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Abstract

Results are reported from a search for the pair production of top squarks, the super-
symmetric partners of top quarks, in final states with jets and missing transverse mo-
mentum. The data sample used in this search was collected by the CMS detector and
corresponds to an integrated luminosity of 18.9 fb−1 of proton-proton collisions at a
centre-of-mass energy of 8 TeV produced by the LHC. The search features novel back-
ground suppression and prediction methods, including a dedicated top quark pair
reconstruction algorithm. The data are found to be in agreement with the predicted
backgrounds. Exclusion limits are set in simplified supersymmetry models with the
top squark decaying to jets and an undetected neutralino, either through a top quark
or through a bottom quark and chargino. Models with the top squark decaying via a
top quark are excluded for top squark masses up to 755 GeV in the case of neutralino
masses below 200 GeV. For decays via a chargino, top squark masses up to 620 GeV
are excluded, depending on the masses of the chargino and neutralino.
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1 Introduction
The standard model (SM) of particle physics is an extremely powerful framework for the de-
scription of the known elementary particles and their interactions. Nevertheless, the existence
of dark matter [1–3] inferred from astrophysical observations, together with a wide array of
theoretical considerations, all point to the likelihood of physics beyond the SM. New physics
could be in the vicinity of the electroweak (EW) scale and accessible to experiments at the
CERN LHC [4]. In addition, the recent discovery of a Higgs boson [5–7] at a mass of 125 GeV
[8–10] has meant that the hierarchy problem, also known as the ‘fine-tuning’ or ‘naturalness’
problem [11–16], is no longer hypothetical.

A broader theory that can address many of the problems associated with the SM is supersym-
metry (SUSY) [17–21], which postulates a symmetry between fermions and bosons. In partic-
ular, a SUSY particle (generically referred to as a ‘sparticle’ or ‘superpartner’) is proposed for
each SM particle. A sparticle is expected to have the same couplings and quantum numbers
as its SM counterpart with the exception of spin, which differs by a half-integer. Spin-1/2 SM
fermions (quarks and leptons) are thus paired with spin-0 sfermions (the squarks and slep-
tons). There is a similar, but slightly more complicated pairing for bosons; SUSY models have
extended Higgs sectors that contain neutral and charged higgsinos that mix with the SUSY
partners of the neutral and charged EW gauge bosons, respectively. The resulting mixed states
are referred to as neutralinos χ̃0 and charginos χ̃±.

Supersymmetry protects the mass of the Higgs boson against divergent quantum corrections
associated with virtual SM particles by providing cancellations via the corresponding correc-
tions for virtual superpartners [22–25]. Since no sparticles have been observed to date, they are
generally expected to be more massive than their SM counterparts. On the other hand, sparti-
cle masses cannot be arbitrarily large if they are to stabilise the Higgs boson mass without an
unnatural level of fine-tuning. This is particularly important for the partners of the third gen-
eration SM particles that have large Yukawa couplings to the Higgs boson [26–29]. The top and
bottom squarks (̃t and b̃), are expected to be among the lightest sparticles and potentially the
most accessible at the LHC, especially when all other constraints are taken into consideration
[27, 30]. With conservation of R-parity [31, 32], SUSY particles are produced in pairs and the
lightest SUSY particle (LSP) is stable. If the lightest weakly interacting neutralino (χ̃0

1) is the
stable LSP, it is a leading candidate for dark matter [33]. Based upon these considerations, it is
of particular interest at the LHC to look for evidence of the production of t̃̃t with decay chains
of the t̃ and t̃ ending in SM particles and LSPs. The latter do not interact with material in the
detector and so must have their presence inferred from missing transverse momentum ~pmiss

T ,
which in each event is defined as the projection of the negative vector sum of the momenta
of all reconstructed particles onto the plane perpendicular to the beam line. Its magnitude is
referred to as Emiss

T .

Within the Simplified Model Spectra (SMS) framework [34–36] the study presented here con-
siders two broad classes of signals that lead to a bbqqqq + Emiss

T final state via decay modes
denoted T2tt and T2bW. These are defined, respectively, as (i) t̃ decay to a top quark: t̃ →
tχ̃0

1 → bW+χ̃0
1, and (ii) t̃ decay via a chargino: t̃ → bχ̃+ → bW+χ̃0

1. Figure 1 shows the
diagrams representing these two simplified models. The two decay modes are not mutually
exclusive, and it is possible for one of the top squarks to decay as in T2tt and the other as in
T2bW. However, such a scenario is not considered in the analysis presented here.

Only the lightest t̃ mass eigenstate is assumed to be involved, although the results are equiva-
lent for the heavier eigenstate. The polarization of the t̃ decay products depends on the prop-
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erties of the SUSY model, such as the left and right t̃ mixing [37, 38]. Instead of choosing a
specific model, each SMS scenario is assumed to have unpolarized decay products and has a
100% branching ratio to the final state under consideration. As such, the results can be inter-
preted, with appropriately rescaled branching fractions, in the context of any SUSY model in
which these decays are predicted to occur.
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Figure 1: Diagrams representing the two simplified models of direct top squark pair production
considered in this study: T2tt with top squark decay via a top quark (left) and T2bW with top
squark decay via a chargino (right).

