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Abstract

This paper presents measurements of distributions of charged particles which are produced
in proton–proton collisions at a centre-of-mass energy of

√
s = 8 TeV and recorded by the

ATLAS detector at the LHC. A special dataset recorded in 2012 with a small number of
interactions per beam crossing (below 0.004) and corresponding to an integrated luminosity
of 160 µb−1 was used. A minimum-bias trigger was utilised to select a data sample of more
than 9 million collision events. The multiplicity, pseudorapidity, and transverse momentum
distributions of charged particles are shown in different regions of kinematics and charged-
particle multiplicity, including measurements of final states at high multiplicity. The results
are corrected for detector effects and are compared to the predictions of various Monte Carlo
event generator models which simulate the full hadronic final state.
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1. Introduction

Measurements of charged-particle spectra probe strong interactions at low momentum transfers. Such
measurements have been made in lower-energy e+e−, ep and hadron collisions [1–11] and at the CERN
Large Hadron Collider (LHC) [12–23]. This paper presents measurements of multiplicity distributions,
as well as transverse momentum and pseudorapidity spectra, for primary charged particles produced in
pp collisions recorded by the ATLAS experiment [24] at the LHC at 8 TeV centre-of-mass energy.

Although a description of low-energy processes within a perturbative framework is not possible, predic-
tions can be made with phenomenological models inspired by quantum chromodynamics (QCD). Data
are used to constrain such models and gain further insight into the particle dynamics of the low transverse
momentum regime. Furthermore, low-pT processes, arising from pile-up in which there is more than one
interaction per beam crossing, may also affect the topologies of events involving an interaction with a
high pT scale. An understanding of soft QCD processes is therefore important both in its own right and
as a means of reducing systematic uncertainties in measurements of high-pT phenomena.

The measurements presented in this paper use a methodology similar to that used at lower centre-of-mass
energies at ATLAS [18]. Events were selected from data taken in 2012 with a trigger overlapping with
the acceptance of the tracking volume. This corresponds to a minimum-bias dataset based on inelastic
pp interactions. The term minimum bias is taken to refer to trigger and event selections which are as
unrestrictive as possible for the pp-induced final states. The integrated luminosity of the data sample
under study is 160 µb−1. Owing to improvements in understanding the material inside and around the
ATLAS inner detector (ID), the uncertainties in the measured spectra are reduced by as much as 30–50 %
compared to the analogous measurements at 7 TeV centre-of-mass energy [18].

The following distributions are measured:

1/Nev · dNch/dη , 1/(2πpTNev) · d2Nch/(dη dpT) , 1/Nev · dNev/dnch , and 〈pT〉 vs nch .

Here, η is the particle’s pseudorapidity,1 pT is the component of the charged-particle momentum which
is transverse to the beam direction,2 nch is the number of primary charged particles in an event, Nev
is the event yield for a given event selection, and Nch is the total number of primary charged particles
in all selected events in the data sample. A primary charged particle is defined as a charged particle
with a mean lifetime τ > 300 ps, which is either directly produced in pp interactions or from decays of
directly produced particles with τ < 30 ps; particles produced from decays of particles with τ > 30 ps
are considered as secondary particles and are thus excluded. Primary charged particles are furthermore
required to satisfy the kinematic selection criteria of |η| < 2.5 and either pT > 100 MeV or 500 MeV.

In order to make a more complete study of particle properties in minimum-bias events, results are given for
different multiplicity and kinematic selections (termed phase spaces). The most inclusive phase spaces
correspond to events with a minimum multiplicity nch ≥ 2 or 1 and contain primary charged particles

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis.
The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). Angular distance is measured in units of
∆R ≡

√
(∆η)2 + (∆φ)2.

2 The factor 2πpT in the pT spectrum comes from the Lorentz-invariant definition of the cross-section in terms of d3p. The
results could thus be interpreted as the massless approximation to d3p.
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possessing a minimum transverse momentum pT > 100 MeV or 500 MeV, respectively. Primary-charged-
particle spectra are also shown for higher-multiplicity events (pT > 500 MeV, nch ≥ 6, 20 and 50) of
which the latter two event types have hitherto not been measured by ATLAS. Finally, the average primary-
charged-particle densities at central pseudorapidity are compared to existing measurements at different
centre-of-mass energies.

2. ATLAS detector

The ATLAS detector covers almost the whole solid angle around the collision point with layers of tracking
detectors, calorimeters and muon chambers. The tracking modules and the trigger system are of most
relevance for the presented measurements.

The inner detector has full coverage in φ and covers the pseudorapidity range |η| < 2.5. It comprises a
silicon pixel detector (Pixel), a silicon microstrip detector (SCT) and a transition radiation tracker (TRT).
These detectors cover a sensitive radial distance from the interaction point of 50.5–150 mm, 299–560 mm
and 563–1066 mm, respectively, and are immersed in a 2 T axial magnetic field provided by a solenoid.
The inner-detector barrel (end-cap) parts consist of 3 (2 × 3) Pixel layers, 4 (2 × 9) double-layers of
single-sided silicon microstrips with a 40 mrad stereo angle, and 73 (2 × 160) layers of TRT straws.
Typical position resolutions are 10, 17 and 130 µm for the r–φ co-ordinate and, in the case of the Pixel
and SCT, 115 and 580 µm for the second measured co-ordinate. A track from a primary charged particle
traversing the barrel detector would typically have 11 silicon hits 3 (3 pixel clusters and 8 strip clusters)
and more than 30 TRT straw hits.

The ATLAS detector has a three-level trigger system: Level 1 (L1), Level 2 (L2) and Event Filter (EF).
For the presented measurements, the trigger relies on the L1 signals from the minimum-bias trigger
scintillators (MBTS). The MBTS are positioned at each end of the detector in front of the liquid-argon
end-cap calorimeter cryostats at z = ±3.56 m. They are segmented into eight sectors in azimuth and two
rings in pseudorapidity and cover the range 2.08 < |η| < 3.75. The MBTS triggers are configured to
require at least one or two hits above threshold from either side of the detector.4

3. Monte Carlo simulation

The following Monte Carlo (MC) models of inclusive hadron–hadron interactions were used to generate
event samples. These models employ different settings of model parameters (referred to as tunes) which
were optimised to reproduce existing experimental data.

• Pythia 8 [25] and Pythia 6 [26]. In these models, the total inelastic cross-section is separated into
non-diffractive (ND) processes, dominated by t-channel gluon exchange, and diffractive processes
where a colour-singlet object is exchanged. Multiple parton–parton interactions (MPI) contribute
to multiplicity fluctuations and are simulated as part of the ND processes. The diffractive processes
consist of single-diffractive dissociation (SD) and double-diffractive dissociation (DD). Pythia 8

3 A hit is a measurement point in a sensitive detector element which can be assigned to a reconstructed track.
4 In order to keep the readout rates from the MBTS trigger streams approximately constant during the run in which the data

were collected, pre-scale factors that evolved during the run were applied for each trigger. Therefore, a combination of both
L1 MBTS triggers was used to maximise the data yield and reduce statistical uncertainties.
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is used with the A2 [27] and Monash [28] tunes. The A2 tune was performed on minimum-bias
and underlying-event data, utilising the MSTW2008 LO [29] parton distribution function (PDF).
The Monash tune was made using a re-analysis of fragmentation-sensitive measurements with e+e−

collisions, combined with minimum-bias and underlying-event tuning for hadron–hadron data, util-
ising the NNPDF23LO PDF. Pythia 6 employs the AMBT2B [30] tune with the CTEQ6L1 [31]
PDF. The AMBT2B tune was evaluated using jet and minimum-bias data.

• Epos [32]. This model implements a parton-based Gribov–Regge theory [33], which is an effect-
ive QCD-inspired field theory describing hard and soft scattering simultaneously. Epos has been
primarily designed for Pb+Pb interactions and cosmic air showers. The LHC tune [34] is used here,
which modifies the modelling of radial flow to be more applicable for small-volume, high-density
regions, as are found in pp interactions.

• Qgsjet-II [35] using the default tune. This model provides a phenomenological treatment of had-
ronic and nuclear interactions within a Reggeon field theory framework, and includes soft and semi-
hard parton processes within the “semi-hard pomeron” approach. Qgsjet-II was also developed for
the simulation of cosmic rays. Qgsjet-II and Epos calculations do not rely on the standard PDFs as
used in the Pythia generators.

The Pythia 8 A2, Pythia 6 AMBT2B and Epos LHC models were used to generate event samples which
were processed by the Geant4-based [36] ATLAS simulation framework [37]. The simulation also takes
into account inactive and inefficient regions of the ATLAS detector. The resulting datasets were used to
derive corrections for detector effects and to evaluate systematic uncertainties.

Comparisons to the data corrected to particle level are made with generated events using the Pythia 8 A2
and Monash tunes, the Epos LHC tune, and the default Qgsjet-II tune. These comparisons are shown in
Section 10.

4. Event selection

A dedicated LHC pp run was used for which the average number of pp interactions per bunch cross-
ing, 〈µ〉, was low (0.0028 < µ < 0.004). The maximum instantaneous luminosity was approximately
1.8 × 1028 cm−2 s−1. Events were selected for which all subcomponents of the ID were operational and
the solenoid magnet was on. Only events from colliding proton bunches in which the MBTS trigger recor-
ded one or more modules above threshold on either side were considered. The MBTS trigger efficiency
is described in detail in Section 7.1.

The following event selection criteria were applied:

• A primary vertex with at least two associated tracks constrained to the luminous z-region of the
measured beam position (termed beam spot) was required. The tracks were required to possess
pT > 100 MeV and their transverse distance of closest approach to the beam spot (dBS

0 ) was restric-
ted such that |dBS

0 | < 4 mm.

• Events were rejected if they had at least one additional vertex with four or more associated tracks.
Following this selection, the estimated fraction of remaining pile-up events with more than one
pp interaction, based on 〈µ〉, was about 0.002 %. Events containing additional vertices with less
than four tracks are dominated by split vertices, where the vertex reconstruction algorithm wrongly
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reconstructs two vertices from tracks which actually originate from a single vertex [38], and by
secondary interactions being reconstructed as another primary vertex. The fraction of events with
split vertices or secondary interactions which are rejected by this criterion was estimated from
simulation to be 0.01 %, which is negligible and therefore ignored.

• Depending on the phase space under study, additional selections were made on track multiplicity
given the required minimum transverse momentum possessed by a track. A minimum number of
selected tracks nsel ≥ 2 with transverse momentum pT > 100 MeV, or nsel ≥ 1 with pT > 500 MeV,
which satisfy the constraints given in Section 5, was required.

