during a DAQ session. The returned class implements some convenient
functions returning the total number of errors either in one particular value, in a class
of errors, or in total. A list of all collected data can be found in Section 4.8. In addition,
some purely informational data are recorded, such as the total number of words read, the
number of overall pixel hits, empty events, and events containing pixel data. In addition,
the pxar::statistics::dump function can be used to print an overview table of all val-
ues on INFO verbosity level (cf. Section 5.8). The overloaded augmented summation op-
erator += eases summing up statistics from several calls to pxarCore::getStatistics().

It has to be noted that statistics are meant for one-time-reading. After calling
pxarCore::getStatistics() the object will be returned and the internal statistics
reset. Calling pxarCore::getStatistics() a second time will yield an empty object.
This implies that the object should be stored locally in a variable if several values are
supposed to be read from the object, i.e. accessing the stored variable class members us-
ing statistics mystat.pixel errors() instead of reading single values directly from
the pxarCore object using pxarCore::getStatistics().pixel errors().

The statistics class object gets filled by the pxarCore decoder modules. This has im-
plications when not running standard tests but dedicated DAQ sessions using the API
methods pxarCore::daqStart() and pxarCore::daqStop(). If the data is fetched
via pxarCore::daqGetRawEvent() or pxarCore::daqGetRawEventBuffer() the statis-
tics object will remain empty because the data has not been passed through the de-
coder. If events are read through the API methods pxarCore::daqGetEvent() or
pxarCore::daqGetEventBuffer() the statistics object will be properly filled. New in-
coming events will continue to be added to these numbers until either the statistics are
read out or the DAQ session is restarted since pxarCore::daqStart() re-initializes the
decoder modules and thus resets the counters.

5.11. Reading Out Analog PSI46V2 ROCs

Since the DTB features an internal ADC which can be connected to a set of input signals,
it is also possible to apply analog signal sampling on the incoming data lines. This
enables data acquisition for analog PSI46V2 ROCs. The pxarCore library provides all
necessary code to seamlessly program, read out, and decode data from analog PSI46V2
chips. Beside the ROC type supplied via the pxarCore::initDUT(...) function, which
should be set to psi46v2, there are a couple of other parameters which need to be tuned
in order to obtain a functioning data acquisition and decoding setup. These parameters
and their determination procedures are described in the following.

The chip type already triggers all necessary changes in the DTB firmware: the ADC is
selected as data input source of the sdata1 signal, and the signal gain is adjusted. Since
the data sampling is controlled by the readout token, two delays need to be adjusted to
get the correct number of samples to match the event length. In addition, the sampling
point of the ADC has to be adjusted within one clock cycle to ensure stable signal
sampling.
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With these settings properly configured most of the test supplied in the pXar test
suite can be executed. Tests which are tailored to a specific behavior of a certain chip,
such as the pulse height optimization, will not work without changes to the algorithm.

5.11.1. Token In, Token Out

The sampling of the analog input data is triggered by the flying token. After the Token
In command has been sent to the chip, and an additional delay tindelay (in units of BC)
the ADC starts sampling the incoming 40 MHz data on sdata1. The sampling is stopped
after the Token Out from the attached device has been received back and the additional
delay toutdelay has passed. The timeout to cut off the readout for a non-returning token
signal can be configured using the adctimeout setting in units of 10 BC and defaults to
300 BC.

The two token delays have to be adjusted according to the data in the events. Every
event should start with a ROC header marked by the Ultra Black - Black patterns
followed by the lastDAC word (see Section 5.9), every pixel hit is six samples long. A
more detailed reference of the PSI46V2 analog data format can be found in [21].

The adjustment can be either performed by hand by looking at the raw, undecoded
data, or by using the automated script provided on the Python command line interface
(cf. Section 6.1) called FindAnalogueTBDelays. This will automatically scan through
tindelay and toutdelay and search for the Ultra Black in the ROC header and the pulse
height in the last sample of a pixel hit.

Adjusting the delays by hand can be accomplished using the Python CLI. It should be
made sure that a set of DAC parameters appropriate for analog PSI46V2 chips is used.

$ # Running with DEBUGPIPES verbosity here reveals lots of information

$ ./python/cmdline.sh -d myConfigDir -v DEBUGPIPES

> # Power up the device and check if it draws current:

> getTBia

> getTBid

> # Activate one pixel and unmask it:

> testPixel 13 8 1

> maskPixel 13 8 0

> # Call the varyDelays function with some settings for tindelay and toutdelay:

> varyDelays <tindelay> <toutdelay> True

> # Look at the data printed, try to identify the Ultra Black and Black levels

...

It might be necessary to readjust the delays if the sampling point is shifted (cf. next
section).

5.11.2. ADC Sampling Point / Address Levels

The sampling point of the ADC within one clock cycle has to be set correctly in order to
have a pulse height sampling independent of the preceding pulse. If the sampling point
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Figure 11: Influence of the ADC sampling point on the measured level, depending on
the preceding pulse. In order to achieve a stable sampling the phase should
be adjusted such that the sampling is done late in the clock cycle.

is selected incorrectly, the address levels are split up depending on the preceding level
as indicated in Figure 11.

The ADC sampling point is controlled by the clk DTB delay setting. The sampling can
be adjusted by hand by looking at an address levels histogram as the one collected and
plotted by the Python CLI function analogLevelScan (cf. Section 6.1) or by running
the Python CLI script find clk delay which automatically picks the optimal setting.
The script checks for the sampled value of a specific level for all transitions from other
levels. It then scans through the different clock delay settings and chooses the optimal
working point where the minimum level split can be found as demonstrated in Figure 12.

The procedure to record an address levels histogram using the Python CLI could be:

> # Activate one pixel:

> testPixel 26 9 1

> maskPixel 26 9 0

> # Open the ROOT Canvas to display the histogram:

> gui

> # Run the test (simple raw DAQ):

> analogLevelScan

Which address levels appear in the plot depends on the Gray code address of the pixel
activated. An example is shown in Figure 13. All levels should be nicely separated and
the peaks equally spaced for an optimal working point.

Shifting the clock phase might require re-adjustment of the tindelay/toutdelay delays
as described in the previous section.
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Figure 12: Automated adjustment of address levels separation. Shown is the sampled
amplitude of address level 2 for different transitions as a function of the ADC
sampling point (clock phase delay). The delay should be chosen such that the
sampled amplitude is independent from the transition from previous pulses.
Figure by [22].
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Figure 13: Ultra black (UB), black (B), and address levels (L) from an analog PSI46V2
chip recorded using pxarCore. All levels show a nice separation and equidis-
tant spacing.