With event characteristics of these signals in mind, we have developed a search for pair pro-
duction of top squarks with decays that result in a pair of LSPs in the final state in addition to
SM particles. Two selection criteria address the desire to extract a potentially very small signal
from a sample dominated by top quark pair events. The first criterion comes from the Emiss

T
signature associated with the LSPs, which motivates the focus on all-hadronic final states, as
this eliminates large sources of SM background events with genuine Emiss

T from neutrinos in
leptonic W decays. The all-hadronic final state with Emiss

T constitutes 45% of the signal because
W bosons decay to quarks with a 67% branching ratio. For the same reason this final state
makes up an even higher proportion of the subset of events with high jet multiplicity includ-
ing many jets with high transverse momentum, pT, that is often required in SUSY searches to
eliminate SM backgrounds. The second criterion relies upon the identification of top quark de-
cay products to eliminate such backgrounds as SM production of W bosons in association with
jets. Together, these criteria define a preselection region consisting of events that pass stringent
vetoes on the presence of charged leptons, and are required to have large Emiss

T , two tagged b
quark jets, and four additional jets from the hadronisation and decay of light quarks.

In spite of these stringent requirements, the low production cross sections of new physics sig-
nals mean that they are easily overwhelmed by SM backgrounds. In the case of SUSY, for exam-
ple, the cross section for the production of top squark pairs with mt̃ = 800 GeV is predicted to
be nearly five orders of magnitude smaller than that of top quark pairs [39]. For this reason, this
analysis focuses heavily on background suppression, employing several new methods that im-
prove sensitivity to signal. The relevant SM processes contributing to this analysis fall into four
main categories: (i) top quark and W boson events where the W decays leptonically, thereby
contributing genuine Emiss

T , but the lepton is not successfully reconstructed or identified, or it
is outside the acceptance of the detector; (ii) invisible decays of the Z boson when produced
in association with jets, Z+jets with Z → νν; (iii) QCD multijet production, which, due to its
very high rate, can produce events with substantial Emiss

T in the very rare cases of either ex-
treme mismeasurements of jet momenta or the leptonic decay of heavy-flavour hadrons with
large neutrino pT; and (iv) ttZ production (with Z → νν), which is an irreducible background
to signals with top squark decays via on-shell top quarks. The ttZ process has a small cross
section that has been measured by ATLAS and CMS to be 176+58

−52 fb−1 [40] and 242+65
−55 fb−1 [41],
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respectively.

The first step in developing the search is the construction of a set of optimised vetoes for all
three lepton flavours that reduce SM backgrounds for both signal types. Next, specific fea-
tures of each signal type are exploited by combining several variables in a multivariate anal-
ysis (MVA) based upon Boosted Decision Trees (BDT). For T2tt, a high performance hadronic
top quark decay reconstruction algorithm is developed and used to facilitate discrimination of
signal from background by using details of top quark kinematics.

Previous searches in the leptonic as well as the hadronic channels place limits on models
with mt̃ < 750 GeV for mχ̃0

1
< 100 GeV and have sensitivity to some models with mχ̃0

1
<

280 GeV [42, 43]. Previous searches for top and bottom squark pair production at the LHC
are presented in Refs. [42–60]. Previous searches at the Tevatron are presented in Refs. [61–68].
The analysis reported here significantly extends the sensitivity of a previous CMS analysis [57]
using this dataset by means of more refined background controls and enhanced signal retention
techniques.

This paper is organised as follows: Section 2 describes the CMS detector, while Section 3 dis-
cusses event reconstruction, event selection, and Monte Carlo (MC) simulations of signal and
background. The top quark pair reconstruction algorithm and lepton vetoes are described in
Sections 4 and 5, respectively. The search regions are discussed in Section 6, and the evalu-
ation of backgrounds is presented in Section 7 along with a discussion of the method of MC
reweighting. Final results and their interpretations are presented in Section 8, followed by a
summary in Section 9.

2 CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Extensive
forward calorimetry complements the coverage provided by the barrel and endcap detectors.
Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside
the solenoid.

The silicon tracker measures charged particles within the range |η| < 2.5. Isolated particles
of pT = 100 GeV emitted with |η| < 1.4 have track resolutions of 2.8% in pT and 10 (30) µm
in the transverse (longitudinal) impact parameter [69]. The ECAL and HCAL measure en-
ergy deposits in the range |η| < 3. Quartz-steel forward calorimeters extend the coverage
to |η| = 5. The HCAL, when combined with the ECAL, measures jets with a resolution
∆E/E ≈ 100%/

√
E[GeV] ⊕ 10% [70]. Muons are measured in the range |η| < 2.4. Match-

ing muons to tracks measured in the silicon tracker results in a relative pT resolution for muons
with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The pT
resolution in the barrel is better than 10% for muons with pT up to 1 TeV [71].

The events used in the search presented here were collected using the CMS two-tiered trigger
system: a hardware-based level-1 trigger and a software-based high-level trigger. A more com-
plete description of the CMS detector, together with a definition of the coordinate system used
and the relevant kinematic variables, can be found in Ref. [72].
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3 Data sample and event selection

This search uses data corresponding to an integrated luminosity of 18.9 ± 0.5 fb−1 collected
at a centre-of-mass energy of 8 TeV [73]. Events are reconstructed with the CMS particle-flow
(PF) algorithm [74, 75]. Each particle is identified as a charged hadron, neutral hadron, pho-
ton, muon, or electron by means of an optimised combination of information from the tracker,
the calorimeters, and the muon systems. The energy of a photon is obtained from the ECAL
measurement, corrected for zero suppression effects. For an electron the energy is determined
from a combination of its estimated momentum at the primary interaction vertex as deter-
mined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of
all bremsstrahlung photons spatially compatible with originating from the electron track [76].
Muon momentum is obtained from the curvature of the corresponding track. The energy of
charged hadrons is determined from a combination of the momentum measured in the tracker
and the matching ECAL and HCAL energy deposits, corrected for zero-suppression effects and
for the response function of the calorimeters to hadronic showers. Charged hadrons associated
with vertices other than the primary vertex, defined as the pp interaction vertex with the largest
sum of charged-track p2

T values, are not considered. Finally, the energies of neutral hadrons are
obtained from the corresponding corrected ECAL and HCAL energies.