Following the application of the above selections, the event yield is 9.2× 106 for the most inclusive phase
space at nsel ≥ 2 and pT > 100 MeV. The phase space with the lowest number of events (∼ 6.4 × 104)
corresponds to nsel ≥ 50 and pT > 500 MeV.

5. Track reconstruction and selection

Tracks were reconstructed using two approaches as in previous studies at
√

s = 7 TeV [18]. Firstly, an
inside-out algorithm, starting the pattern recognition from clusters in the Pixel detector, was employed.
An additional algorithm with relaxed requirements on the number of silicon hits was employed to re-
construct low-momentum tracks from hits which were unused in the first approach. This latter method
increases the overall efficiency of finding low-pT tracks (mostly 100 < pT < 400 MeV) by up to a factor
of two.

To ensure that well-reconstructed tracks were used at this step, the pseudorapidity and transverse mo-
mentum must satisfy |η| < 2.5 and pT > 100 MeV. A number of further quality criteria were also applied.
The track must have at least one hit in the pixel detector. A hit in the innermost layer of the pixel de-
tector was required should the extrapolated track have passed through an active region in that layer. At
least two, four or six SCT hits are required to be associated with a track for 100 < pT ≤ 200 MeV,
200 < pT ≤ 300 MeV, or pT > 300 MeV, respectively. The SCT hit requirements are relaxed in the event
of a track trajectory passing through inactive SCT modules. The probability of the track hypothesis being
correct, estimated using the track fit χ2 and ndof , was required to be greater than 0.01 for pT > 10 GeV in
order to remove tracks with a mis-measured high pT due to interactions with the material or combinatorial
fake high-pT tracks. The distance of closest approach in the transverse (|dPV

0 |) and the longitudinal plane
(|zPV

0 ·sin θ|) was also required to be less than 1.5 mm with respect to the primary vertex. These constraints
reduce the total fraction of non-primary tracks in the data from around 6 % to 2 % (see Section 6). The
average efficiency to reconstruct a track above pT > 100 MeV is approximately 70 %. The efficiency of
the two impact parameter requirements is around 94 %, i.e. applied together they remove approximately
6 % of all tracks that would pass the other track selection criteria.

Figure 1(a) shows the normalised distribution of all selected tracks as a function of pseudorapidity in the
most inclusive phase space. The models reproduce the data well with discrepancies in η at a level of up
to 3 %, which stem from the imperfect description of the pT spectra (Figure 1(b)) by the models, where
discrepancies of up to ∼ 30 % are visible. Figure 2 shows the normalised distribution of the fraction of
all selected events as a function of track multiplicity per event.

The distributions of the average number of hits per reconstructed track in data and MC simulation as a
function of pseudorapidity are shown in Figure 10 in Appendix A, using events selected for the most
inclusive phase space.
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Figure 1: Distribution of the fraction of selected tracks as a function of (a) pseudorapidity, η, and (b) transverse
momentum, pT. The predictions of MC models following detector simulation are compared to the data. Bin entries
are scaled by the inverse bin width and the resulting distributions are normalised to unity.

6. Backgrounds

Background events and tracks can arise from a number of sources, which are described by order of
importance.

Corrections were made to the charged-particle spectra to remove the contribution of charged non-primary
particles, i.e. those not originating from the pp collision. Non-primary particles are mainly due to had-
ronic interactions, photon conversions and weak decays. MC simulations of the shape of the dPV

0 dis-
tributions were used to quantify the fractions of primaries, non-primaries from electrons and other non-
primaries which satisfy the track quality criteria. Using the same method as in Ref. [18], fits were made
to the data using dPV

0 distribution templates, taken from the MC simulation, to assess the fractions of the
different classes of charged particles. The fitted impact parameter distributions are shown in Figure 11 in
Appendix B. The total non-primary fraction was about 3 % in the 100 < pT < 150 MeV range and about
2 % at higher pT values. The relative contribution of electrons (including those from rare Dalitz decays)
to this fraction was about 35 % at pT < 150 MeV and dropped below 15 % with rising pT. Systematic
uncertainties due to aspects of the template fitting method as well as the choice of MC models were added
in quadrature.

In contrast to previous measurements at lower energies [14, 18], and in line with the 13 TeV measure-
ment [23], charged particles with a mean lifetime 30 < τ < 300 ps (mostly charged strange baryons)
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Figure 2: The fraction of selected events as a function of the track multiplicity nsel per event. The predictions of
MC models following detector simulation are compared to the data. Bin entries are scaled by the inverse bin width
and the resulting distributions are normalised to unity.

are considered to be non-stable. The reconstruction efficiency of these short-lived particles and their
decay products is strongly momentum-dependent and close to zero for most particles within the meas-
ured kinematic range. However, the predicted fraction of the total generated particles associated with
charged strange baryons varies with pT as well as between MC models. For example, the fractions pre-
dicted by Pythia 8 A2 and Epos LHC are 5 % and 13 %, respectively for pT ∼ 5 GeV. To lower the
model dependence on the overall track reconstruction efficiency, the contribution of such particles to the
distributions under study was excluded from the measurement definition. The residual small contamina-
tion of reconstructed tracks, which is less than 0.01 % in η and up to 5 % at high transverse momentum
(30 < pT < 50 GeV), was estimated from simulation using Epos LHC and subtracted, and a systematic
uncertainty was assigned following comparisons of the predictions of different MC models.

Fake tracks are reconstructed either due to detector noise or shared hits from more than one charged
particle. These were estimated in simulation to be less than 0.1 % of all tracks.

Beam-induced background, i.e. beam–gas interactions and scattering from up-stream collimators, was
estimated using unpaired bunches. Beam-induced backgrounds as well as pile-up contamination were
reduced to a negligible level by the track-level and event-level criteria described in Sections 4 and 5. The
cosmic–ray background was found to be negligible using the techniques in Ref. [18].
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7. Selection efficiencies

In order to obtain inclusive spectra for primary charged particles, the data are corrected from detector
level to particle level, using corrections which account for inefficiencies due to trigger selection, vertex
and track reconstruction. The methods used to obtain these efficiencies and their systematic uncertainties
are described in the following sections.

7.1. Trigger efficiency

The trigger efficiency, εtrig, was measured from a data sample selected using a random control trigger
in coincidence with colliding bunches with a minimum requirement of two Pixel and three SCT meas-
urements. For this efficiency, the requirement of a reconstructed primary vertex was removed from the
selection of events to account for possible correlations between the trigger and vertex reconstruction ef-
ficiencies. The trigger efficiency was therefore parameterised as a function of nBS

sel , which is defined as
the number of tracks in an event that satisfy all track quality criteria; however, instead of the nominal
requirements for the impact parameters dPV

0 and zPV
0 , only a constraint on the transverse impact parameter

with respect to the beam spot, |dBS
0 | < 1.8 mm, was applied in order to minimise correlations between the

trigger and vertex efficiency corrections.

The trigger efficiency was calculated as the ratio of events triggered by the control trigger, in which the
MBTS trigger also accepted the event, to the total number of triggered events in the control sample. It was
determined separately for the trigger requirement in which the signal in at least one or two of the MBTS
modules was above threshold. In order to maximise the recorded data yield, both triggers were combined
such that either of the two triggers was required to trigger the event, in which case the corresponding
trigger efficiency was applied; this was done due to pre-scale factors that evolved differently for each
trigger during the run. The result for the trigger requirement in which the signal in at least one of the
MBTS modules was above threshold is presented in Figure 3(a) as a function of nBS

sel for the most inclusive
phase space. In the pT > 500 MeV phase space, the efficiency was measured to be above 98 % for nBS

sel = 1
and it rises more rapidly to 100 % at higher track multiplicities than in the most inclusive phase space.
The efficiency for the trigger requirement in which a signal above threshold was required in at least two
of the MBTS modules is lower by about 4 % for the (nBS

sel = 2, pT > 100 MeV) event category, and about
2 % lower for events with nBS

sel = 1 and pT > 500 MeV. It rises more slowly to 100 % as a function of nBS
sel

for both pT requirements. These additional results are shown in Figure 12 in Appendix C.

The trigger requirement was found to introduce no observable bias in the pT and η distributions of selected
tracks beyond the statistical uncertainties of the data recorded with the control trigger. The systematic
uncertainties shown in Figure 3(a) due to beam-induced background and tracks from secondary particles
were estimated from differences in the trigger efficiency by varying the impact parameter requirements
in the track selection. The total systematic uncertainty on the trigger efficiency in the nBS

sel ≥ 2, pT ≥

100 MeV phase space was 0.7 % for nBS
sel = 2, decreasing rapidly at higher track multiplicities. This

uncertainty is very small compared to those from other sources.

7.2. Vertex reconstruction efficiency

The vertex reconstruction efficiency, εvtx, was determined for data and MC simulation from the ratio of
selected events which satisfy the trigger requirement and contain a reconstructed vertex to the total num-
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ber of triggered events. The expected contribution from beam-induced background events is estimated
using the same method as described in Ref. [18] and subtracted before measuring the efficiency. The ver-
tex reconstruction efficiency was parameterised as a function of nBS

sel , using the same track quality criteria
with modified impact parameter constraints as for the trigger efficiency.
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Figure 3: Selection efficiencies for 8 TeV data in the most inclusive measured phase space with transverse mo-
mentum pT > 100 MeV: (a) The L1_MBTS_1 trigger efficiency as a function of the number of selected tracks, nBS

sel .
L1_MBTS_1 is the requirement that in at least one module of the minimum-bias trigger scintillators a signal above
threshold was registered. (b) The vertex reconstruction efficiency as a function of the number of selected tracks,
nBS

sel . (c) The track reconstruction efficiency as a function of the pseudorapidity, η. (d) The track reconstruction
efficiency as a function of the transverse momentum, pT. The shaded areas represent the sum of systematic and
statistical errors.

The result is shown in Figure 3(b) as a function of nBS
sel for events in the most inclusive phase space

with pT > 100 MeV. The efficiency was measured to be approximately 89 % for nBS
sel = 2, rapidly

rising to 100 % at higher track multiplicities. For the pT > 500 MeV phase space, the result is given in
Figure 13(a) in Appendix D. For events with nBS

sel = 2 in the pT > 100 MeV phase space, the efficiency
was parameterised as a function of the minimum difference in longitudinal impact parameter (∆zmin

0 ) of
track pairs, as well as the minimum transverse momentum (pmin

T ) of selected tracks in the event. For
events with nBS

sel = 1 in the pT > 500 MeV phase space, the efficiency was parameterised as a function of
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η of the single track.