5.11.3. Data Decoding

The analog decoder module of pxarCore is self-calibrating. It uses the Ultra Black and
Black levels of the first ROC header to calculate the binning of all other address levels.
The Ultra Black and Black levels are taken from a sliding window average of the last one
thousand events decoded in the same DAQ session. If the DAQ is stopped and re-started,
the average levels will be reset and re-calculated with the next incoming events.

This is a very clean solution for analog data decoding since no additional address level
files have to be provided by the user. The approach has proven to be stable in various
environments, including test beams with a multi-plane telescope featuring four PSI46V2
planes. However, for irradiated chips or in very noisy environments, this approach might
fail and may not produce valid output.

Currently, there is no support for analog TBM (TBM05) data, hence analog modules
cannot be read out.
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6. Additional Tools & Resources

In addition to the standard ROOT GUI pXar there are a series of other tools using the
pxarCore library as their backend. This section gives a non-exhaustive overview of tools
developed by the user community. Usage scenarios and example code will be reviewed
in Section 7.

6.1. Python Command Line & Plotter

The Python CLI is a convenient tool to directly access pxarCore API calls to test settings,
software, or to even perform full detector tests. It makes use of the Python bindings
of the API functions as described in Section 4.5. With most of the API calls available,
the command line is very powerful and allows the setup of various testing environments,
switching between different trigger sources and direct reconfiguration of the DUT object
at run time.

The interface comes with tab completion for both the API commands as well as for
their parameters such as DAC names. At start-up, configuration files compatible to the
ones produced by the pXar GUI can be loaded and the pxarCore object is automatically
initialized. This allows to quickly switch between running tests picked from the pXar
test suite and calling single API commands from the Python CLI.

To ease the test of a sequence of commands, simple scripts of PythonCLI commands
can be executed consisting. Lines starting with a hash symbol are interpreted as com-
ments and ignored. The scripts can be either run at start-up of the CLI using the “-r”
command line parameter or from the command line directly by the run command fol-
lowed by the file name containing the script. A simple script activating external triggers
and clock and starting the data acquisition could e.g. look like

# Switch off calibrate signal for all pixels and unmaks them:

testAllPixels 0

maskAllPixels 0

# Enable external triggers as trigger source:

daqTriggerSource extern

# Switch the DTB to the externally supplied clock:

setExternalClock 1

# Start the data acquisition, enable the correct deserializer:

daqStart

Then, single events can be read out, decoded and printed to either console or the ROOT
canvas as event display:

# Read one event and decode it:

daqGetEvent

More complex scripts requiring more Python syntax such as loops or conditional state-
ments can easily be implemented making use of the API calls as well as of the Python
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helper functions which parse configuration files and initialize the pxarCore object cor-
rectly. An example serving as starting point for own implementations can be found in
the file “python/script.py”.

All pxar data type classes have a Python pendant and can thus easily be used within
Python, e.g. events can simply be printed in an already formatted string. If the ROOT
libraries are present at start-up of the command line, a simple ROOT Canvas display is
available to plot test results or event displays. The Canvas window can be opened using
the gui command any time or the “-g” command line parameter at start-up.

The following command line parameters are available:

cmdline.py [-h] [--dir DIR] [--verbosity LEVEL] [--gui] [--run FILE]

-h, --help : show the help message and exit

--dir DIR, -d DIR : path to the directory with all required configuration files, com-
patible with the pXar configuration file format

--verbosity LEVEL, -v LEVEL : logging output verbosity of the pxarCore library (cf.
Section 5.8)

--gui, -g : start the ROOT Canvas display for test results and event displays

--run FILE, -r FILE : load the command line script FILE to be executed before en-
tering the prompt

6.2. pyXar

pyXar [3] is a small command line-based tool written in Python that implements many
tests and calibration procedures for PSI46 chips as well as high-rate tests under X-Ray
background. This tool was originally developed at ETH Zürich as independent tool, and
later ported to using the pxarCore library as backend.

pyXar uses the Python bindings provided by the pxarCore library. All test loops and
command sequences sent to the detector and DTB are completely identical to other
software packages using the pxarCore library.

6.3. decoder

The decoder executable is a small tool in the pxar repository demonstrating how to use
the decoder modules and data pipes of the pxarCore library in an external context, e.g.
decoding already recorded PSI46 device data from binary files.

The decoder tool sets up a decoding chain using the pxarCore decoder modules:

#include "datasource_evt.h"

#include "constants.h"

// Define all components of the decoding chain:

evtSource src;
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dtbEventSplitter splitter;

dtbEventDecoder decoder;

dataSink<Event*> Eventpump;

// Set up the chain using the output operator:

src >> splitter >> decoder >> Eventpump;

// Create the data source with correct configuration

// Here the source is set up for Channel 0 of a TBM08c module

// with 8 ROCS of type PSI46digV2.1

src = evtSource(0,8,0,TBM_08C,ROC_PSI46DIGV21);

// Now we can add data to the event source:

std::vector<uint16_t> myrawdata = read_data_from_somwehere();

src.AddData(myrawdata);

// And retrieve all events until the buffer is empty:

while(1) {

try { pxar::Event * evt = Eventpump.Get(); }

catch(dsBufferEmpty &) { break; }

}

6.4. flash

The flash tool is a tiny helper which allows to flash new firmware releases onto the DTB.
Invoke with:

./flash FLASH-FILE

This tool is only there for convenience when not building the pxar GUI executable, but
provides the same functionality as calling

./pXar -f FLASH-FILE

Section 2.5 provides a more detailed description of the DTB firmware flashing procedure.
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6.5. Resources

The following list provides some additional resources concerning the pxarCore library,
the user community and related tools.

• The pxar repository:
https://github.com/psi46/pxar

• pxar Releases:
https://github.com/psi46/pxar/releases

• pxar Bug Tracker:
https://github.com/psi46/pxar/issues

• pxarCore API Doxygen reference:
http://psi46.github.io/classpxar_1_1pxarCore.html

• The DTB Firmware repository:
https://github.com/psi46/pixel-dtb-firmware

• The pyXar repository:
https://github.com/simonspa/pyxar

• The psi46 tools repository with the rpcgen tool:
https://github.com/psi46/tools

• CMS internal pXar TWiki page:
https://twiki.cern.ch/twiki/bin/view/CMS/Pxar

• CMS internal HyperNews channel:
hn-cms-pixel-psi46-testboard@cern.ch
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7. Using pxarCore - Examples

This section contains a few examples for use cases of the pxarCore library. The code
here should be seen as pseudo-code since it can not be compiled as is. However, the
syntax, command sequences and structure reflect the required functionality.