Particles reconstructed with the CMS PF algorithm are clustered into jets by the anti-kT algo-
rithm [77, 78] with a distance parameter of 0.5 in the η-φ plane. For a jet, the momentum is
determined as the vectorial sum of all associated particle momenta and is found from MC sim-
ulated data to be within 5–10% of the true momentum of the generated particle from which
the jet originates over the whole pT spectrum and detector acceptance. An offset correction
determined for each jet via the average pT density per unit area and the jet area is applied to
jet energies to take into account the contribution from pileup, defined as the additional proton-
proton interactions within the same or adjacent bunch crossings [70]. Jet energy corrections
are derived from simulated events and are confirmed with in situ measurements of the energy
balance in dijet and photon+jet events. Additional selection criteria are applied to each event
to remove spurious jet-like features originating from isolated noise patterns in certain HCAL
regions [79].

Jets referred to as ‘picky jets’ are the input to the Comprehensively Optimised Resonance Re-
construction ALgorithm (CORRAL) for top quark reconstruction. The picky jet reconstruction
algorithm is not constrained to any fixed characteristic width or cutoff and therefore is opti-
mized for clustering the particles associated with the b quark and quarks from the W boson.
This leads to an improvement in the reconstruction of top quark decays with a wide range of
Lorentz boosts, as expected in signal events. The CORRAL and picky jet algorithms are de-
scribed in Section 4.

Jets are identified as originating from the hadronisation of a bottom quark (b-tagged) by means
of the CMS combined secondary vertex (CSV) tagger [80, 81]. The standard CMS “tight” oper-
ating point for the CSV tagger is used [80], which has approximately 50% b tagging efficiency,
0.1% light flavour jet misidentification rate, and an efficiency of 5% for c quark jets.

Several simulated data samples based on MC event generators are used throughout this analy-
sis. Signal samples are produced using the MADGRAPH (version 5.1.3.30) [82] event generator
with CTEQ6L [83] parton distribution functions (PDFs). For both the T2tt and T2bW signals,
the top squark mass (mt̃) is varied from 200 to 1000 GeV, while the LSP mass (mχ̃0

1
) is varied

from 0 to 700 GeV for T2tt and 0 to 550 GeV for T2bW. The masses are varied in steps of 25 GeV
in all cases. For the T2bW sample the chargino mass is defined via the fraction x applied to
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the top squark and neutralino masses as follows: mχ̃± = x mt̃ + (1− x)mχ̃0
1
. We consider three

fractions for x : 0.25, 0.50, and 0.75.

Standard model backgrounds are generated with MADGRAPH, POWHEG (version 1.0 r1380) [84–
88], PYTHIA (version 6.4.26) [89], or MC@NLO (version 3.41) [90, 91]. The MADGRAPH generator
is used for the generation of Z and W bosons accompanied by up to three additional partons
as well as for diboson and ttW processes, while the single top quark and tt processes are gen-
erated with POWHEG. Multijet QCD events are produced in two samples, one generated with
PYTHIA and the other with MADGRAPH. Two ttZ event samples are used. One is generated
with MC@NLO and the other with MADGRAPH. The decays of τ leptons are simulated with
TAUOLA (version 27.121.5) [92].

The PYTHIA generator is subsequently used to perform parton showering for all signal and
background samples, except for the MC@NLO ttZ sample, which uses HERWIG (version 6.520) [93].
The detector response for all background samples is simulated with GEANT4 [94], while the
CMS fast simulation package [95] is used for producing signal samples in the grid of mass
points described earlier. Detailed cross checks are performed to ensure that the results ob-
tained with the fast simulation are in agreement with those obtained with the GEANT-based
full simulation.

Events are selected online by a trigger that requires Emiss
T > 80 GeV and the presence of two

central (|η| < 2.4) jets with pT > 50 GeV. Offline, a preselection of events common to all search
samples used in the analysis has the following requirements:

• There must not be any isolated electrons, muons, or tau leptons in the event. This
requirement is intended mainly to suppress backgrounds with genuine Emiss

T that
arise from W boson decays. The high efficiency lepton selection criteria used in the
definitions of the lepton vetoes are described in detail in Section 5.

• There must be Emiss
T > 175 GeV and at least two jets with pT > 70 GeV and |η| < 2.4,

such that the online selection is fully efficient.

• The azimuthal angular separation between each of the two highest pT jets and ~pmiss
T

must satisfy |∆φ| > 0.5, while for the third leading jet, the requirement is |∆φ| > 0.3.
These criteria suppress rare QCD multijet events with severely mismeasured high-
pT jets.

Baseline selections for the two targeted signal types are then defined by the following addi-
tional requirements. The T2tt baseline selection requires one or more b-tagged picky jets with
pT > 30 GeV and |η| < 2.4, and at least one pair of top quarks reconstructed by the CORRAL

algorithm. The T2bW baseline selection requires at least five jets (pT > 30 GeV and |η| < 2.4)
of which at least one must be b-tagged. SM background yields, estimated as described in Sec-
tion 7, and signal yields after the baseline selections are shown in Table 1. The trigger efficiency
is measured to be greater than 95% for events passing these baseline selections.