The systematic uncertainty was estimated from adding in quadrature the difference between the nominal
vertex reconstruction efficiency, measured with beam-induced background removal, and either (1) the
vertex reconstruction efficiency measured without beam-induced background removal, or (2) the vertex
reconstruction efficiency with a modified impact parameter constraint. The total uncertainty is below 3 %
for nBS

sel = 2 in the most inclusive phase space, rapidly decreasing at higher track multiplicities. This
uncertainty is small compared to those from other sources, except at very low track multiplicities.

7.3. Track reconstruction efficiency

The primary track reconstruction efficiency, εtrk, was determined from MC simulation and parameterised
in two-dimensional bins of pT and η. This efficiency includes the efficiency of the track selection require-
ments (see Section 5). It is defined as the ratio:

εtrk(pT, η) =
Nmatched

rec (pgen
T , ηgen)

Ngen(pgen
T , ηgen)

, (1)

where pgen
T and ηgen are properties of the generated particle, Nmatched

rec (pgen
T , ηgen) is the number of recon-

structed tracks matched to a generated primary charged particle in a (pgen
T , ηgen) bin, and Ngen(pgen

T , ηgen)
is the number of generated primary charged particles in that bin. A track is considered matched to a
generated particle if that particle has the smallest angular distance ∆R to the track, if ∆R < 0.15, and if
the particle trajectory is compatible with the position of at least one pixel hit of the associated track.

The resulting reconstruction efficiency as a function of η integrated over pT is shown in Figure 3(c) for the
most inclusive phase space, and in Figure 13(b) in Appendix D for the phase space given by nsel ≥ 1 and
pT > 500 MeV. The shape of the η distribution is strongly affected by the amount of material traversed
by charged particles, in particular the passive material in supporting structures between the Pixel and
SCT detector. A larger amount of passive material is located at high |η| and increases the probability of
particles to undergo particle–matter interactions such as hadronic interactions, which reduces the track
reconstruction efficiency. The approximately constant efficiency at |η| ∼ 2.1 is due to the particles passing
through an increasing number of layers in the ID end-cap. Figure 3(d) shows the efficiency as a function
of pT integrated over η. The pT dependence is largely due to the requirement on the minimum number of
silicon hits in the track reconstruction algorithms, which is less likely to be fulfilled by lower-pT tracks.

As the track reconstruction efficiency is determined from MC simulation, its systematic uncertainties
result from model dependencies and from the uncertainty of the detector material description used in
the simulation. Since the generated particle composition and the reconstructed track composition differs
between MC tunes, a small model-dependence of the track reconstruction efficiency can be observed,
leading to an additional systematic uncertainty due to the particle composition. The impact of the choice
of physics models for hadronic interactions in Geant4 simulation is also taken into account.

The amount of material within the ID was constrained to within ±5 %, based on extensive studies of ma-
terial interactions [39]. The systematic uncertainties on the track reconstruction efficiencies were obtained
by comparing the predictions of simulations which assume the nominal ID material distribution with two
special simulations in which the assumed material was varied. For one simulation, the amount of non-
sensitive ID material was increased by 5 % in terms of radiation length X0. In the other, the Pixel service
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material was increased by 10 % in X0. These studies give rise to an average systematic uncertainty on the
track reconstruction efficiency of 1.6–1.7 % in the central region and up to 3.5 % in the forward region,
with larger uncertainties up to 8 % for particles with very low transverse momenta of pT < 150 MeV.
This is the dominant contribution to the total systematic uncertainty in most regions of the measured dis-
tributions. The reduction of this uncertainty with respect to measurements at

√
s = 7 TeV, due to our

improved knowledge of the ID material distribution, is about 50 % in the central region and rises to as
much as 65 % in the forward region.

Systematic uncertainties due to simulation of the efficiency of the requirements on the number of hits
associated with a track, the impact parameter requirements, and the efficiency of the track-fit χ2 probabil-
ity requirement were found by comparing each selection efficiency in data and MC simulation. The sum
in quadrature of these uncertainties varies between 0.5 % and 1.6 % for all η values and pT < 10 GeV,
and increases to as much as 8 % for high-momentum tracks above pT > 30 GeV in the most forward
regions.

The systematic uncertainty due to different fractions of positively and negatively charged tracks in data
and MC simulation was found to be negligible.

The total uncertainty of the track reconstruction efficiency, shown in Figures 3(c) and 3(d), was obtained
by adding all effects in quadrature and is dominated by the uncertainty from the material description.

8. Correction procedure

In order to obtain inclusive particle-level distributions, all measured detector-level distributions were
corrected by an event-by-event weight, and track distributions were additionally corrected by a track-by-
track weight, to compensate for the inefficiencies of the data selection and the reconstruction algorithms,
as well as for contaminations due to various sources of background. Furthermore, a Bayesian unfolding
procedure [40] was applied to compensate for migration and resolution effects in the observed multiplicity
and transverse momentum distributions.

8.1. Event and track weights

All selected events were corrected with an event-by-event weight to compensate for the inefficiencies
of the MBTS trigger selection and the vertex reconstruction algorithm. The total event weight wev is
parameterised as:

wev(nBS
sel , x) =

1
εtrig(nBS

sel ) · εvtx(nBS
sel , x)

. (2)

The parameter x represents a combination of pmin
T for all selected tracks, the minimum difference in

longitudinal impact parameter (∆zmin
0 ) for track pairs, and η of a single track (for events with only one

selected track), as described in Section 7.2. In addition, the MC simulation events were weighted such
that the vertex z-distribution agrees with that observed in data.

Furthermore, a track-by-track weight, wtrk(pT, η), was estimated for each selected track as a function of
the transverse momentum and pseudorapidity assigned to the track, based on the track reconstruction
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efficiency, εtrk(pT, η), the fraction of non-primary tracks, fnonp(pT, η), the fraction of tracks associated
with a strange baryon, fsb(pT, η), and the fraction of additional tracks corresponding to particles outside
the kinematic range but migrating into the kinematic region due to resolution effects, fokr(pT, η):

wtrk(pT, η) =
1 − fnonp(pT, η) − fsb(pT, η) − fokr(pT, η)

εtrk(pT, η)
. (3)

The quantities εtrk(pT, η), fsb(pT, η) and fokr(pT, η) were evaluated using MC models. The quantification
of the contamination due to non-primary tracks and strange baryons is described in Section 6.

8.2. Correction to dNev/dnch

Only the event-level corrections for the trigger and vertex inefficiencies were applied to the charged-
particle multiplicity distribution. Thereafter, a Bayesian unfolding process was applied to correct the
observed multiplicity nsel to the true number of primary charged particles nch. This is the same procedure
as was applied in Ref. [18], using five iterations in the pT > 100 MeV phase space, and four iterations
for pT > 500 MeV. After the unfolding, a correction was made to the resulting primary-charged-particle
multiplicity distribution to account for events migrating out of the multiplicity range required by the phase
space.

The corrected distribution dNev/dnch was integrated over nch to give the total number of events Nev.
The quantity Nev was then used to normalise the distributions 1/(2πpTNev) · d2Nch/(dη dpT) and 1/Nev ·

dNch/dη, as well as the multiplicity distribution itself, 1/Nev · dNev/dnch.

8.3. Correction to 1/(2πpTNev) · d2Nch/(dη dpT) and 1/Nev · dNch/dη

Corrections were made for trigger requirements, vertex and track reconstruction inefficiencies, migration
effects due to the resolution of reconstructed track parameters, and the influence of non-primary tracks. A
Bayesian unfolding method, similar to that used to correct the nch spectra, was then employed to give the
1/(2πpTNev) · d2Nch/(dη dpT) distribution, using four iterations in the pT > 100 MeV phase space, and
up to five iterations for pT > 500 MeV. Fake high-pT tracks are already suppressed by the χ2 probability
requirement in the track selection, and remaining fake tracks are also unfolded for by this procedure.

8.4. Correction to 〈pT〉 versus nch

The 〈pT〉 versus nch distribution was evaluated in the following way. Corrections were made to two separ-
ate spectra: the distribution of the Σi pT(i) (where the summation is made over the transverse momentum
of all selected tracks in all events within a certain range of track multiplicity) versus the number of se-
lected tracks per event, and the distribution of the sum of all selected tracks in all events within a certain
range of track multiplicity versus the number of selected tracks per event. The distributions were first
corrected with the appropriate track weights, which was followed by Bayesian unfolding. Finally, the
ratio of the two spectra was taken to obtain the corrected 〈pT〉 versus nch distribution.
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9. Systematic uncertainties

In the analysis procedure, most of the individual sources of systematic uncertainty given below were
applied separately as variations of the event or track weights, producing new distributions which were
used to obtain alternative versions of the final corrected and unfolded results. Other sources were assessed
by varying the input distributions (e.g. in nch distributions, the multiplicity of each event was randomly
varied with probabilities corresponding to the uncertainties on the track reconstruction efficiencies) or
unfolding matrices (using statistical variations, or matrices obtained from different MC generators) which
were used for the Bayesian unfolding procedure, thus producing the alternative results. In all these cases,
the differences from the nominal distributions were taken as systematic uncertainties.

The following sources of systematic uncertainty in the corrected distributions were considered.

• Incomplete knowledge of the material distribution in the ID affects the measured spectra by between
1 % and 8 %. This source of systematic uncertainty is described in detail in Section 7.3. The total
uncertainty due to the material distribution is typically less than 5 % over all distributions other
than at pT < 150 MeV in the transverse momentum spectrum, at nch ≥ 120 in the multiplicity
spectrum of the pT > 100 MeV phase space, and at nch ≥ 70 in the multiplicity spectrum of the
pT > 500 MeV phase space. This is the dominant uncertainty on 1/Nev · dNch/dη, and the leading
or next-to-leading uncertainty in all other distributions.

• Different pT spectra in the MC models and data lead to differences of up to 2 % in the average
track reconstruction efficiency per nch interval. For the final dNev/dnch spectra in the most inclusive
phase space, this effect becomes as large as 12 % at the highest multiplicities.

• The relative uncertainty on the fraction of non-primary tracks is 15 %, while the relative uncertainty
on the fraction of reconstructed strange baryons is 50 %, as described in Section 6. The total
uncertainty of both sources in the corrected distributions is 3.5 % or smaller and is not a dominant
uncertainty in any region.

• Different particle types have different reconstruction efficiencies. For example, at pT ∼ 1 GeV the
reconstruction efficiency of charged pions is ∼ 82 %, whereas for kaons and protons it is ∼ 80 %
and ∼ 75 %, respectively. Although the MC generators give consistent efficiencies, the relative
fractions of these generated particles vary between the models. For example, Pythia 8 A2 (Epos
LHC) gives fractions of 77 % (72 %), 14 % (18 %) and 9 % (10 %) for generated pions, kaons and
protons, respectively, at pT ∼ 1 GeV. Differences in particle composition therefore lead to an
uncertainty on the overall track reconstruction efficiency, which varies between 0.2 % and 1 % for
the corrected distributions. This is not a dominant uncertainty in any region.