7.1. Simple Data Acquisition

This section gives some examples on how to set up a DAQ using the pxarCore library.
The examples are kept simple while a more elaborate implementation into a full-featured
DAQ framework is described in detail in Section 8.

7.1.1. C++

Initialization of the testboard:

// Create new API instance:

try {

_api = new pxar::pxarCore("*","INFO");

// Initialize the testboard:

if(!_api->initTestboard(sig_delays, power_settings, pg_setup)) {

return;

}

// Initialize the DUT:

if (!_api->initDUT(hubid,"tbm08c",tbmDACs,"psi46digv2.1",rocDACs,rocPixels)) {

return;

}

// Unmask all pixels:

_api->_dut->maskAllPixels(false);

}

DAQ with external triggers:

// Set the trigger and clock sources to extern:

_api->daqTriggerSource("extern");

_api->setExternalClock(true);

// Start the DAQ:

_api->daqStart();

// Read 1000 events:

size_t nevents = 0;
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std::vector<pxar::Event> events;

while(1) {

try {

events.push_back(_api->daqGetEvent());

nevents++;

} catch(dsBufferEmpty &) { break; }

if(nevents >= 1000) { break;}

}

// Stop the DAQ:

_api->daqStop();

// Read the remaining events from the buffer:

std::vector<pxar::Event> tmp = _api->daqGetEventBuffer();

events.insert(events.end(), tmp.begin(), tmp.end());

DAQ with triggers from the pattern generator:

// Start the DAQ:

_api->daqStart();

// Send 1000 triggers with a distance of 500 BC:

_api->daqTrigger(1000,500);

// Read all events:

std::vector<pxar::Event> events = _api->daqGetEventBuffer();

// Stop the DAQ:

_api->daqStop();

DAQ with randomly generated triggers:

// Activate the random trigger generator (direct)

// with a trigger frequency of 100 kHz:

_api->daqTriggerSource("random_dir",100000);

// Start the DAQ:

_api->daqStart();

// Triggers are being sent...

// Stop the DAQ:

_api->daqStop();
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// Read all events:

std::vector<pxar::Event> events = _api->daqGetEventBuffer();

7.1.2. Python

Initialization of the testboard:

import PyPxarCore

from pxar_helpers import *

# Use the startup Python helper:

api = PxarStartup("config/mychip","INFO")

DAQ with external triggers:

# Enable external clock and trigger:

self.api.daqTriggerSource("extern")

self.api.setExternalClock(1)

# Start DAQ

self.api.daqStart()

# Get events:

events = list()

while len(events) < 1000:

try:

event = self.api.daqGetEvent()

events.append(event)

except RuntimeError:

pass

# Stop the DAQ:

self.api.daqStop()

DAQ with triggers from the pattern generator:

# Start DAQ

self.api.daqStart()

# Generate 1000 triggers with 500 BC spacing:

self.api.daqTrigger(1000,500)

# Retrieve the data:

try:
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data = self.api.daqGetEventBuffer()

except RuntimeError:

pass

# Stop the DAQ:

self.api.daqStop()

DAQ with randomly generated triggers:

# Activate the random trigger generator (direct)

# with a trigger frequency of 100 kHz:

self.api.daqTriggerSource("random_dir",100000)

# Start DAQ

self.api.daqStart()

# Stop the DAQ:

self.api.daqStop()

# Retrieve the data:

try:

data = self.api.daqGetEventBuffer()

except RuntimeError:

pass

7.2. Running Tests with the Python Command Line Interface

The Python CLI already contains helper functions to completely configure and initialize
the devices at start-up. For this, a configuration directory with the standard pXar
configuration files is needed.

On the command line, all test loops such as getEfficiencyVsDAC are available and
can be executed. All commands feature tab completion and print information about the
required parameters.

If the ROOT libraries can be found in the system PATH and the ROOT Python interface
is available, a ROOT canvas can be opened by calling

> gui

which will be used to plot the test results. If no canvas is available, the result will be
printed in the terminal.

7.3. Running Tests with a Simple Python Script

More complex test algorithms might require their own script with the full power of
Python available. At the beginning the pxarCore Python bindings have to be loaded,
and also the pxar helpers are helpful to read configuration files and start up the DTB.
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The repository contains a sample script in the file

python/script.py

demonstrating the simplicity of such an implementation. The script module test.py in
the same directory provides a real-world example of a script used for long-term stability
tests of the module readout.

7.4. Running Non-Standard Devices

This section aims to give some advice on how to proceed with non-standard devices. The
pxarCore library is able to cope with most device configurations but requires specific
configuration parameters in order to correctly address all attached detectors.

Multiple ROCs, but no TBM: in some setups, ROCs are chained together, appending
their data to the previous ROC and passing the token on without being coordinated
by a TBM. The DESER160 module can sample the data from all ROCs since it
is steered only by the flying token. In order to correctly decode this data with
pxarCore, only the correct number of ROC DACs have to be presented to the
pxarCore::initDUT(...) function at start-up.

Modules with bypassed/fewer ROCs: Some modules either feature less then the usual
16 ROCs or have broken ROCs which are bypassed and never receive the token.
In these cases, pxarCore has to be notified in order not to throw error messages
about the missing ROC header in the data stream. There are two possibilities of
doing this.

If the module has a standard I2C address configuration, it is sufficient to supply
the I2C addresses of the functioning ROCs via pxarCore::initDUT(...), exclud-
ing the non-existing/bypassed ROC. pxarCore will then automatically assign the
available ROCs to the correct TBM channels. If for example, the ROC with I2C
address 2 is broken and bypassed, only the configuration of the other fifteen ROCs
together with the list of valid I2C addresses

0,1,3,4,5,6,7,8,9,10,11,12,13,14,15

has to be provided at startup. The library would automatically assign the missing
ROC to the token chain of TBM core α according to its I2C address.

The other possibility is to explicitly state which TBM channels are missing the
ROC (s). This can be done by specifying the TBM parameters nrocs (nrocs1)

(and also nrocs2 for TBM09 with two channels per core) in the TBM configura-
tion vector supplied to the pxarCore::initDUT(...) function. The number of
expected ROCs is then reduced for the respective channels.