A number of data control samples are used to derive corrections to reconstructed quantities
and to estimate SM backgrounds. There are four control samples involving at least one well-
identified lepton and two that are high purity QCD multijet samples. The leptonic control
samples are used to understand tt and vector boson plus jets backgrounds and are named ac-
cordingly, as indicated below. The data are drawn from samples collected online with triggers
that require the presence of at least one charged lepton. The standard CMS lepton identifica-
tion algorithms operating at their tightest working points [71, 76] are then applied offline. Each
event must have at least one selected muon with pT > 28 GeV and |η| < 2.1 or a selected elec-
tron with pT > 30 GeV and |η| < 2.4. Additional leptons must have pT > 15 GeV and |η| < 2.4.
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Table 1: Estimated SM background yields as obtained with the methods described in Section 7,
and the observed data yields for the T2tt and T2bW baseline selections. The T2bW yield cor-
responds to the simplified model point with (mt̃, mχ̃0

1
; x) = (600 GeV, 0 GeV; 0.75), and the T2tt

yield is for the simplified model point with (mt̃, mχ̃0
1
) = (700 GeV, 0 GeV). The uncertainties

listed are statistical only.

T2tt baseline selection yield T2bW baseline selection yield
tt, W+jets, and single top 1735± 16 1850± 12
Z+jets 263.3± 3.7 207.5± 3.4
ttZ 28.14± 0.57 28.92± 0.57
QCD multijet 176± 34 175± 33

All SM backgrounds 2202± 38 2261± 36
Observed data 2161 2159
T2tt (700, 0) 29.47± 0.17 —
T2bW (600, 0; 0.75) — 69.26± 0.47

Selected leptons are not included in the jet collection. Sample names and distinguishing char-
acteristics are as follows:

• The inclusive tt control sample: At least one identified lepton and three or more jets,
of which at least one must be b-tagged.

• The high purity tt control sample: This is the subset of the inclusive tt control sample
for which the selected lepton is a muon and there are at least two b-tagged jets.

• The inclusive W+jets control sample: There must be one identified muon. In ad-
dition, the transverse mass mT formed from ~pmiss

T and the muon momentum is re-
quired to be ≥ 40 GeV in order to reduce QCD multijet contamination.

• The inclusive Z+jets control sample: There must be two identified leptons of the
same flavour with an invariant mass in the range 80 < m`` < 100, consistent with
the mass of the Z boson.

The two additional data control samples selected to be pure in QCD mulitjet events are defined
as follows:

• The inclusive QCD multijet control sample: Events are required to have HT, the
scalar sum of jet pT, >340 GeV and are collected with a set of HT triggers.

• The high Emiss
T QCD multijet control sample: Events are selected with the same trig-

ger used for the baseline selection. All events must satisfy Emiss
T > 175 GeV and

have at least two jets with pT > 70 GeV in order to be fully efficient with respect
to the online selection. The QCD multijet purity is increased by vetoing any events
with isolated electrons, muons, or tau leptons and by inverting the baseline selection
requirement on the angular separation between the three leading jets and ~pmiss

T .

4 Top quark pair reconstruction for the T2tt simplified model
The T2tt and T2bW signal modes involve the same final-state particles but differ in that only
T2tt involves the decays of on-shell top quarks. The only SM background with potentially large
Emiss

T and a visible component that is identical to that of T2tt is ttZ, with the tt pair decaying
hadronically and the Z boson decaying invisibly to neutrinos. Efficient identification of a pair
of hadronically decaying top quarks in events with large Emiss

T provides an important means of
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suppressing most other backgrounds. As mentioned in the previous section, we developed the
CORRAL dedicated top quark reconstruction algorithm for this purpose. Kinematic properties
of the top quark candidates reconstructed with CORRAL are exploited to further improve the
discrimination of signal from background.

Top quark taggers are typically characterized by high efficiencies for the reconstruction of all-
hadronic decays of top quarks that have been Lorentz boosted to sufficiently high momentum
for their final state partons and associated showers to form a single collimated jet. Such taggers
are not ideal for the regions of parameter space targeted by this search because the top quarks
from top squark decays can experience a wide range of boosts in these regions and it is not
uncommon for one of the top quarks to have a boost that is too low to produce such a coales-
cence of final-state objects. An additional problem arises with traditional jet algorithms that do
not always distinguish two separate clusters of particles whose separation is smaller than their
fixed distance parameter or cone radius. In addition, for low-pT jets and those originating from
hadronisation of b quarks, it is not unusual for algorithms with fixed distance metrics to miss
some of the particles that should be included in the jet. These issues are addressed by making
use of a variable jet-size clustering algorithm that is capable of successfully resolving six jets in
the decays of top quark pairs with efficiency ranging between 25% in the case of signal with
compressed mass splitting (mt̃ = 400 GeV ≈ mt + mχ̃0

1
+ 75 GeV) to 40% in the case of large

mass splitting (mt̃ = 750 GeV ≈ mt + mχ̃0
1
+ 550 GeV).

The algorithm starts by clustering jets with the Cambridge–Aachen algorithm [96, 97] with a
distance parameter of 1.0 in the η-φ plane to produce what will be referred to as proto-jets.
Studies based on MC simulation show that this parameter value is large enough to capture
partons with pT as low as 20 GeV. Each proto-jet is then considered for division into a pair
of subjets. The N-subjettiness metric [98], τN, is used to determine the relative compatibility
of particles in a proto-jet with a set of “N” jet axes. It is defined as the pT-weighted sum of
the distances of proto-jet constituents to the nearest jet axis, resulting in lower values when the
particles are clustered near jet axes and higher values when they are more widely dispersed. As
discussed in Ref. [98], the exclusive two-jet kT algorithm [99, 100] can be used to find an initial
pair of subjet axes in the proto-jet that approximately minimizes the τ2 metric. The exclusive
two-jet algorithm differs from the inclusive kT algorithm in that it does not have a distance
parameter. It simply clusters a specified set of particles into exactly two jets. In our case, the
axes are varied in the vicinity of the initial set until a local minimum in the value of τ2 is found.
This defines the final set of axes and each particle in the proto-jet is then associated with the
closest of the two axes, resulting in two candidate subjets.