• Systematic uncertainties on the overall track reconstruction efficiency that are associated with the
choice of track–particle matching algorithms (0.4 %) and the choice of physics models for MC
simulation (0.3 %) are also accounted for, and are not a dominant uncertainty in any region of the
corrected distributions.

• To account for momentum resolution differences between data and MC simulation, which can
arise, for example, via imperfect knowledge of the detector alignment, an uncertainty of 5 % was
assigned to tracks with pT < 150 MeV. At higher values of pT a one-sided uncertainty of −7 %
for 10 < pT < 30 GeV and −9 % for pT > 30 GeV tracks was assigned, as in the previous work at
√

s = 7 TeV [18], due to the steeply falling pT spectrum in combination with the lower momentum
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resolution in data. This is combined with a one-sided uncertainty due to the estimated fraction of
mis-measured high-pT tracks, which increases with transverse momentum to as much as −16 % for
pT > 30 GeV tracks. The effect on the corrected distributions is typically negligible, except in the
corrected pT spectra.

• Differences in the efficiencies of track quality criteria between data and MC simulation give rise
to systematic uncertainties in the final spectra which are typically below 1 %, except at transverse
momenta above 10 GeV and at high multiplicities, reaching as much as 6 % and 5 %, respectively.
However, this remains a small uncertainty compared to those from other sources in the same re-
gions.

• Event-level uncertainties on the trigger efficiency and vertex reconstruction efficiency give rise to
systematic uncertainties of up to 3 % in the lowest multiplicity intervals of the dNev/dnch spectra.
However, even in these regions this uncertainty is dominated by other sources.

• For each presented distribution, closure tests were performed. A closure test applies the full nom-
inal correction procedure to reconstructed MC simulation events and quantifies the degree to which
the generated particle-level distribution is reproduced.

The degree of non-closure is typically less than 1 % and/or below the level of statistical uncertain-
ties. Larger non-closures were found for the lower end of the pT spectrum, 100 < pT < 150 MeV,
where the non-closure is found to be 6 % due to momentum resolution effects, and in the low-
multiplicity region of the average transverse momentum 〈pT〉 as a function of nch, with up to 4 %
non-closure in the pT > 100 MeV phase space due to assumptions made in the unfolding procedure.
All of these non-closures were taken into account as an additional source of systematic uncertainty.

• Uncertainties associated with the unfolding technique are estimated as the degree of non-closure
following a modified correction procedure, i.e. obtained in corrected multiplicities after vary-
ing the input spectra and unfolding matrix. This is the dominant uncertainty on 1/(2πpTNev) ·
d2Nch/(dη dpT) for transverse momentum values of pT > 10 GeV, for which the uncertainty varies
from 6 to 20 %, as well as over the entire range of 〈pT〉 versus nch. It is also the largest uncertainty
in the low and high multiplicity regions of dNev/dnch, for which it has values between 1 % and
12 %.

All sources of systematic uncertainty are added in quadrature, thus yielding the total systematic uncertain-
ties which are shown as shaded areas in the figures in the next section. The total systematic uncertainties
in the two most inclusive phase spaces, at pT > 100 MeV (pT > 500 MeV), range from 1.8 to 3.6 % (1.3 to
2.1 %) in the final 1/Nev ·dNch/dη distributions, from 1.6 to 30 % in the final 1/(2πpTNev)·d2Nch/(dη dpT)
distributions, from 3 to 21 % (2 to 16 %) in the final dNev/dnch spectra, and from 1.3 to 4 % (0.5 to 2.2 %)
in the final 〈pT〉 versus nch distributions. The lowest uncertainties within these ranges are found at central
pseudorapidity (η = 0), around medium transverse momentum values (pT ∼ 1 GeV), and around average
multiplicity values of nch ∼ 20.

10. Results

Distributions of primary-charged-particle pseudorapidity, 1/Nev ·dNch/dη, are given in Figures 4(a), 5(a),
6(a), 7(a) and 8(a) for all measured phase spaces. The distribution corresponding to the phase space
nch ≥ 2 and pT > 100 MeV rises as |η| increases, peaking at |η| ∼ 2 before falling. For the phase space
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Figure 4: Distributions of primary charged particles in events for which nch ≥ 2, pT > 100 MeV and |η| < 2.5 as
a function of (a) pseudorapidity, η, (b) transverse momentum, pT, (c) multiplicity, nch, and (d) average transverse
momentum, 〈pT〉, versus multiplicity. The data, represented by dots, are compared to various particle-level MC
predictions, which are shown by curves. The shaded areas around the data points represent the total statistical and
systematic uncertainties added in quadrature.
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Figure 5: Distributions of primary charged particles in events for which nch ≥ 1, pT > 500 MeV and |η| < 2.5 as
a function of (a) pseudorapidity, η, (b) transverse momentum, pT, (c) multiplicity, nch, and (d) average transverse
momentum, 〈pT〉, versus multiplicity. The data, represented by dots, are compared to various particle-level MC
predictions, which are shown by curves. The shaded areas around the data points represent the total statistical and
systematic uncertainties added in quadrature.
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Figure 6: Distributions of primary charged particles in events for which nch ≥ 6, pT > 500 MeV and |η| < 2.5 as a
function of (a) pseudorapidity, η, and (b) transverse momentum, pT. The data, represented by dots, are compared
to various particle-level MC predictions, which are shown by curves. The shaded areas around the data points
represent the total statistical and systematic uncertainties added in quadrature.

nch ≥ 1 and pT > 500 MeV, the distribution is approximately constant for |η| < 2 and falls at higher
|η|. A similar shape is seen for the phase spaces requiring a higher multiplicity (nch ≥ 6, 20, 50) with the
extent of the plateau becoming shorter as the multiplicity threshold is raised. A small apparent structure
in the distributions of the central values of the data points occurs at values of |η| ∼ 1.7. This is due to
systematic effects in the track reconstruction efficiency which arises due to assumptions on the ID material
composition, and is thus covered by the total systematic uncertainty (see Section 9).

The distribution corresponding to the phase space nch ≥ 2 and pT > 100 MeV is well described by Epos
LHC and Pythia 8 Monash but is underestimated by Pythia 8 A2 and Qgsjet-II.5 For the phase space
nch ≥ 1 and pT > 500 MeV, Epos LHC overestimates the distribution at values of |η| > 1.7 and describes
the data well for the rest of the pseudorapidity range. The data are overestimated by the Qgsjet-II and
Pythia 8 Monash calculations and underestimated by the Pythia 8 A2 prediction. All models overestimate
the overall yield for the phase spaces nch ≥ 6, 20 although Pythia 8 A2 describes the plateau in the central
region well. For the largest multiplicity threshold (nch ≥ 50) all of the models overestimate the data at
|η| > 1.7 but provide a better description in the central region.

Figures 4(b), 5(b), 6(b), 7(b) and 8(b) show distributions of primary-charged-particle transverse mo-

5 The MC models used here were mostly tuned to data in the pT > 500 MeV phase space (up to
√

s = 7 TeV) and can therefore
not necessarily be expected to describe the distributions at pT > 100 MeV as well as at pT > 500 MeV.
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Figure 7: Distributions of primary charged particles in events for which nch ≥ 20, pT > 500 MeV and |η| < 2.5 as a
function of (a) pseudorapidity, η, and (b) transverse momentum, pT. The data, represented by dots, are compared
to various particle-level MC predictions, which are shown by curves. The shaded areas around the data points
represent the total statistical and systematic uncertainties added in quadrature.

mentum, 1/(2πpTNev) · d2Nch/(dη dpT), for various phase spaces. No model is fully consistent with the
distributions, although above 1 GeV the Pythia 8 Monash predictions agree well with the data. This is
also the only model which gives a fair description of the data corresponding to the highest multiplicity
threshold with nch ≥ 50 and pT > 500 MeV, where all other models show large deviations as pT increases.
The Epos LHC predictions give the best description of the data corresponding to the phase space nch ≥ 2
and pT > 100 MeV, particularly at transverse momenta below 1 GeV, while the other models underestim-
ate the data at the lowest pT values. Epos LHC provides fair predictions for the phase spaces nch ≥ 1, 6
and pT > 500 MeV, but for the higher multiplicity thresholds (nch ≥ 20 and 50) deviations from the
data are seen at high transverse momenta. Pythia 8 A2 gives fair descriptions of the data below 6 GeV,
yet shows deviations of up to 30 % around pT ∼ 10 GeV. In all measured phase spaces, the Qgsjet-II
approach shows large disagreements with the data as pT increases.

In Figures 4(c) and 5(c) distributions of primary-charged-particle multiplicity, 1/Nev · dNev/dnch, are
shown for minimum transverse momentum thresholds of 100 MeV and 500 MeV, respectively. For the
lower threshold, the distribution rises until values of nch ∼ 9 before falling steeply. For the higher
threshold the distribution peaks at nch ∼ 2. None of the models are consistent with the data although
the Epos LHC model provides a fair description. The two Pythia 8 calculations predict distribution
peaks which are at higher nch than those observed and underestimate the event yield at low and high
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Figure 8: Distributions of primary charged particles in events for which nch ≥ 50, pT > 500 MeV and |η| < 2.5 as a
function of (a) pseudorapidity, η, and (b) transverse momentum, pT. The data, represented by dots, are compared
to various particle-level MC predictions, which are shown by curves. The shaded areas around the data points
represent the total statistical and systematic uncertainties added in quadrature.

multiplicity. The Qgsjet-II tune overestimates the data at low and high nch values and underestimates the
data for intermediate nch values.

The distribution of the average transverse momentum of primary charged particles, 〈pT〉, versus the
primary-charged-particle multiplicity, nch, is given in Figures 4(d) and 5(d) for transverse momentum
thresholds of 100 MeV and 500 MeV, respectively. The average pT rises with multiplicity although the
rise becomes progressively less steep as the multiplicity increases. This is expected due to colour co-
herence effects in dense parton environments, which are modelled by a colour reconnection mechanism
in Pythia 8 or by the hydrodynamical evolution model used in Epos. It is assumed that numerous MPI
dominate the high-multiplicity events, and that colour coherence effects thereby lead to fewer additional
charged particles produced with every additional MPI, which share a higher average pT. The Epos LHC
and Pythia 8 models provide a fair description of the data. The Qgsjet-II model fails to predict the mean
transverse momentum over the entire multiplicity range, as it does not simulate colour coherence effects
and therefore shows very little dependence on the multiplicity.