Multiple DTBs in Sync: When running multiple DTBs in synchronization with exter-
nal triggers (e.g. in test beams) it is advised to use the same external clock for all
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boards. This synchronizes the device clocks and allows truly synchronous trigger-
ing and data acquisition.

Furthermore, the configuration files for the different DTBs are required to contain
the actual DTB USB id instead of the wildcard *. With the wildcard present, the
assignment of pxarCore instances to the DTBs depends on the order of the USB
ports in the system.

Non-standard I2C addresses: Non-standard I2C addresses can be specified using the
I2C address vector in the pxarCore::initDUT(...) function. The addresses will
be assigned to the ROCs in the same order as the DAC vectors are provided.
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8. pxarCore EUDAQ Integration

The pxarCore library has been integrated with the EUDAQ software framework [23] to
enable data taking with the DTB in a more complex environment such as test beams.
Usually the requirements on integration, communication and control in such experiments
are higher than in simple laboratory setups. This section describes how all functionality
needed for such experiments is seamlessly integrated into the existing data acquisition
framework allowing data taking together with other detectors, externally supplied trig-
gers and a unified event building and data storage.

8.1. The EUDAQ Software Framework

EUDAQ is a modular cross platform data acquisition framework designed in the context
of the EUDET project [24]. It consist of completely independent modules such as Run
Control, Data Collector and Producers. The communication between individual modules
is implemented as TCP/IP which allows for running them on separate machines, only
linked by a (preferably Gigabit) Ethernet network.

The central interaction point for the user is the Run Control and its GUI. All producers
connect to the Run Control at start-up and retrieve additional information from there
during operation (such as the commands for starting and stopping a DAQ run). The
GUI provides all controls necessary to the user on shift.

Producers are the links between the EUDAQ framework and the user DAQ system.
They interface with the EUDAQ library and have to provide a certain set of functions
to be called by the Run Control. The data read out from user DAQ systems by the
individual producer is sent to the so-called Data Collector. This Data Collector is
responsible for the event building, i.e. the correlation of events from all subdetector
systems to single global events comprising all data belonging to one trigger. Basic
sanity checks are performed, such as matching event serial numbers from the individual
subdetectors.

In order to ensure a high data quality already during the acquisition the Online Mon-
itor is available. It connects to the Data Collector requesting a fixed fraction of the
recorded events (e.g. one out of a hundred) to fully decode all subdetector data and
build basic plots such as hit maps or correlation plots showing that the different devices
are synchronized in time and space, and are all placed within the geometrical trigger
acceptance.

The data decoding is performed using Data Converter plugins for every detector type
attached to the Run Control. The plugin to be called is deducted from the event type
transmitted by the producer and written to the data stream by the Data Collector. Each
Data Converter plugin can implement several data format end points to allow e.g. both
the conversion to the EUDAQ internal format StandardEvent for the Online Monitor,
and to LCIO which is used by the EUTelescope offline reconstruction software [25].
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8.2. The CMSPixelProducer

The CMSPixelProducer integrates the pxarCore library with the EUDAQ run control.
It provides the interface functions for the EUDAQ finite state machine (OnConfigure,
OnStartRun, OnStopRun, OnTerminate, and the ReadoutLoop) to allow integrated data
acquisition with other producers via the Run Control. It is included in the main EUDAQ
repository since the release EUDAQ v1.4.5 but a more up-to-date version with additional
features might be present in the development repository, branch cmspixproducer [26].

When running a DAQ with a TBM and multiple ROCs configured, the CMSPixelPro-
ducer will automatically assemble all ROCs found in the readout stream to a module-like
pixel plane for both online monitoring and correlation as well as for the conversion to
other formats.

All functions provided by pxarCore are supported, including operation of all sorts of
PSI46 devices such as analog PSI46V2 ROCs as well as custom-built telescopes using
PSI46 devices as telescope planes. Even beam telescopes with several planes consisting
of full CMS Pixel modules featuring 16 ROCs each have been successfully operated [27].

The CMSPixelProducers checks all supplied configuration parameters for consistency
and catches exceptions thrown by pxarCore (cf. Section 4.7). Error messages and ex-
ceptions are displayed in the Run Control status as shown in Figure 14 and also sent
to the Log Collector. This allows to identify improper detector configuration already at
configuration stage before the actual data acquisition starts.

Important parameters for offline interpretation of the data recorded such as the type
and the number of ROCs operated, all DAC parameters as well as the TBM type are
written into the so-called begin-of-run event (BORE) in form of tags consisting of a
name-value pair. These tags can be read from the raw EUDAQ data files and used for
correct interpretation of the data (cf. Section 8.7).

Following the paradigm of the EUDAQ framework, the detector data read during data
taking is stored as-is, meaning that no data decoding is performed online prior to storing
the data to disk. This has the advantage that possible flaws in the decoding methods do
not affect the data taken, but the conversion to other event formats can just be re-run
on the raw and unaltered detector data.

8.3. Installation

Compilation of the CMSPixelProducer together with the EUDAQ library has to be
enabled explicitly at configuration by using a CMake switch:
cmake -DBUILD cmspixel=ON ..

In order to build the module successfully, the dependency on the pxarCore library
has to be satisfied. CMake searches for the pxarCore library in a path provided by the
environment variable $PXARPATH. It should be set up to point to the root directory of
the local pxar installation.

After a successful compilation and installation via make && make install the pro-
ducers are ready for data taking. More detailed installation instructions for the EUDAQ
software framework can be found in [23].
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Figure 14: EUDAQ Run Control with two CMSPixelProducer instances attached. The
two producer instances are in error mode, the DUT producer due to a non-
existing DAC parameter file, the REF producer due to a missing DTB USB
connection. This error message display allows the person on shift to quickly
identify problems.

8.4. Starting Instances of the CMSPixelProducer

In EUDAQ, each decoding module being called for a certain subdetector event data is
currently only deduced from the event type written. This means that as soon as two
producers write exactly the same event type, the decoding factory will only instantiate
one Data Converter plugins and then call it for every subdetector event. The result
would be a mixing of the data recorded from different DTBs and ROCs. To overcome
this current EUDAQ limitation, the CMSPixelProducer provides several different event
types allowing to clearly separate the data streams both during data acquisition and
data decoding.