An MVA ‘picky’ metric is then used to determine if it is more appropriate to associate the
particles with two subjets than with the original proto-jet. The input variables include the τ1
and τ2 subjettiness metrics, the mass of the proto-jet, the (η,φ) separation of the two subjets,
and a profile of the proto-jet’s energy deposition. An MVA discriminator working point is
defined as the threshold value at which the efficiency to correctly split proto-jets into distinct
constituent subjets of top quark decays is 95%, while incorrectly splitting fewer than 10% of
jets that are already distinct constituents. If the discriminator value doesn’t meet or exceed the
threshold, the proto-jet is treated as a single jet and added to the final jet list, otherwise the
two subjets enter the proto-jet list to be considered for possible further division. The algorithm
runs recursively until there are no remaining proto-jets, yielding a collection of variable-size jet
clusters known as ‘picky’ jets.

The efficiency to correctly cluster W bosons (top quarks) into two (three) picky jets satisfying
the basic acceptance requirements of pT > 20 GeV and |η| < 2.4 is shown in Fig. 2 as a function



8 4 Top quark pair reconstruction for the T2tt simplified model

of generated particle (top quark or W boson) pT in all-hadronic T2tt events with mt̃ = 600 GeV
and mχ̃0

1
= 50 GeV. In each event the six quarks arising from the hadronic decays of the two

top quarks are matched to reconstructed picky jets by means of ghost association [101]. This
technique associates particles produced in the fragmentation and hadronization of the quark
prior to detector response simulation. The ‘generator-level’ particles are clustered together
with the full reconstructed particles used to form the picky jets as described above, but the
momentum of each of the generator-level particles is scaled by a very small number so that the
picky jet collection is not altered by their inclusion. A quark is then determined to be matched
to the picky jet that contains the largest fraction of the quark’s energy if it is greater than 15%
of the quark’s total energy. In the case that two or more quarks are associated with the same
picky jet, the picky jet is matched to the quark with the largest clustered energy in that jet.
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Figure 2: Efficiency as a function of generator level pT for picky jet clustering and CORRAL

top quark pair reconstruction in all-hadronic T2tt events with mt̃ = 600 GeV and mχ̃0
1
= 50 GeV.

left: The efficiency to correctly cluster final state particles from each W boson and top quark de-
cay into two and three picky jets, respectively, as a function of particle (top quark or W boson)
pT. right: The efficiency at each stage of the CORRAL algorithm to reconstruct a hadronically
decaying top quark pair as a function of the average pT of the two top quarks. They are the
efficiency to correctly cluster the final state particles from top quark decays into six picky jets,
labelled “Picky jet clustering”; the efficiency to both carry out picky jet clustering and recon-
struct the top quark pair with these six picky jets, labelled “Top pair reconstruction”; and finally
the efficiency to carry out picky jet clustering, top pair reconstruction, and then correctly select
the reconstructed top quark pair for use in the analysis, labelled “Correct pair selection”.

The energy of each resulting picky jet is corrected for pileup by subtracting the measured en-
ergy associated with pileup on a jet-by-jet basis by means of a trimming procedure similar to
the one discussed in Ref. [102]. The procedure involves reclustering of the particles associ-
ated with the jet into subjets of radius 0.1 in η-φ and then ordering them by decreasing pT.
The lowest pT subjets are removed one-by-one until the summed momentum and mass of the
remaining subjets have minimal differences with the same quantities after subtracting an esti-
mate of the pileup contribution [103]. The reconstructed W boson and top quark masses as a
function of the number of reconstructed primary vertices are shown in Fig. 3 in all-hadronic
T2tt events with mt̃ = 600 GeV and mχ̃0

1
= 50 GeV. The reconstructed mass values are seen to

have no pileup dependence after the trimming procedure is applied. No additional jet energy
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scale corrections, other than those mentioned below, have been derived to remove the remain-
ing 5-10% bias in the reconstructed mass values. The CORRAL algorithm is optimized for the
uncorrected top quark and W boson mass values.
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Figure 3: Masses of the top quarks and W bosons reconstructed with picky jets that are matched
at particle level in simulation, as discussed in the text, in all-hadronic T2tt events with mt̃ =
600 GeV and mχ̃0

1
= 50 GeV. The labels “before PU corr.” and “after PU corr.” refer to results

obtained before and after application of the trimming procedure used to correct for pileup
effects.

The pT spectra of picky jets in MC data are corrected to match those observed in data in the
inclusive tt and Z+jets control samples by rescaling of individual picky jet pT values. The
rescaling factors are derived separately for each of the two processes and for the flavour of
parton that initiated the jet. They are found to be within 2–3% of unity. Picky jets can also
be b-tagged with the CSV algorithm by considering the tracks that have been used in their
formation.

A candidate for a hadronically decaying top quark pair is a composite object constructed from
six picky jets that passes every step of the CORRAL algorithm, which will now be described. To
reduce the number of jet combinations that must be considered, the algorithm involves several
stages, with progressively tighter selection criteria at each stage. First, BDTs are trained to
discriminate the highest pT jet coming from a top quark decay from all other jets in the event
using input variables related to jet kinematics, b tagging discrimination and jet composition
information. Jets are labelled as seed jets if they have an associated discriminator value that
exceeds a high efficiency cutoff value. Three-jet top quark candidates are then constructed
from all combinations of three jets in the event that include at least one seed jet. High quality
top quark candidates are those that pass one of two MVA working points chosen to identify
97–99% of those cases in which the jets are correctly matched to top quark decays and to reject
60–80% of the candidates that are not correctly matched. The most important input variables
are the W boson and top quark invariant masses and the picky jet b tagging discriminator
value. Other variables such as the angular separations of the jets are included for additional
discrimination. A final list of top quark pairs contains all combinations of two high quality top
quark candidates with distinct sets of three jets. The final reconstructed top quark pair used
in the analysis is the one with the highest discriminator value from a BDT that is trained with
variables similar to those used in the candidate selection but also including information on the
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correlations between the top quark candidates.