The evolution of the primary-charged-particle multiplicity per unit pseudorapidity at η = 0 is shown in
Figure 9. It is computed by averaging over |η| < 0.2 in the 1/Nev · dNch/dη distribution. In order to make
consistent comparisons with previous measurements, these figures are corrected to the earlier τ > 30 ps
definition of stable particles (to include the fraction of short-lived particles which have been excluded
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Figure 9: The average primary-charged-particle multiplicity per unit of pseudorapidity at η = 0 as a function of the
centre-of-mass energy. Results are shown for the phase spaces (a) (pT > 500 MeV, nch ≥ 1) and (b) (pT > 500 MeV,
nch ≥ 1), (pT > 500 MeV, nch ≥ 6), and (pT > 100 MeV, nch ≥ 2). The data are compared to various particle-level
MC predictions. The results at

√
s = 8 and 13 TeV are extrapolated to include strange baryons. The vertical error

bars on the data represent the total uncertainty.

Phase Space 1/Nev · dNch/dη at η = 0
nch ≥ pT > τ > 300 ps (fiducial) τ > 30 ps (extrapolated)

2 100 MeV 5.64 ± 0.10 5.71 ± 0.11
1 500 MeV 2.477 ± 0.031 2.54 ± 0.04
6 500 MeV 3.68 ± 0.04 3.78 ± 0.05
20 500 MeV 6.50 ± 0.05 6.66 ± 0.07
50 500 MeV 12.40 ± 0.15 12.71 ± 0.18

Table 1: Central primary-charged-particle density 1/Nev · dNch/dη at η = 0 for five different phase spaces. The
results are given for the fiducial definition τ > 300 ps, as well as for the previously used fiducial definition τ > 30 ps
using an extrapolation factor of 1.012 ± 0.004 (for pT > 100 MeV) or 1.025 ± 0.008 (for pT > 500 MeV), which
accounts for the fraction of charged strange baryons predicted by Epos LHC simulation.

from this study), using a factor 1.012 ± 0.004 in the pT > 100 MeV phase space and 1.025 ± 0.008
in the pT > 500 MeV phase spaces, derived from predictions of the Epos LHC tune with uncertainties
following comparisons of the predictions of different MC models. Results are shown for the phase spaces
(pT > 500 MeV, nch ≥ 1), (pT > 500 MeV, nch ≥ 6), and (pT > 100 MeV, nch ≥ 2) along with
available results from other ATLAS measurements at

√
s = 0.9, 2.36, 7 and 13 TeV [14, 18, 23]. It can

be seen that the total uncertainty in the measurement at
√

s = 8 TeV is about 30–40 % less than for
the study with 7 TeV data [18]. This was achieved due to our improved knowledge of the ID material
distribution [39], which reduced the dominant source of systematic uncertainty by more than 50 % with
respect to the previous 7 TeV measurement. Predictions of various QCD-based models are also shown.
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The best description of the data is given by Epos LHC. The predictions of the Pythia 8 tunes provide a
fair description of the shape of the multiplicity dependence with centre-of-mass energy. As in the case of
the other presented distributions, calculations of Qgsjet-II give the worst description.

A full summary of central primary-charged-particle densities at η = 0 in all measured phase spaces is
given in Table 1, showing results obtained with the new as well as the previous fiducial definition.

11. Conclusion

Measurements were made of distributions of primary charged particles produced in minimum-bias pp
collisions at

√
s = 8 TeV with the ATLAS detector at the LHC. The results are based on a dataset corres-

ponding to an integrated luminosity of 160 µb−1. Distributions of primary-charged-particle multiplicities
as well as pseudorapidity and transverse momentum spectra are shown. With the fiducial definition of
primary charged particles that was used in this study (τ > 300 ps), the central primary-charged-particle
multiplicity at η = 0 per event and unit of pseudorapidity was measured to be 5.64 ± 0.10 in events con-
taining nch ≥ 2 primary charged particles with transverse momentum pT > 100 MeV, and 2.477 ± 0.031
in events with nch ≥ 1 and pT > 500 MeV. Using an extrapolation factor for short-lived charged particles
with a lifetime between 30 < τ < 300 ps, the central primary-charged-particle multiplicity was measured
to be 5.71 ± 0.11 and 2.54 ± 0.04, respectively. The precision of these results is 30–40 % better than
for the previous highest precision ATLAS measurements at 0.9 and 7 TeV. Compared with earlier stud-
ies, this paper also presents ATLAS measurements of final states at high multiplicities of nch ≥ 20 and
nch ≥ 50. Predictions of various Monte Carlo models were compared with the data, and it was found
that the best description is given by the Epos LHC tune, followed by the Pythia 8 A2 and Monash tunes.
The measurements presented here are expected to provide valuable constraints for the tuning and further
understanding of soft QCD physics models.
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Appendix

A. Average number of measurements per track

The distributions of the average number of hits per reconstructed track in data and MC simulation are
shown in Figure 10 for several detector components, using events selected by the (nsel ≥ 2, pT >

100 MeV) requirement. The distributions are shown as a function of the pseudorapidity of the recon-
structed tracks. The MC simulation distributions, made with Pythia 8 using the A2 tune, have been
reweighted to match the reconstructed pT spectrum in data.

The level of agreement between data and MC simulation is found to be within ±1 % for the average
number of measurements per track in the innermost layer of the Pixel detector (Figure 10(a)), and re-
mains within ±0.6 % for the average number of measurements per track in the whole Pixel detector (Fig-
ure 10(b)) as well as the SCT (Figure 10(c)). For the SCT, the sum of average measurements per track
and inactive modules per track is shown. This is done in order to account for a mis-modelling of inactive
modules in the MC simulation, which was shown to have negligible impact on other results presented in
this paper.
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Figure 10: Data and MC simulation distributions of the average number of hits per reconstructed track as a function
of pseudorapidity, η, in (a) the innermost layer of the Pixel detector, (b) the whole Pixel detector, and (c) the SCT
detector (adding the average number of hits and inactive modules per track). The MC simulation distributions,
made with Pythia 8 using the A2 tune, have been reweighted to match the reconstructed pT spectrum in data.
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B. Distributions of impact parameters

The normalised distributions of transverse and longitudinal impact parameters of reconstructed tracks in
data and MC simulation with respect to the reconstructed primary vertex, using events selected by the
(nsel ≥ 2, pT > 100 MeV) requirement, are shown in Figure 11. The fractions of tracks originating from
primary and secondary particles in the MC simulation (made with Pythia 8 using the A2 tune), which
have been reweighted to match the reconstructed pT spectrum as well as the fractions of reconstructed
non-primary tracks in data, are also shown.

The level of agreement between data and MC simulation is found to be within ±1.5 % in the signal
region of selected tracks used in the analysis, where the impact parameters are within ±1.5 mm of the
reconstructed primary vertex. In the tail regions, the level of agreement remains within ±4 % for the
transverse impact parameter and within ±9 % for the longitudinal impact parameter.
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Figure 11: Normalised distributions of the (a) transverse and (b) longitudinal impact parameters of reconstructed
tracks in data and MC simulation with respect to the reconstructed primary vertex, using events selected by the
(nsel ≥ 2, pT > 100 MeV) requirement. The MC simulation distributions, made with Pythia 8 using the A2 tune,
have been reweighted to match the reconstructed pT spectrum as well as the fractions of reconstructed non-primary
tracks in data.
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C. Additional trigger efficiency plots

The efficiency of the trigger requirement in which the signal in at least one of the MBTS modules was
above threshold is presented in Figure 12(b) for the phase space with nch ≥ 1 and pT > 500 MeV. The
efficiency of the trigger requirement in which the signal in at least two of the MBTS modules was above
threshold is presented in Figure 12(a) for the phase space with nch ≥ 2 and pT > 100 MeV, and in
Figure 12(c) for the phase space with nch ≥ 1 and pT > 500 MeV. All results are shown as a function of
the number of selected tracks per event, nBS

sel . In the phase space with the higher transverse momentum
threshold, the trigger efficiency is higher and rises more quickly to 100 % for both trigger requirements.
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Figure 12: MBTS trigger efficiencies for 8 TeV data in the two most inclusive measured phase spaces: (a)
L1_MBTS_2 trigger efficiency as a function of the number of selected tracks nBS

sel in the phase space with nBS
sel ≥ 2

and pT > 100 MeV. (b) L1_MBTS_1 trigger efficiency as a function of the number of selected tracks nBS
sel in the

phase space with nBS
sel ≥ 1 and pT > 500 MeV. (c) L1_MBTS_2 trigger efficiency as a function of the number of

selected tracks nBS
sel in the phase space with nBS

sel ≥ 1 and pT > 500 MeV. L1_MBTS_1 and L1_MBTS_2 are the
requirements that in at least one or two modules of the minimum-bias trigger scintillators a signal above threshold
was registered, respectively. The shaded areas represent the sum of systematic and statistical errors.
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D. Additional vertex and track reconstruction efficiency plots

The vertex reconstruction efficiency for events selected in the phase space with the higher transverse
momentum threshold, pT > 500 MeV, is presented in Figure 13(a) as a function of the number of selected
tracks per event, nBS

sel . The systematic uncertainties are found to be small in comparison with those in the
most inclusive phase space.

The track reconstruction efficiency for tracks from events selected by the nsel ≥ 1 and pT > 500 MeV
requirement, which was determined from MC simulation using the Pythia 8 A2 tune, is presented in
Figure 13(b) as a function of the pseudorapidity.
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Figure 13: Selection efficiencies for 8 TeV data in the pT > 500 MeV phase space: (a) The vertex reconstruction
efficiency as a function of the number of selected tracks, nBS

sel . (b) The track reconstruction efficiency as a function
of the pseudorapidity, η. The shaded areas represent the sum of systematic and statistical errors.

27



References

[1] UA1 Collaboration, G. Arnison et al.,
Transverse Momentum Spectra for Charged Particles at the CERN Proton anti-Proton Collider,
Phys. Lett. B 118 (1982) 167.

[2] ABCDHW Collaboration, A. Breakstone et al.,
Charged Multiplicity Distribution in pp Interactions at CERN ISR Energies,
Phys. Rev. D 30 (1984) 528–535.

[3] UA5 Collaboration, R. E. Ansorge et al.,
Diffraction Dissociation at the CERN Pulsed Collider at CM Energies of 900 GeV and 200 GeV,
Z. Phys. C 33 (1986) 175.

[4] UA5 Collaboration, G. J. Alner et al.,
UA5: A general study of proton–antiproton physics at

√
s = 546 GeV,

Phys. Rep. 154 (1987) 247–383.

[5] UA5 Collaboration, R. E. Ansorge et al., Charged Particle Correlations in p̄p Collisions at c.m.
Energies of 200 GeV, 546 GeV and 900 GeV, Z. Phys. C 37 (1988) 191–213.