The event type has to be defined at start-up of the producer. For the DUT data stream
(the first DTB to be used) no additional command line option has to be provided when
starting the CMSPixelProducer, the event type CMSPixelDUT is automatically selected.
For additional DTBs a different producer name has to be specified, which in addition
allows to separate e.g. the logging output from the two producers:
./CMSPixelProducer.exe -n NAME

For the second producer (and DTB) the name should contain the word REF in all
capitals (operating the timing reference plane, name e.g. CMSPixelREF), additional pro-
ducers should be started using a name containing the patterns TRP or QUAD, such as
CMSPixelTRP (for triplet) or CMSPixelQUAD (for quadruplet), respectively. An example
of two producers connected to the Run Control can be seen in Figure 14.
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8.5. Configuration Parameters

The configuration parameters for every producer are read from a global configuration file
by EUDAQ and distributed to the producers. The configuration file is a plain text file
which contains one section for each producer. Each of the sections consists of tag-value
pairs for the configuration of the respective producer. Sections for producers which are
currently not connected are ignored. All lines starting with a hash symbol are interpreted
as comments and ignored.

The full content of the configuration file including comment lines is included in the
BORE header and is thus available later for offline analysis and reference. This greatly
simplifies logging during test beam shifts since all parameters, such as chip settings, are
stored automatically.

Below is a list of currently available parameters for configuration of CMSPixelProducer
instances. When running several producers, the settings have to be duplicated to a new
section featuring the correct name of the producer.

roctype: The device type of the ROC to be operated. This will be fed to the function
pxarCore::initDUT(...) as described in Section 5.1.2. The list of available
devices can be found in Table 2.

pcbtype: Type of the carrier printed circuit board (PCB) the ROC is mounted on.
Content of this is free and it can be used to keep track of different PCB types, e.g.
distinguishing different material budgets. If the PCB type parameter contains the
pattern -rot indicating a PCB with the ROC mounted in a π/2 rotated position,
columns and rows will automatically be swapped in order to allow for correlations
in the Online Monitor.

i2c: This is an optional parameter for specifying non-standard (non-0) I2C addresses the
devices are listening on. This parameter takes a vector of integers which allows to
run more than one ROC attached to a single DTB such as token-chained ROCs
in beam telescopes, or full CMS Pixel modules. For this, the I2C address of every
ROC has to be specified, e.g.

i2c = 0 1 2 4 5 6

would set up the DUT in a way that six ROCs are programmed (using six DAC
and trim bit files) and read out. If no I2C parameter is specified, the I2C address
defaults to 0 and the dacFile and trimFile parameters are assumed to represent
the full path and name of the files to be read. If the I2C parameter is specified
(even for a single ROC) the file names will be appended with the pattern Cx
where x is the I2C address from this parameter. This is possible for both single
chips and multiple ROCs.

dacFile: standard formatted pxar configuration file containing all DAC parameters for
the ROC. These values will be provided to the pxarCore::initDUT(...) function.
All possible DAC names can be found in Table 5. If the i2c parameter is specified,
the name will be appended with the trailing Cx pattern automatically.
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tbmFile: standard formatted pxar configuration file containing all register parameters
for one TBM core. These values will be provided to the pxarCore::initDUT(...)
function. All possible register names can be found in Table 4. The file name will
be appended with the trailing C0a/b pattern for the two cores.

trimFile: standard formatted pxar configuration file containing the trim bits for all 4160
pixels of the ROC. These values will be provided to the pxarCore::initDUT(...)

function. If the i2c parameter is specified, the name will be appended with the
trailing Cx pattern automatically.

maskFile: global, standard formatted pxar configuration file containing a list of masked
pixels for all ROCs attached. Pixels which appear in this list will be masked during
data acquisition. Pixels have to be specified with the pattern pix ROC COL ROW,
multiple consecutive pixels in the same column can be masked using pix ROC COL

ROW1:ROW2.

external clock: Boolean switch to select running on externally supplied clock (via the
DTB LEMO connector, see Section 3.1) or the DTB-internally generated clock.
This calls the function pxarCore::setExternalClock(bool enable). If no exter-
nal clock is present but requested, the producer will return with an error requiring
reconfiguration.

trigger source: string literal to select the trigger source to be set up in the DTB. It
is also possible to activate more than one trigger source by concatenating them
using the semicolon ; as separator. The trigger sources are configured via the
API function pxarCore::daqTriggerSource(std::string src). A full list of
available trigger sources and their description can be found in Table 6.

usbId: USB identification string of the DTB to be connected. It is recommended to
always specify this parameter instead of supplying the wildcard *. This is needed
in the pxarCore constructor.

hubid: Hub address the DUT is attached to. See Section 5.1.2 for more information.
This value is required by pxarCore::initDUT(...).

signalprobe d1/d2/a1/a2: Expects a string literal as value. Allows setting the DTB
LEMO outputs to the selected signal. For more information see Section 3.1. The
default setting (no parameter given) is off. A full list of available signal outputs
it given in Table 7.

vd/va/id/ia: Mandatory parameters representing the DTB current limits (ia,id) and
the supply voltage for the attached DUT (va,vd). These parameters are passed to
the function pxarCore::initTestboard(...) at the initial configuration stage.
More detailed information can be found in Section 5.1.1.

clk/ctr/sda/tin: Phase settings for DTB output signals. A more detailed description is
given in Section 5.1.1.
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level: Signal gain of the above signals, with 0 being off and 15 being maximum gain.
Section 5.1.1 provides more information on these configuration parameters.

deser160phase: Relative phase of the 160 MHz deserializer module clock to the 40 MHz
clock. More information can be found in Section 3.2.

triggerlatency: Additional delay for the trigger to match the overall trigger latency
including WBC. This setting can be used to match the actual trigger latency from
the trigger logic unit (TLU) and cabling to the ROC’s WBC setting and thus
allows to run with different WBC settings.

tindelay: ADC DAQ only (analog PSI46v2 chips): delay for the ADC to start sampling
the incoming data after the token in has been sent out. For more information see
Section 5.11.

toutdelay: ADC DAQ only (analog PSI46v2 chips): delay for the ADC to stop sampling
the incoming data after the token out from the DUT has been received back. For
more information see Section 5.11.

verbosity: Verbosity setting of the pxarCore library. All verbosity levels and their out-
puts are described in Section 5.8.

tlu waiting time: Additional waiting time in Milliseconds between stopping a run and
stopping the pxarCore DAQ. This is required since the TLU is comparatively slow
in executing the Run Stop signal and keeps on sending triggers. If this setting
is too low, the number of triggers from the various devices will not match since
some triggers have not been received at the end of the run. The default setting is
4000 ms.