The CORRAL algorithm reconstructs at least one top quark pair in nearly every event that has
six or more picky jets. However, CORRAL is not strictly a top quark tagger that must distinguish
events with top quarks from events without top quarks. It is designed to reconstruct top quark
pairs in data samples that are predominantly made up of top quark events, as is the case for
the T2tt part of this analysis. In Fig. 2, the efficiency for correctly resolving the top quark
pair is shown at each stage of the algorithm. These efficiencies are calculated for T2tt events
with mt̃ = 600 GeV and mχ̃0

1
= 50 GeV, but they do not depend strongly on the signal mass

parameters. The two hadronic top quark decays are each resolved into three distinct picky jets
in 15–70% of events, depending on the boost of the quarks. In nearly all of these events the
correct six jets pass the CORRAL jet seeding and top quark candidate selection requirements
and are used to form the correct top quark pair among a number of top quark pairs found in
the event. The correct pair is then chosen to be used in the analysis in 30–80% of events.

Properties of the reconstructed top quark pairs used in the analysis are compared to true top
quark pair quantities in Fig. 4 for signal events with at least one reconstructed top quark pair.
The events in which the true top quark pair is chosen are categorized separately in the figure.
In the fully resolved and selected case the reconstructed separation in φ between the two top
quarks agrees with the true separation within 0.1 in over 80% of events. Even in the case of the
reconstructed top quark pair not being fully resolved or selected, there is reasonable agreement
because the top quark pair is constructed with five of the six correct jets in the majority of these
events.

The signal discrimination that is achieved by exploiting differences in the kinematics of the
reconstructed top quark pairs in simulated signal samples and those in simulated SM back-
ground samples is illustrated in Fig. 5. The left plot shows the minimum separation in the η-φ
plane between any two jets in the reconstructed top quark candidate with the highest discrimi-
nator value, labelled t1. The separation tends to be smaller in T2tt signal events because the top
quarks with the highest discriminator value are more likely to be boosted. Similarly, the right
plot shows the distribution for the separation in φ between the jet direction and ~pmiss

T for the
jet with the smallest such separation from the sub-leading reconstructed top quark, labelled
t2. The distribution for the semileptonic tt background, involving tt events in which one W
boson decays leptonically, is shifted to low values of ∆φ because the t2 top quark candidates in
tt events typically use the b jet from the leptonically decaying top quark, which is correlated in
angle with the ~pmiss

T from the leptonically decaying W boson.

5 Rejection of isolated leptons
The main backgrounds for this analysis arise from events with lost or misidentified leptons.
Sensitivity to signal is therefore improved by identifying and rejecting events with charged
leptons originating from prompt W boson decays as efficiently as possible. On the other hand,
signal events often contain charged leptons that arise from decays of heavy flavour hadrons or
charged hadrons that have been misidentified as charged leptons. It is advantageous to retain
these events in order to achieve high signal efficiency. In events with Emiss

T > 175 GeV and
five or more jets, the standard CMS lepton identification algorithms operating at their tightest
working points [71, 76] can identify semileptonic tt events with efficiencies of 54% and 60%
for final states involving electrons and muons, respectively. This analysis makes use of MVA
techniques to achieve higher efficiencies for the identification and rejection of semileptonic tt
events, while retaining high signal efficiency.
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Figure 4: Properties of the reconstructed top quark pair used in the analysis are compared to
their true properties in all-hadronic T2tt events with mt̃ = 600 GeV and mχ̃0

1
= 50 GeV. The

label “Correct pair selection” corresponds to events in which the two top quark decays are
each resolved into three distinct picky jets and these jets are used to reconstruct the two top
quarks. The label “Incorrect clustering or pair selection” is used for all other events. The top
two figures show comparisons of the angular separation between the two top quarks in rapid-
ity, y ≡ −(1/2) ln[(E + pz)/(E− pz)], and azimuthal angle φ. The bottom figure compares the
relative pT of the two top quarks. In all cases, t1 refers to the top quark with the highest pT.

The MVAs used here combine a number of moderately discriminating quantities into a single
metric that can be used for electron and muon identification. Electrons and muons must have
pT > 5 GeV, |η| < 2.4, and are required to satisfy the conditions for the loose working point of
the standard CMS identification algorithms, for which the efficiencies for electrons and muons
in the tracker acceptance are above 90%. The discriminating variables used in the training of
the muon identification BDT are the pT of the muon, its track impact parameter information,
relative isolation in terms of charged and neutral particles, and the properties of the jet nearest
to the muon. Isolation in terms of charged and neutral hadrons is defined by means of separate
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Figure 5: Distributions of properties of reconstructed top quark pairs for data together with
signal and background MC data samples after the baseline selection for two choices of mt̃ and
mχ̃0

1
. For the case mt̃ = 775 GeV, mχ̃0

1
= 25 GeV the expected signal is multiplied by a factor

of 25. The left plot shows the minimum separation in the η-φ plane between any two jets in
the leading reconstructed top quark, defined as the one with the highest discriminator value,
while the right plot shows the separation in φ between ~pmiss

T and the jet in the sub-leading
reconstructed top quark for which this separation is the smallest. Both variables are inputs to
the T2tt search region BDT discriminators, which are described in Section 6.

sums of the pT of charged and neutral PF particles, respectively, in a region near the lepton,
divided by the lepton pT. The properties of the nearest jet that are used include the separation
from the lepton in the η-φ plane, the momentum of the lepton relative to the jet axis, and the
CSV b tagging discriminator value for the jet. For electron identification, the variables include
all of those used for the muon, plus several electron-specific variables that are used in the
standard CMS electron identification MVA [76].