[6] CDF Collaboration, F. Abe et al., Transverse Momentum Distributions of Charged Particles
Produced in p̄p Interactions at

√
s = 630 GeV and 1800 GeV,

Phys. Rev. Lett. 61 (1988) 1819–1822.

[7] UA5 Collaboration, R. E. Ansorge et al.,
Charged Particle Multiplicity Distributions at 200 GeV and 900 GeV Center-Of-Mass Energy,
Z. Phys. C 43 (1989) 357–374.

[8] UA1 Collaboration, C. Albajar et al.,
A Study of the General Characteristics of pp̄ Collisions at

√
s = 0.2 TeV to 0.9 TeV,

Nucl. Phys. B 335 (1990) 261–287.

[9] CDF Collaboration, F. Abe et al., Pseudorapidity distributions of charged particles produced in
p̄p interactions at

√
s = 630 GeV and 1800 GeV, Phys. Rev. D 41 (1990) 2330–2333.

[10] E735 Collaboration, T. Alexopoulos et al.,
Multiplicity dependence of transverse momentum spectra of centrally produced hadrons in p̄p
collisions at 0.3 TeV, 0.54 TeV, 0.9 TeV, and 1.8 TeV center-of-mass energy,
Phys. Lett. B 336 (1994) 599–604.

[11] CDF Collaboration, T. Aaltonen et al., Measurement of Particle Production and Inclusive
Differential Cross Sections in pp̄ Collisions at

√
s = 1.96 TeV,

Phys. Rev. D 79 (2009) 112005, [Erratum: Phys. Rev. D 82 (2010) 119903],
arXiv:0904.1098 [hep-ex].

[12] ALICE Collaboration, K Aamodt et al.,
First proton–proton collisions at the LHC as observed with the ALICE detector: Measurement of
the charged particle pseudorapidity density at

√
s = 900 GeV, Eur. Phys. J. C 65 (2010) 111–125,

arXiv:0911.5430 [hep-ex].

[13] CMS Collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons
in pp collisions at

√
s = 0.9 and 2.36 TeV, JHEP 02 (2010) 041, arXiv:1002.0621 [hep-ex].

28

http://dx.doi.org/10.1016/0370-2693(82)90623-2
http://dx.doi.org/10.1103/PhysRevD.30.528
http://dx.doi.org/10.1007/BF01411134
http://dx.doi.org/10.1016/0370-1573(87)90130-X
http://dx.doi.org/10.1007/BF01579906
http://dx.doi.org/10.1103/PhysRevLett.61.1819
http://dx.doi.org/10.1007/BF01506531
http://dx.doi.org/10.1016/0550-3213(90)90493-W
http://dx.doi.org/10.1103/PhysRevD.41.2330
http://dx.doi.org/10.1016/0370-2693(94)90578-9
http://dx.doi.org/10.1103/PhysRevD.82.119903, 10.1103/PhysRevD.79.112005
http://arxiv.org/abs/0904.1098
http://dx.doi.org/10.1140/epjc/s10052-009-1227-4
http://arxiv.org/abs/0911.5430
http://dx.doi.org/10.1007/JHEP02(2010)041
http://arxiv.org/abs/1002.0621


[14] ATLAS Collaboration, Charged-particle multiplicities in pp interactions at
√

s = 900 GeV
measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21–42,
arXiv:1003.3124 [hep-ex].

[15] ALICE Collaboration, K. Aamodt et al., Charged-particle multiplicity measurement in
proton–proton collisions at

√
s = 7 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 345–354,

arXiv:1004.3514 [hep-ex].

[16] CMS Collaboration, Transverse-momentum and pseudorapidity distributions of charged hadrons
in pp collisions at

√
s = 7 TeV, Phys. Rev. Lett. 105 (2010) 022002,

arXiv:1005.3299 [hep-ex].

[17] CMS Collaboration,
Charged particle multiplicities in pp interactions at

√
s = 0.9, 2.36, and 7 TeV,

JHEP 01 (2011) 079, arXiv:1011.5531 [hep-ex].

[18] ATLAS Collaboration,
Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC,
New J. Phys. 13 (2011) 053033, arXiv:1012.5104 [hep-ex].

[19] LHCb Collaboration, R. Aaij et al., Measurement of charged particle multiplicities and densities
in pp collisions at

√
s = 7 TeV in the forward region, Eur. Phys. J. C 74 (2014) 2888,

arXiv:1402.4430 [hep-ex].

[20] CMS and TOTEM Collaborations, S. Chatrchyan et al.,
Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at
√

s = 8 TeV by the CMS and TOTEM experiments, Eur. Phys. J. C 74 (2014) 3053,
arXiv:1405.0722 [hep-ex].

[21] CMS Collaboration,
Pseudorapidity distribution of charged hadrons in proton–proton collisions at

√
s = 13 TeV,

Phys. Lett. B 751 (2015) 143–163, arXiv:1507.05915 [hep-ex].

[22] ALICE Collaboration, J. Adam et al., Pseudorapidity and transverse-momentum distributions of
charged particles in proton–proton collisions at

√
s = 13 TeV, Phys. Lett. B 753 (2016) 319–329,

arXiv:1509.08734 [nucl-ex].

[23] ATLAS Collaboration, Charged-particle distributions in
√

s = 13 TeV pp interactions measured
with the ATLAS detector at the LHC, Phys. Lett. B 758 (2016) 67–88,
arXiv:1602.01633 [hep-ex].

[24] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider,
JINST 3 (2008) S08003.

[25] T. Sjöstrand, S. Mrenna and P. Z. Skands, A Brief Introduction to PYTHIA 8.1,
Comp. Phys. Comm. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].

[26] T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026,
arXiv:hep-ph/0603175 [hep-ph].

[27] ATLAS Collaboration, Further ATLAS tunes of PYTHIA6 and Pythia 8,
ATL-PHYS-PUB-2011-014, 2011, url: https://cdsweb.cern.ch/record/1400677.

[28] P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune,
Eur. Phys. J. C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].

29

http://dx.doi.org/10.1016/j.physletb.2010.03.064
http://arxiv.org/abs/1003.3124
http://dx.doi.org/10.1140/epjc/s10052-010-1350-2
http://arxiv.org/abs/1004.3514
http://dx.doi.org/10.1103/PhysRevLett.105.022002
http://arxiv.org/abs/1005.3299
http://dx.doi.org/10.1007/JHEP01(2011)079
http://arxiv.org/abs/1011.5531
http://dx.doi.org/10.1088/1367-2630/13/5/053033
http://arxiv.org/abs/1012.5104
http://dx.doi.org/10.1140/epjc/s10052-014-2888-1
http://arxiv.org/abs/1402.4430
http://dx.doi.org/10.1140/epjc/s10052-014-3053-6
http://arxiv.org/abs/1405.0722
http://dx.doi.org/10.1016/j.physletb.2015.10.004
http://arxiv.org/abs/1507.05915
http://dx.doi.org/10.1016/j.physletb.2015.12.030
http://arxiv.org/abs/1509.08734
http://dx.doi.org/10.1016/j.physletb.2016.04.050
http://arxiv.org/abs/1602.01633
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://arxiv.org/abs/0710.3820
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://arxiv.org/abs/hep-ph/0603175
https://cdsweb.cern.ch/record/1400677
http://dx.doi.org/10.1140/epjc/s10052-014-3024-y
http://arxiv.org/abs/1404.5630


[29] A. D. Martin et al., Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189–285,
arXiv:0901.0002 [hep-ph].

[30] ATLAS Collaboration, ATLAS tunes of PYTHIA 6 and Pythia 8 for MC11,
ATL-PHYS-PUB-2011-009, 2011, url: https://cdsweb.cern.ch/record/1363300.

[31] J. Pumplin et al.,
New generation of parton distributions with uncertainties from global QCD analysis,
JHEP 07 (2002) 012, arXiv:hep-ph/0201195 [hep-ph].

[32] S. Porteboeuf, T. Pierog and K. Werner,
Producing Hard Processes Regarding the Complete Event: The EPOS Event Generator,
Proceedings, 45th Rencontres de Moriond on Electroweak Interactions and Unified Theories,
2010, arXiv:1006.2967 [hep-ph].

[33] H. J. Drescher et al., Parton based Gribov-Regge theory, Phys. Rep. 350 (2001) 93–289,
arXiv:hep-ph/0007198 [hep-ph].

[34] T. Pierog et al., EPOS LHC: Test of collective hadronization with data measured at the CERN
Large Hadron Collider, Phys. Rev. C 92 (2015) 034906, arXiv:1306.0121 [hep-ph].

[35] S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I.
QGSJET-II model, Phys. Rev. D 83 (2011) 014018, arXiv:1010.1869 [hep-ph].

[36] GEANT4 Collaboration, S. Agostinelli et al., GEANT4: A Simulation toolkit,
Nucl. Instrum. Meth. A 506 (2003) 250–303.

[37] ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70 (2010) 823–874,
arXiv:1005.4568 [physics.ins-det].

[38] ATLAS Collaboration, Performance of primary vertex reconstruction in proton–proton collisions
at
√

s = 7 TeV in the ATLAS experiment, ATLAS-CONF-2010-069, 2010,
url: https://cdsweb.cern.ch/record/1281344.

[39] W. Lukas, ATLAS inner tracking detectors: Run 1 performance and developments for Run 2,
Nucl. Part. Phys. Proc. 273–275 (2016) 1134–1140, Proceedings, 37th International Conference
on High Energy Physics (ICHEP), 2014,
url: http://www.sciencedirect.com/science/article/pii/S2405601415006677.

[40] G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem,
Nucl. Instrum. Meth. A 362 (1995) 487–498.