testpulses: Boolean parameter which allows to run the DUT with testpulses and the
pattern generator instead of external triggers. The trigger source parameter
has to be set accordingly. In addition, the delays in 40 MHz clock cycles after
the different signals contained in the pattern generator setup can be changed using
the parameters resetroc/calibrate/trigger/token. The overall delays between
two calls of the pattern generator (so the rough overall trigger frequency) can
be adjusted using the patternDelay parameter. The testpulses functionality is
mainly intended for software development with no actual particle beam present.
More information on the pattern generator can be found in Section 3.4.

rocresetperiod: Parameter allowing to send a periodic reset signal to the ROC. The
value is given in Milliseconds, a value of 0 turns the periodic reset off. Internally
this uses the direct signal trigger mode, switching on this source in addition to the
one selected by the trigger source parameter. However, there is no guarantee
that the two signals will not coincide, and some triggers might get lost while
sending the reset. This leads to a loss of synchronization between the DUT and
other detectors in the DAQ. This feature should be used with caution and only
when really necessary!
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Figure 15: EUDAQ Log Collector with messages from an attached CMSPixelProducer
instance. The log messages show the configuration stage of a full module
using the DTB emulator (see Section 4.6).

In addition to the above parameters, it is also possible to overwrite DAC parameters.
This is useful in cases when several DAC files (e.g. with different threshold settings) have
been prepared in the laboratory beforehand, but the WBC is only known at time of the
test beam. Instead of changing this parameter in all DAC files which is error prone and
cumbersome, the DAC in question can be set as parameter in the EUDAQ configuration
file. A list of all possible DAC parameters can be found in Table 5.

To overwrite a DAC parameter, its name and the desired value have to be specified
in lower case in the configuration file, e.g.
wbc = 186

First, all parameters from the DAC file are read in, and then their values are updated
and potentially overwritten by settings from the global configuration file. It has to be
noted that only DACs present in the DAC file will be updated, while DACs missing from
the file will not be taken into account even if specified in the configuration file. In case
a DAC parameter has been overwritten by a configuration file setting, this will be noted
in the EUDAQ log file.

8.6. Logging

The CMSPixelProducer connects to the EUDAQ Log Collector and informs about events
at configuration and running stage as shown in Figure 15. It informs about parameters
read from file, about changes made to the DTB configuration and also prints analog and
digital currents after start-up.

In addition, the event yield for every detector is calculated as a total average and as
running average of the last 1000 triggers. The event yield is the fraction of events that
contain at least one pixel hit over the total number of events recorded.

At the end of a run, the total event yield is sent to the Log Collector and thus stored
in the EUDAQ log file for later reference.
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8.7. The CMSPixelConverterPlugin

Within the EUDAQ framework, a so-called converter plugin should be provided for
every event type. This allows EUDAQ to decode the stored raw detector data for
various purposes, be it online monitoring or conversion into another format for offline
reconstruction.

Since several CMSPixelProducer instances can be operated at the same time, also
several decoder plugins for every event type written have to be provided. In order not
to duplicate code the current solution implements the decoding in the file

main/include/eudaq/CMSPixelHelper.h

and provides wrapper plugins for the various event types supported (cf. Section 8.4).
Internally the decoder modules of the pxarCore library are used and thus all features
such as decoding statistics are available (cf. Section 5.10). The accumulated decoding
statistics are printed to stdout when the CMSPixelConverterPlugin receives an end-of-
run event (EORE).

All parameters necessary for correct data decoding such as the ROC types, the TBM
type in use, and the number of ROCs to be expected, are read from the tags written
into the BORE event by the CMSPixelProducer.

8.7.1. Decoding to StandardEvents

EUDAQ features an internal even class called StandardEvent. This event format assumes
pixelated detector planes of a certain size, and just stores the hit information in X and
Y coordinates without any additional information. This very basic class is mostly used
for internal purposes such as online data quality monitoring.

8.7.2. Decoding to LCIO Events

For offline analysis and reconstruction of telescope test beam data the EUTelescope
software package [28, 29] is available and features a close integration of the EUDAQ
software framework. EUTelescope is based on the ILCSoft framework [30] which provides
the basic building blocks for offline analysis such as a generic data model (Linear Collider
I/O, LCIO), a geometry description language (GEAR) and the central event processor
(Marlin) [31].

The CMSPixel converter plugin provides a built-in function to convert PSI46 data
to LCIO events. This function is used by the EUDAQ native reader library which is
invoked by the EUTelescope NativeReader (“Converter”) processor.

8.7.3. Other Data Formats

EUDAQ provides a set of data formats to which data can be converted using the Con-
verter tool. This currently includes ROOT trees and text files, among other options.
The options available can be checked by calling

./Converter.exe -h
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Figure 16: Correlation plot for the X coordinate of the DUT and reference plane. A
distinct correlation pattern is visible indicating that the events read from the
two devices are synchronized and the detectors are geometrically well aligned.

The selection of available output types depends on the build configuration of the EUDAQ
library and some output formats might require additional libraries.

8.8. Online Monitoring

Online data quality monitoring is a key feature of data acquisition frameworks since
it allows to immediately check the quality of the data recorded and check for possible
glitches such as geometrical misalignment or missing time correlation.

EUDAQ provides the Online Monitor tool which displays a set of ROOT histograms.
This includes simple hit maps and basic clustering plots for every detector plane included
in the data acquisition as well as correlation plots in X and Y coordinates between all
detector planes as shown in Figure 16. This allows to check for both time and geometry
correlations and possible corrections directly during data taking.

The Online Monitor runs as separate process, connecting to the Data Collector of
EUDAQ via the Run Control. By default it requests every 100th event for decoding in
order to keep the load on the network and the CPU low. The tool can also be used to
quickly check the content of an already stored file by executing it with the file argument:

./OnlineMonitor.exe -f path/to/raw/file.raw

The raw detector data is decoded using the StandardEvent conversion method of the
CMSPixelConverterPlugin.
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9. Summary

The pxarCore library provides a flexible and powerful interface to the digital test board
(DTB) and allows data acquisition (DAQ) and testing of various PSI46-type detectors.
The library has been developed as the primary DAQ software to be used in the module
qualification of the Phase I Upgrade of the Compact Muon Solenoid (CMS) Pixel De-
tector and is used by all collaborating institutes for the quality control and functionality
tests of produced detector modules.