The BDTs are trained using simulated event samples with electrons or muons. In particu-
lar, single-lepton tt events are the source of prompt leptons, while electrons or muons in all-
hadronic tt events are used for non-prompt leptons. The non-prompt lepton selection efficiency
in signal events is similar to that in tt events. The left plot in Fig. 6 shows the selection effi-
ciency, by lepton type, for non-prompt leptons as a function of that for prompt leptons in the
BDT training samples. The curves are obtained by varying the cutoff on the corresponding BDT
discriminator value above which events are accepted. In this analysis, the discriminator values
that are chosen have efficiencies of 98% for events with electrons and muons from W boson
decays that pass the preselection requirements, while incorrectly selecting no more than 5%
of all-hadronic tt events. The latter gives some indication of the expected loss of all-hadronic
top squark signal events. Upon including reconstruction and acceptance inefficiencies, these
requirements eliminate 80% of single-electron and single-muon tt events with Emiss

T > 175 GeV
and five or more jets.

A similar approach is used to identify hadronically decaying tau leptons originating from
semileptonic tt decays. The τ identification algorithm focuses on decays involving a single
charged hadron in conjunction with neutral hadrons because the majority of hadronic τ decays
are to final states of this type, which are often referred to as ‘one-prong’ decays. No attempt
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Figure 6: left: Comparison of BDT discriminator selection efficiencies for non-prompt and
prompt leptons. Prompt leptons are those matched to lepton candidates in semileptonic tt
events whereas non-prompt leptons are those that are matched to lepton candidates in all-
hadronic tt in the case of electrons and muons, or all-hadronic T2tt signal events in the case
of τ leptons. It follows that the non-prompt category includes misidentified charged hadrons
and leptons from decays of hadrons. right: The mT calculated from ~pmiss

T and the momentum
of the visible τ lepton decay products, for τ lepton candidates matched to τ lepton decays
in semileptonic tt events, and all τ lepton candidates in a simulated all-hadronic T2tt signal
sample (mt̃ = 620 GeV, mχ̃0

1
= 40 GeV).

is made to specifically reconstruct the sub-dominant ‘three-prong’ decays. A τ candidate is
thus defined by a track and a nearby electromagnetic cluster produced by the photons from
π0 → γγ decay, if present, in order to include more of the visible energy from the τ lepton
decay. Since every charged particle with pT > 5 GeV and |η| < 2.4 could be considered to be a
τ candidate, we reduce the pool of candidates by using mT calculated from ~pmiss

T and the mo-
mentum of each candidate. As seen in the right plot in Fig. 6, the mT distribution for genuine τ
candidates has an endpoint at the mass of the W boson for semileptonic tt events, reflecting the
fact that the neutrinos associated with W boson and τ lepton decays are the largest source of
Emiss

T in these events. Fully hadronic signal events with large Emiss
T do not have this constraint,

and so each τ candidate is required to have mT < 68 GeV.

The variables used in a BDT discriminator for the identification of the τ candidate are the track
pT, |η|, and distance of closest approach to the primary vertex, as well as the isolation quantities
and general properties of the jet in which the τ candidate is contained. The isolation variables
include the separate sums of the transverse momenta of charged and neutral PF particles, in
cones of radii 0.1, 0.2, 0.3, and 0.4 centered on the candidate, and the distance between the
candidate and the nearest track. The jet variables used are the separation in the η-φ plane
between the track and the jet axis, and the b tagging discriminator value for the jet. This BDT is
trained with hadronically decaying τ candidates originating from semileptonic tt decays in MC
simulation for prompt candidates, while all τ candidates in all-hadronic T2tt events with mt̃ =
620 GeV and mχ̃0

1
= 40 GeV are used for the non-prompt candidates. The samples produced

with these T2tt mass parameters are not included in the final array of T2tt samples used in the
later stages of this analysis. The T2bW baseline selection is applied to all events in order to have
training samples whose kinematic selection criteria are consistent with those used to select the
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data samples used for the search. The mT cutoff value and the BDT discriminator value are
chosen to keep losses below 10% in the all-hadronic signal samples targeted by this analysis.
The efficiency for correctly selecting the background of semileptonic tt events with hadronically
decaying tau leptons is 65%. This efficiency is defined relative to events for which the τ lepton
decay products include at least one reconstructed charged particle with pT > 5 GeV.

The efficiencies for selecting leptons in simulation are corrected to match those measured in
data after applying the T2bW baseline selection criteria. The multiplicative correction factors
applied to the simulated electron and muon selection efficiencies for this purpose are 0.95±
0.03 and 1.01± 0.03, respectively. The corrections to the simulated τ selection efficiency are
1.30± 0.10 for τ candidates with pT < 10 GeV and 0.98± 0.04 for all other candidates.

6 Search regions
As discussed above, this analysis makes use of MVA techniques based on BDTs to achieve
sensitivity to direct production of top squark pairs in the all-hadronic final states of the T2tt
and T2bW simplified models in the presence of three main classes of much more copiously
produced SM backgrounds. The signal space of the T2tt simplified model is parameterised by
the masses of the top squark and the neutralino. The T2bW simplified model also includes
an intermediate chargino, and is therefore parameterised by three masses. For each model, a
large set of simulated event samples is prepared, corresponding to a grid of mass points in two
dimensions for T2tt, and in three dimensions for T2bW. A large set of moderately to strongly
discriminating variables, discussed in more detail below, serves as input to each BDT to yield
a single discriminator value ranging between −1.0 and +1.0 for each event considered. Events
with values closer to 1 (−1) are more like signal (background).