30

http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
https://cdsweb.cern.ch/record/1363300
http://dx.doi.org/10.1088/1126-6708/2002/07/012
http://arxiv.org/abs/hep-ph/0201195
http://arxiv.org/abs/1006.2967
http://dx.doi.org/10.1016/S0370-1573(00)00122-8
http://arxiv.org/abs/hep-ph/0007198
http://dx.doi.org/10.1103/PhysRevC.92.034906
http://arxiv.org/abs/1306.0121
http://dx.doi.org/10.1103/PhysRevD.83.014018
http://arxiv.org/abs/1010.1869
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1140/epjc/s10052-010-1429-9
http://arxiv.org/abs/1005.4568
https://cdsweb.cern.ch/record/1281344
http://dx.doi.org/http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.178
http://www.sciencedirect.com/science/article/pii/S2405601415006677
http://dx.doi.org/10.1016/0168-9002(95)00274-X


The ATLAS Collaboration

G. Aad86, B. Abbott113, J. Abdallah151, O. Abdinov11, B. Abeloos117, R. Aben107, M. Abolins91,
O.S. AbouZeid137, N.L. Abraham149, H. Abramowicz153, H. Abreu152, R. Abreu116, Y. Abulaiti146a,146b,
B.S. Acharya163a,163b,a, L. Adamczyk39a, D.L. Adams26, J. Adelman108, S. Adomeit100, T. Adye131,
A.A. Affolder75, T. Agatonovic-Jovin13, J. Agricola55, J.A. Aguilar-Saavedra126a,126f, S.P. Ahlen23,
F. Ahmadov66,b, G. Aielli133a,133b, H. Akerstedt146a,146b, T.P.A. Åkesson82, A.V. Akimov96,
G.L. Alberghi21a,21b, J. Albert168, S. Albrand56, M.J. Alconada Verzini72, M. Aleksa31,
I.N. Aleksandrov66, C. Alexa27b, G. Alexander153, T. Alexopoulos10, M. Alhroob113, M. Aliev74a,74b,
G. Alimonti92a, J. Alison32, S.P. Alkire36, B.M.M. Allbrooke149, B.W. Allen116, P.P. Allport18,
A. Aloisio104a,104b, A. Alonso37, F. Alonso72, C. Alpigiani138, B. Alvarez Gonzalez31,
D. Álvarez Piqueras166, M.G. Alviggi104a,104b, B.T. Amadio15, K. Amako67, Y. Amaral Coutinho25a,
C. Amelung24, D. Amidei90, S.P. Amor Dos Santos126a,126c, A. Amorim126a,126b, S. Amoroso31,
N. Amram153, G. Amundsen24, C. Anastopoulos139, L.S. Ancu50, N. Andari108, T. Andeen32,
C.F. Anders59b, G. Anders31, J.K. Anders75, K.J. Anderson32, A. Andreazza92a,92b, V. Andrei59a,
S. Angelidakis9, I. Angelozzi107, P. Anger45, A. Angerami36, F. Anghinolfi31, A.V. Anisenkov109,c,
N. Anjos12, A. Annovi124a,124b, M. Antonelli48, A. Antonov98, J. Antos144b, F. Anulli132a, M. Aoki67,
L. Aperio Bella18, G. Arabidze91, Y. Arai67, J.P. Araque126a, A.T.H. Arce46, F.A. Arduh72, J-F. Arguin95,
S. Argyropoulos64, M. Arik19a, A.J. Armbruster31, L.J. Armitage77, O. Arnaez31, H. Arnold49,
M. Arratia29, O. Arslan22, A. Artamonov97, G. Artoni120, S. Artz84, S. Asai155, N. Asbah43,
A. Ashkenazi153, B. Åsman146a,146b, L. Asquith149, K. Assamagan26, R. Astalos144a, M. Atkinson165,
N.B. Atlay141, K. Augsten128, G. Avolio31, B. Axen15, M.K. Ayoub117, G. Azuelos95,d, M.A. Baak31,
A.E. Baas59a, M.J. Baca18, H. Bachacou136, K. Bachas74a,74b, M. Backes31, M. Backhaus31,
P. Bagiacchi132a,132b, P. Bagnaia132a,132b, Y. Bai34a, J.T. Baines131, O.K. Baker175, E.M. Baldin109,c,
P. Balek129, T. Balestri148, F. Balli136, W.K. Balunas122, E. Banas40, Sw. Banerjee172,e,
A.A.E. Bannoura174, L. Barak31, E.L. Barberio89, D. Barberis51a,51b, M. Barbero86, T. Barillari101,
M. Barisonzi163a,163b, T. Barklow143, N. Barlow29, S.L. Barnes85, B.M. Barnett131, R.M. Barnett15,
Z. Barnovska5, A. Baroncelli134a, G. Barone24, A.J. Barr120, L. Barranco Navarro166, F. Barreiro83,
J. Barreiro Guimarães da Costa34a, R. Bartoldus143, A.E. Barton73, P. Bartos144a, A. Basalaev123,
A. Bassalat117, A. Basye165, R.L. Bates54, S.J. Batista158, J.R. Batley29, M. Battaglia137,
M. Bauce132a,132b, F. Bauer136, H.S. Bawa143, f , J.B. Beacham111, M.D. Beattie73, T. Beau81,
P.H. Beauchemin161, P. Bechtle22, H.P. Beck17,g, K. Becker120, M. Becker84, M. Beckingham169,
C. Becot110, A.J. Beddall19e, A. Beddall19b, V.A. Bednyakov66, M. Bedognetti107, C.P. Bee148,
L.J. Beemster107, T.A. Beermann31, M. Begel26, J.K. Behr43, C. Belanger-Champagne88, A.S. Bell79,
W.H. Bell50, G. Bella153, L. Bellagamba21a, A. Bellerive30, M. Bellomo87, K. Belotskiy98,
O. Beltramello31, N.L. Belyaev98, O. Benary153, D. Benchekroun135a, M. Bender100, K. Bendtz146a,146b,
N. Benekos10, Y. Benhammou153, E. Benhar Noccioli175, J. Benitez64, J.A. Benitez Garcia159b,
D.P. Benjamin46, J.R. Bensinger24, S. Bentvelsen107, L. Beresford120, M. Beretta48, D. Berge107,
E. Bergeaas Kuutmann164, N. Berger5, F. Berghaus168, J. Beringer15, S. Berlendis56, N.R. Bernard87,
C. Bernius110, F.U. Bernlochner22, T. Berry78, P. Berta129, C. Bertella84, G. Bertoli146a,146b,
F. Bertolucci124a,124b, I.A. Bertram73, C. Bertsche113, D. Bertsche113, G.J. Besjes37,
O. Bessidskaia Bylund146a,146b, M. Bessner43, N. Besson136, C. Betancourt49, S. Bethke101,
A.J. Bevan77, W. Bhimji15, R.M. Bianchi125, L. Bianchini24, M. Bianco31, O. Biebel100,
D. Biedermann16, R. Bielski85, N.V. Biesuz124a,124b, M. Biglietti134a, J. Bilbao De Mendizabal50,
H. Bilokon48, M. Bindi55, S. Binet117, A. Bingul19b, C. Bini132a,132b, S. Biondi21a,21b, D.M. Bjergaard46,
C.W. Black150, J.E. Black143, K.M. Black23, D. Blackburn138, R.E. Blair6, J.-B. Blanchard136,

31



J.E. Blanco78, T. Blazek144a, I. Bloch43, C. Blocker24, W. Blum84,∗, U. Blumenschein55, S. Blunier33a,
G.J. Bobbink107, V.S. Bobrovnikov109,c, S.S. Bocchetta82, A. Bocci46, C. Bock100, M. Boehler49,
D. Boerner174, J.A. Bogaerts31, D. Bogavac13, A.G. Bogdanchikov109, C. Bohm146a, V. Boisvert78,
T. Bold39a, V. Boldea27b, A.S. Boldyrev163a,163c, M. Bomben81, M. Bona77, M. Boonekamp136,
A. Borisov130, G. Borissov73, J. Bortfeldt100, D. Bortoletto120, V. Bortolotto61a,61b,61c, K. Bos107,
D. Boscherini21a, M. Bosman12, J.D. Bossio Sola28, J. Boudreau125, J. Bouffard2,
E.V. Bouhova-Thacker73, D. Boumediene35, C. Bourdarios117, S.K. Boutle54, A. Boveia31, J. Boyd31,
I.R. Boyko66, J. Bracinik18, A. Brandt8, G. Brandt55, O. Brandt59a, U. Bratzler156, B. Brau87,
J.E. Brau116, H.M. Braun174,∗, W.D. Breaden Madden54, K. Brendlinger122, A.J. Brennan89,
L. Brenner107, R. Brenner164, S. Bressler171, T.M. Bristow47, D. Britton54, D. Britzger43, F.M. Brochu29,
I. Brock22, R. Brock91, G. Brooijmans36, T. Brooks78, W.K. Brooks33b, J. Brosamer15, E. Brost116,
J.H Broughton18, P.A. Bruckman de Renstrom40, D. Bruncko144b, R. Bruneliere49, A. Bruni21a,
G. Bruni21a, BH Brunt29, M. Bruschi21a, N. Bruscino22, P. Bryant32, L. Bryngemark82, T. Buanes14,
Q. Buat142, P. Buchholz141, A.G. Buckley54, I.A. Budagov66, F. Buehrer49, M.K. Bugge119,
O. Bulekov98, D. Bullock8, H. Burckhart31, S. Burdin75, C.D. Burgard49, B. Burghgrave108, K. Burka40,
S. Burke131, I. Burmeister44, E. Busato35, D. Büscher49, V. Büscher84, P. Bussey54, J.M. Butler23,
A.I. Butt3, C.M. Buttar54, J.M. Butterworth79, P. Butti107, W. Buttinger26, A. Buzatu54,
A.R. Buzykaev109,c, S. Cabrera Urbán166, D. Caforio128, V.M. Cairo38a,38b, O. Cakir4a, N. Calace50,
P. Calafiura15, A. Calandri86, G. Calderini81, P. Calfayan100, L.P. Caloba25a, D. Calvet35, S. Calvet35,
T.P. Calvet86, R. Camacho Toro32, S. Camarda31, P. Camarri133a,133b, D. Cameron119,
R. Caminal Armadans165, C. Camincher56, S. Campana31, M. Campanelli79, A. Campoverde148,
V. Canale104a,104b, A. Canepa159a, M. Cano Bret34e, J. Cantero83, R. Cantrill126a, T. Cao41,
M.D.M. Capeans Garrido31, I. Caprini27b, M. Caprini27b, M. Capua38a,38b, R. Caputo84, R.M. Carbone36,
R. Cardarelli133a, F. Cardillo49, T. Carli31, G. Carlino104a, L. Carminati92a,92b, S. Caron106,
E. Carquin33b, G.D. Carrillo-Montoya31, J.R. Carter29, J. Carvalho126a,126c, D. Casadei18,
M.P. Casado12,h, M. Casolino12, D.W. Casper162, E. Castaneda-Miranda145a, A. Castelli107,
V. Castillo Gimenez166, N.F. Castro126a,i, A. Catinaccio31, J.R. Catmore119, A. Cattai31, J. Caudron84,
V. Cavaliere165, E. Cavallaro12, D. Cavalli92a, M. Cavalli-Sforza12, V. Cavasinni124a,124b,
F. Ceradini134a,134b, L. Cerda Alberich166, B.C. Cerio46, A.S. Cerqueira25b, A. Cerri149, L. Cerrito77,
F. Cerutti15, M. Cerv31, A. Cervelli17, S.A. Cetin19d, A. Chafaq135a, D. Chakraborty108,
I. Chalupkova129, S.K. Chan58, Y.L. Chan61a, P. Chang165, J.D. Chapman29, D.G. Charlton18,
A. Chatterjee50, C.C. Chau158, C.A. Chavez Barajas149, S. Che111, S. Cheatham73, A. Chegwidden91,
S. Chekanov6, S.V. Chekulaev159a, G.A. Chelkov66, j, M.A. Chelstowska90, C. Chen65, H. Chen26,
K. Chen148, S. Chen34c, S. Chen155, X. Chen34f, Y. Chen68, H.C. Cheng90, H.J Cheng34a, Y. Cheng32,
A. Cheplakov66, E. Cheremushkina130, R. Cherkaoui El Moursli135e, V. Chernyatin26,∗, E. Cheu7,
L. Chevalier136, V. Chiarella48, G. Chiarelli124a,124b, G. Chiodini74a, A.S. Chisholm18, A. Chitan27b,
M.V. Chizhov66, K. Choi62, A.R. Chomont35, S. Chouridou9, B.K.B. Chow100, V. Christodoulou79,
D. Chromek-Burckhart31, J. Chudoba127, A.J. Chuinard88, J.J. Chwastowski40, L. Chytka115,
G. Ciapetti132a,132b, A.K. Ciftci4a, D. Cinca54, V. Cindro76, I.A. Cioara22, A. Ciocio15, F. Cirotto104a,104b,
Z.H. Citron171, M. Ciubancan27b, A. Clark50, B.L. Clark58, M.R. Clark36, P.J. Clark47, R.N. Clarke15,
C. Clement146a,146b, Y. Coadou86, M. Cobal163a,163c, A. Coccaro50, J. Cochran65, L. Coffey24,
L. Colasurdo106, B. Cole36, S. Cole108, A.P. Colijn107, J. Collot56, T. Colombo31, G. Compostella101,
P. Conde Muiño126a,126b, E. Coniavitis49, S.H. Connell145b, I.A. Connelly78, V. Consorti49,
S. Constantinescu27b, C. Conta121a,121b, G. Conti31, F. Conventi104a,k, M. Cooke15, B.D. Cooper79,
A.M. Cooper-Sarkar120, T. Cornelissen174, M. Corradi132a,132b, F. Corriveau88,l, A. Corso-Radu162,
A. Cortes-Gonzalez12, G. Cortiana101, G. Costa92a, M.J. Costa166, D. Costanzo139, G. Cottin29,
G. Cowan78, B.E. Cox85, K. Cranmer110, S.J. Crawley54, G. Cree30, S. Crépé-Renaudin56, F. Crescioli81,