This document provides a detailed description of the software architecture, the readout
electronics, and the intended usage scenarios. Code examples for several common tasks
as well as an exhaustive reference of possible configuration parameters and their influence
on the detector tests are provided.

The software library has been developed with an emphasis on flexibility, maintainabil-
ity and cross-platform operating system support in order to provide a reliable test bench
for the detector modules over the full lifetime of the Phase I Pixel Detector of the CMS
experiment.
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A. Dictionary Reference

The following pages contain tables referencing the pxarCore dictionaries. All parameters
are provided together with some explanation on the scope or the expected effect of the
setting. Tables 1 and 2 list the available devices for Token Bit Managers (TBMs) and
readout chips (ROCs) respectively. Tables 3, 4 and 5 list the available registers and
digital-to-analog converters (DACs) for the DTB, the TBMs and ROCs.

A list of available trigger sources is given in Table 6. Examples on how to activate and
use these sources has been provided in Section 7.1. The possible signal outputs of the
DTB LEMO connectors are listed in Table 7 and the available signals for the pattern
generator are summarized in Table 8.

Table 1: TBM device types: All names and synonyms understood by pxarCore and a
short description.

Device Type Description

tbmemulator TBM emulator of the DTB FPGA, to be used in test beams
with single ROCs. Header and trailer contain additional in-
formation such as the trigger arrival phase.

tbm08 = tbm08a Initial prototype version of the Layer 3 and 4 TBM.
tbm08b Intermediate prototype TBM version.
tbm08c Production version of the TBM for modules in layer 3-4.
tbm09 Initial prototype of the dual-datalink TBM for layer 2.
tbm09c Production version of the dual-datalink TBM for layer 2.
tbm10 Production version of the dual-datalink TBM for layer 1.
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Table 2: ROC device types: All names and synonyms understood by pxarCore and a
short description. All ROC versions except for psi46v2, psi46digv21respin and
psi46digl1 are obsolete prototypes.

Device Type Description

psi46v2 Chip with analog levels readout, as used in the
Phase 0 pixel detector.

psi46xdb As above, but with extended number of DCol buffer
cells (time stamps, data).

psi46dig First chip with digital 160 MHz readout.
psi46dig trig Interim version of the digital chip.
psi46digv2 b Interim version of the digital chip.
psi46digv2 Version 2 of the PSI46 chip with digital 160 MHz

readout. Problems with Double Column freezing.
psi46digv21 = psi46digv2.1 Interim version of the digital chip with reworked

Double Column logic, but minor problem on Metal
layer 1.

psi46digv21respin Final production version of the PSI46 digital chip
for the Phase I pixel detector. Wafer print is still
psi46digv21.

proc600 = psi46digl1 = psi46digplus Layer 1 version of the PSI46 digital chip for the
Phase I pixel detector.
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Table 3: DTB Registers: All names and synonyms understood by pxarCore, their register
equivalent in the DTB (if applicable) and a short description.

Register Name Register Description

clk 0x0 Phase of the 40 MHz clock.
ctr 0x1 Phase of the Calibrate Trigger Reset (CTR) signal.
sda 0x2 Relative phase of the I2C SData signal.
tin 0x3 Relative phase of the Token In signal to the detector.
tout = rda 0x4 Same setting, two possible terminations depending

on the DUT (TBM present or not).
level Signal gain of the DTB output signals to the DUT

(clk, ctr etc.). Range from 0 (off) to 15 (max. gain).
deser160phase Relative phase of the 160 MHz deserializer module,

see Section 3.2.
deser400rate Sampling rate of the DESER400 phase detector, see

Section 3.2.

triggerdelay Additional delay between two pattern generator iter-
ations in the trigger loops (see Section 3.3.2). Given
in units of 10 bunch crossing (BC).

trimdelay Additional delay after trimming of a pixel in the trig-
ger loops (see Section 3.3.2). Given in units of 10
BC. Useful for heavily irradiated ROCs which require
more time for programming operations.

triggerlatency Additional trigger latency. After receiving an exter-
nal trigger, this delay in units of 25 ns will be obeyed
by the DTB before the trigger is sent out to the DUT.
This can be used to compensate for different WBC
settings.

triggertimeout Timeout after sending an external trigger without re-
ceiving the Token Out signal back, after which the
readout is terminated.

tindelay Delay before the ADC starts sampling after the To-
ken In signal has been sent (analog ROCs only).

toutdelay Delay before the ADC stops sampling after the Token
Out is received back from the DUT (analog ROCs
only).

adctimeout Timeout after which the ADC stops sampling if no
Token Out signal is received (analog ROCs only).
Given in units of 10 BC
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Table 4: TBM Registers: All names and synonyms understood by pxarCore, their reg-
ister equivalent (if applicable) and a short description. In the register address,
X is either e or f for the two TBM cores. A complete overview of the registers
can be found in [17].

Register Name Register Description

base0 = counters 0xX0 Enable/disable PKAM, Auto reset, triggers etc.
base2 = mode 0xX2 TBM mode setting.
base4 = clear = inject 0xX4 Clear stack/trigger counter, inject signals.
base8 = pkam set 0xX8 Set the PKAM counter.
basea = delays 0xXa Set token and ROC data delays.
basec = autoreset 0xXc Configure the auto reset setting.
basee = cores 0xXe TBM α: Adjust the 160 MHz and 400 MHz phases.
nrocs = nrocs1 Token chain length of TBM channel A.
nrocs2 Token chain length of TBM channel B.

83



Table 5: ROC DACs: All names and synonyms understood by pxarCore, their register
equivalent and a short description. Information compiled from [19, 20].