32



W.A. Cribbs146a,146b, M. Crispin Ortuzar120, M. Cristinziani22, V. Croft106, G. Crosetti38a,38b,
T. Cuhadar Donszelmann139, J. Cummings175, M. Curatolo48, J. Cúth84, C. Cuthbert150, H. Czirr141,
P. Czodrowski3, S. D’Auria54, M. D’Onofrio75, M.J. Da Cunha Sargedas De Sousa126a,126b, C. Da Via85,
W. Dabrowski39a, T. Dai90, O. Dale14, F. Dallaire95, C. Dallapiccola87, M. Dam37, J.R. Dandoy32,
N.P. Dang49, A.C. Daniells18, N.S. Dann85, M. Danninger167, M. Dano Hoffmann136, V. Dao49,
G. Darbo51a, S. Darmora8, J. Dassoulas3, A. Dattagupta62, W. Davey22, C. David168, T. Davidek129,
M. Davies153, P. Davison79, Y. Davygora59a, E. Dawe89, I. Dawson139, R.K. Daya-Ishmukhametova87,
K. De8, R. de Asmundis104a, A. De Benedetti113, S. De Castro21a,21b, S. De Cecco81, N. De Groot106,
P. de Jong107, H. De la Torre83, F. De Lorenzi65, D. De Pedis132a, A. De Salvo132a, U. De Sanctis149,
A. De Santo149, J.B. De Vivie De Regie117, W.J. Dearnaley73, R. Debbe26, C. Debenedetti137,
D.V. Dedovich66, I. Deigaard107, J. Del Peso83, T. Del Prete124a,124b, D. Delgove117, F. Deliot136,
C.M. Delitzsch50, M. Deliyergiyev76, A. Dell’Acqua31, L. Dell’Asta23, M. Dell’Orso124a,124b,
M. Della Pietra104a,k, D. della Volpe50, M. Delmastro5, P.A. Delsart56, C. Deluca107, D.A. DeMarco158,
S. Demers175, M. Demichev66, A. Demilly81, S.P. Denisov130, D. Denysiuk136, D. Derendarz40,
J.E. Derkaoui135d, F. Derue81, P. Dervan75, K. Desch22, C. Deterre43, K. Dette44, P.O. Deviveiros31,
A. Dewhurst131, S. Dhaliwal24, A. Di Ciaccio133a,133b, L. Di Ciaccio5, W.K. Di Clemente122,
A. Di Domenico132a,132b, C. Di Donato132a,132b, A. Di Girolamo31, B. Di Girolamo31, A. Di Mattia152,
B. Di Micco134a,134b, R. Di Nardo48, A. Di Simone49, R. Di Sipio158, D. Di Valentino30, C. Diaconu86,
M. Diamond158, F.A. Dias47, M.A. Diaz33a, E.B. Diehl90, J. Dietrich16, S. Diglio86, A. Dimitrievska13,
J. Dingfelder22, P. Dita27b, S. Dita27b, F. Dittus31, F. Djama86, T. Djobava52b, J.I. Djuvsland59a,
M.A.B. do Vale25c, D. Dobos31, M. Dobre27b, C. Doglioni82, T. Dohmae155, J. Dolejsi129, Z. Dolezal129,
B.A. Dolgoshein98,∗, M. Donadelli25d, S. Donati124a,124b, P. Dondero121a,121b, J. Donini35, J. Dopke131,
A. Doria104a, M.T. Dova72, A.T. Doyle54, E. Drechsler55, M. Dris10, Y. Du34d, J. Duarte-Campderros153,
E. Duchovni171, G. Duckeck100, O.A. Ducu27b, D. Duda107, A. Dudarev31, L. Duflot117, L. Duguid78,
M. Dührssen31, M. Dunford59a, H. Duran Yildiz4a, M. Düren53, A. Durglishvili52b, D. Duschinger45,
B. Dutta43, M. Dyndal39a, C. Eckardt43, K.M. Ecker101, R.C. Edgar90, W. Edson2, N.C. Edwards47,
T. Eifert31, G. Eigen14, K. Einsweiler15, T. Ekelof164, M. El Kacimi135c, V. Ellajosyula86, M. Ellert164,
S. Elles5, F. Ellinghaus174, A.A. Elliot168, N. Ellis31, J. Elmsheuser26, M. Elsing31, D. Emeliyanov131,
Y. Enari155, O.C. Endner84, M. Endo118, J.S. Ennis169, J. Erdmann44, A. Ereditato17, G. Ernis174,
J. Ernst2, M. Ernst26, S. Errede165, E. Ertel84, M. Escalier117, H. Esch44, C. Escobar125, B. Esposito48,
A.I. Etienvre136, E. Etzion153, H. Evans62, A. Ezhilov123, F. Fabbri21a,21b, L. Fabbri21a,21b, G. Facini32,
R.M. Fakhrutdinov130, S. Falciano132a, R.J. Falla79, J. Faltova129, Y. Fang34a, M. Fanti92a,92b, A. Farbin8,
A. Farilla134a, C. Farina125, T. Farooque12, S. Farrell15, S.M. Farrington169, P. Farthouat31, F. Fassi135e,
P. Fassnacht31, D. Fassouliotis9, M. Faucci Giannelli78, A. Favareto51a,51b, W.J. Fawcett120, L. Fayard117,
O.L. Fedin123,m, W. Fedorko167, S. Feigl119, L. Feligioni86, C. Feng34d, E.J. Feng31, H. Feng90,
A.B. Fenyuk130, L. Feremenga8, P. Fernandez Martinez166, S. Fernandez Perez12, J. Ferrando54,
A. Ferrari164, P. Ferrari107, R. Ferrari121a, D.E. Ferreira de Lima54, A. Ferrer166, D. Ferrere50,
C. Ferretti90, A. Ferretto Parodi51a,51b, F. Fiedler84, A. Filipčič76, M. Filipuzzi43, F. Filthaut106,
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L. Manhaes de Andrade Filho25b, J. Manjarres Ramos159b, A. Mann100, B. Mansoulie136, R. Mantifel88,
M. Mantoani55, S. Manzoni92a,92b, L. Mapelli31, G. Marceca28, L. March50, G. Marchiori81,
M. Marcisovsky127, M. Marjanovic13, D.E. Marley90, F. Marroquim25a, S.P. Marsden85, Z. Marshall15,
L.F. Marti17, S. Marti-Garcia166, B. Martin91, T.A. Martin169, V.J. Martin47, B. Martin dit Latour14,
M. Martinez12,p, S. Martin-Haugh131, V.S. Martoiu27b, A.C. Martyniuk79, M. Marx138, F. Marzano132a,
A. Marzin31, L. Masetti84, T. Mashimo155, R. Mashinistov96, J. Masik85, A.L. Maslennikov109,c,
I. Massa21a,21b, L. Massa21a,21b, P. Mastrandrea5, A. Mastroberardino38a,38b, T. Masubuchi155,
P. Mättig174, J. Mattmann84, J. Maurer27b, S.J. Maxfield75, D.A. Maximov109,c, R. Mazini151,
S.M. Mazza92a,92b, N.C. Mc Fadden105, G. Mc Goldrick158, S.P. Mc Kee90, A. McCarn90,
R.L. McCarthy148, T.G. McCarthy30, L.I. McClymont79, K.W. McFarlane57,∗, J.A. Mcfayden79,
G. Mchedlidze55, S.J. McMahon131, R.A. McPherson168,l, M. Medici37, M. Medinnis43, S. Meehan138,
S. Mehlhase100, A. Mehta75, K. Meier59a, C. Meineck100, B. Meirose42, B.R. Mellado Garcia145c,
F. Meloni17, A. Mengarelli21a,21b, S. Menke101, E. Meoni161, K.M. Mercurio58, S. Mergelmeyer16,
P. Mermod50, L. Merola104a,104b, C. Meroni92a, F.S. Merritt32, A. Messina132a,132b, J. Metcalfe6,
A.S. Mete162, C. Meyer84, C. Meyer122, J-P. Meyer136, J. Meyer107, H. Meyer Zu Theenhausen59a,
R.P. Middleton131, S. Miglioranzi163a,163c, L. Mijović22, G. Mikenberg171, M. Mikestikova127,
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