DAC Name Register Description

vdig = vdd 0x01 Regulated digital supply voltage
1600 mV - 2400 mV, depends on
the unregulated digital supply volt-
age.

vana = iana 0x02 Analog current 6 mA - 65 mA.
vsf = vsh 0x03 Current regulator for sample+hold

circuit.
vcomp 0x04 Regulated comparator supply volt-

age.
vwllpr = fbpre 0x07 Preamplifier feedback.
vwllsh = fbsh 0x09 Shaper feedback.
vhlddel = holddel 0x0a Sample+hold delay, 255 is shortest.
vtrim = trimscale 0x0b Global trim scale.
vthrcomp = globalthr 0x0c Global threshold (inverse).
vibias bus 0x0d Digital bus receiver.
voffsetro = voffsetr0 = phoffset 0x11 Pulse-height offset.
vcomp adc = vibias ph = adcpower 0x13 ADC comparator voltage (for digi-

tal ROCs).
viref adc = vibias dac = ibias dac = phscale 0x14 Pulse-height scale.
vicolor 0x16 Column-Or current limit.
vcal 0x19 Calibration pulse height.
caldel 0x1a Calibration pulse delay, 0.4 ns per

DAC.
ctrlreg = ccr 0xfd Bits 0: unused, 1: disable ROC, 2:

Vcal Range.
wbc 0xfe Trigger latency, requires ROC reset

to take effect.
readback = rbreg 0xff Readback mode/register.

vbias sf 0x0e up to psi46digv2 only.
voffsetop 0x0f up to psi46digv2 only.
vion 0x12 up to psi46digv2 only.

vleak comp = vleak 0x05 up to psi46dig only.
vrgpr 0x06 up to psi46dig only.
vrgsh 0x08 up to psi46dig only.
vibiasop = vibias op 0x10 up to psi46dig only.
vibias roc 0x15 up to psi46dig only.

vnpix 0x17 up to psi46xdb only, Pixel sensitiv-
ity for multiplicity trigger.

vsumcol 0x18 up to psi46xdb only, DCol sensitiv-
ity for multiplicity trigger.

vrangetemp 0x1b up to psi46xdb only, temperature
range for on-chip sensor. To be
set last in order to get tempera-
ture readings via lastDAC (see Sec-
tion 5.9).
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Table 6: Possible DTB trigger sources and a short description. All trigger signals can
either be sent to the detector directly or via the internal TBM emulator.

Trigger name Description

none Turns off all trigger sources.

Asynchronous external triggers

async = extern External trigger received via the “Trig” LEMO port of the
DTB. Will be passed to the TBM emulator.

async dir = extern dir External trigger received via the “Trig” LEMO port of the
DTB. Will be passed directly to the detector.

async pg = extern pg External trigger received via the “Trig” LEMO port of the
DTB. This trigger will start one pattern generator cycle. The
input pulse has to be shorter that the total cycle length of the
configured pattern generator. Will be passed directly to the
detector.

Synchronous external triggers

sync Synchronous external trigger received via the “Trig” LEMO
port of the DTB. Will be passed to the TBM emulator.

sync dir Synchronous external trigger received via the “Trig” LEMO
port of the DTB. Will be passed directly to the detector.

Single event injection

single Single signal sent to the TBM emulator.
single dir = single direct Single signal sent directly to the detector.

Internal Trigger Generator

random Generates an internal random trigger with configurable fre-
quency.

random dir Generates an internal random trigger with configurable fre-
quency, sent directly to the detector.

periodic Generates an internal periodic trigger with configurable fre-
quency.

periodic dir Generates an internal periodic trigger with configurable fre-
quency, sent directly to the detector.

Pattern Generator

pg = patterngenerator Loops through the configured patterns of the pattern genera-
tor. All produced signals are sent to the TBM emulator.

pg dir = pg direct Loops through the configured patterns of the pattern gener-
ator. All produced signals are sent directly to the detector.
This is the default setting at start-up and for all tests.

chain Not supported currently.
sync out Activate the synchronous trigger output for daisy-chaining

several DTBs. Not supported currently.
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Table 7: Signal Probes: possible signals for the DTB LEMO scope outputs. “A” marks
the availability at the differential analog scope outputs, while “D” states the
possibility to route the signal to the digital scope outputs. Signals marked
with [X] allow selection of the TBM data channel to be probed (0-7), default is
channel 0.

Signal name A D Description

tin 3 3 Token In signal to the detector.
ctr 3 3 CalTrigReset signal to the detector.
clk 3 3 Clock sent to the detector.
sda 3 3 SDA signal for I2C programming.
tout 3 3 Token Out received from the detector.
rda 3 3 RDA I2C return signal.
off 3 3 no signal.
sdasend 3 Send signal for I2C SDA.
pgtok 3 Pattern Generator Token is generated.
pgtrg 3 Pattern Generator Trigger is generated.
pgcal 3 Pattern Generator Calibrate is generated.
pgresr = pgresroc 3 Pattern Generator ROC Reset is generated.
pgrest = pgrestbm 3 Pattern Generator TBM Reset is generated.
pgsync 3 Pattern Generator Sync signal is generated.
clkp = clkpresent 3 External clock is present (high) or not (low).
clkg = clkgood 3 External clock is good (high) or not (low).
daq0wr 3 Write signal of DAQ channel 0 (ADC/DESER160).
crc 3 Internal FPGA CRC check of the firmware (inactive).
adcrunning 3 ADC is recording data (in DAQ).
adcrun 3 ADC is enabled and can be started.
adcpgate 3 Stop signal for ADC (e.g. token out signal received)
adcstart 3 Same as adcrun but delayed by the start delay.
adcsgate 3 Start signal for ADC, gated with adcrun.
adcs 3 ADC start signal (e.g. token in signal received).
ds gate 3 DESER400 gate signal.
deser frameerror 3 [X] DESER400 error: failed synchronization.
deser codeerror 3 [X] DESER400 error: invalid 5 bit word received.
deser error 3 [X] DESER400 errors encountered.
deser header 3 [X] DESER400 event header detected.
deser packet 3 [X] DESER400 data packet received.
deser tbmhdr 3 [X] DESER400: TBM header detected.
deser rochdr 3 [X] DESER400: ROC header detected.
deser tbmtrl 3 [X] DESER400: TBM trailer detected.
deser idle error 3 [X] DESER400 error: no TBM trailer received.
deser header error 3 [X] DESER400 error: only TBM header received.
sdata1 3 Differential input signal, line 1.
sdata2 3 Differential input signal, line 2.
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Table 8: Possible Pattern Generator signals and a short description.

Signal name Description

none = empty = delay No signal. This can be used to add additional delays in the
generator pattern.

pg tok = tok = token Sends a readout token out. This should only be used when
sending the pattern generator signals directly to the device
(see Table 6).

trigger = pg trg = trg Sends a L1 trigger signal out.
calibrate = pg cal = cal Send a calibrate pulse to the DUT.
resetroc = pg resr = resr Sends a Reset signal to all attached ROCs.
resettbm = pg rest = rest Sends a Reset signal to all TBMs.
sync = pg sync Synchronization signal for DTB daisy chaining, currently un-

used.
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