Since there are potentially significant differences in the kinematic characteristics of signal sam-
ples at different points in the mass grids described above, it is not known a priori what is the
minimum number of distinct BDTs that are needed to achieve the near optimal coverage of the
signal spaces. To this end, a minimum number of BDTs that provides sufficient coverage of
each signal space is selected from a larger superset that includes BDTs that are each uniquely
trained on grid points separated by ≈100 GeV in top squark mass and ≈50 GeV in neutralino
mass for both signal types. For T2bW, there are also 3 different values of chargino mass that are
considered, corresponding to x = 0.25, 0.5, and 0.75. Sensitivity to signal is probed by varying
discriminator thresholds from 0.5 to 1.0 in steps of 0.01. Ultimately it is determined that four
BDTs for T2tt and five for T2bW are adequate to cover the largest possible parameter space
with near optimal signal sensitivity. Each BDT tends to cover a specific portion of signal space,
referred to as a search region. The optimisation of the overall search does not depend strongly
on the specific signal points that are used to train individual BDTs. Moreover, adding more
regions is not found to increase the sensitivity of the analysis. Table 2 lists the search regions
for both signal types, the mass parameter points used to train each BDT, and the optimal BDT
discriminator cutoffs that are used to define the final samples. Figure 7 displays the most sen-
sitive search regions in T2tt and selected T2bW mass planes. The colour plotted in any given
partition of the plane corresponds to the search region BDT with the strongest expected limit
on the signal production cross section.

For the T2tt search a total of 24 variables are used. They can be divided into variables that do
or do not rely upon top quark pair reconstruction by the CORRAL algorithm. The latter include
Emiss

T , jet multiplicity, and mT calculated with ~pmiss
T and the ~pT of the b-tagged picky jet that is

closest to ~pmiss
T in φ. Of these, the most important variables for tt suppression are Emiss

T and mT.
The mT distribution is peaked near the top quark mass for semileptonic tt events because nearly
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all of the Emiss
T originates from the leptonic W decay, and the corresponding lepton is usually

soft. On the other hand, there is no peak in the distribution for fully hadronic signal events. One
variable suppresses SM background by exploiting the higher probability for jets in SM events,
particularly Z+jets and W+jets, to originate from gluons. It is the product of the quark-gluon
likelihood values [104] that are computed for each jet in the event. Two additional variables, the
η of the peak in jet activity and the ∆η between two peaks in jet activity, provide a measure of
the centrality of the event activity. They are obtained by a kernel density estimate (KDE) [105,
106] of the one dimensional jet pT density. The KDE uses the jet η as input with a jet pT weighted
gaussian kernel function and a bandwidth parameter optimized on an event by event basis
such that two peaks in the KDE are found. Another variable counts the number of unique
combinations of jets that can form reconstructed top quark pairs. The remaining seventeen
variables are all built with information pertaining to the candidate top quark pair obtained from
CORRAL. The invariant mass of the top quark pair and the relative pT of the two reconstructed
top quarks are used to take into account correlations between the two top quark candidates
that generally differ for signal and background. The degree of boost or collimation of each top
quark candidate is measured with three variables, including the minimum cone size in the η-φ
plane that contains all of the reconstructed particles from the top quark decay. Two variables
use the CORRAL discriminator value for each of the two top quarks as a measure of the quality
of the reconstruction. Two other variables measure the angular correlation with ~pmiss

T for the
lower-quality member of the top quark pair. The last eight variables are the pT values for the
six jets in the top quark pair and two CSV b jet discriminator values that each correspond to the
highest b tagging discriminator value obtained for the three jets that make up each of the two
top quark candidates. While the properties of the reconstructed top quark pairs differ between
signal events with two hadronic top decays and all SM background events with one or no
hadronic top decays, the variables measuring the quality of the reconstruction are particularly
useful for the suppression of Z+jets and W+jets since no reconstructed top quark candidates
originate from hadronic top decays. A similar situation occurs for the variables utilizing b jet
discriminator values since these processes typically have fewer jets that originate from b quarks
than signal processes. As explained in Section 4, the kinematics of the reconstructed top quarks,
such as their angular correlation with ~pmiss

T , are used for tt suppression.

There are 14 variables used to train the BDTs that target the T2bW final state, half of which are
the same or very similar to those used for the T2tt final state. Four of these are commonly used
to distinguish SM background from SUSY signals. They are Emiss

T , jet multiplicity, multiplic-
ity of jets passing the CSV b tagger medium working point, and the azimuthal separation of
the third-leading jet from ~pmiss

T . Variables that are sensitive to correlations between b jets and
the rest of the event are the invariant mass formed with the two highest pT b-tagged jets; mT
formed with ~pmiss

T and the nearest b-tagged jet; and the standard deviation of the separation
in pseudorapidity between the b-tagged jet with the highest pT and all other jets in the event.
Three additional variables make use of quark-gluon likelihood values for the jets in the event,
and a further set of three make use of jet kinematics. Of the last the most important is the scalar
sum over pT of jets whose transverse momenta are within π/2 of the direction of ~pmiss

T , (i.e.
∆φ(~p jet

T ,~pmiss
T ) < π/2) divided by the corresponding sum for all jets that do not meet this crite-

rion. This variable is particularly useful for suppression of Z+jets and W+jets since the jets and
~pmiss

T in these events are typically opposite in φ. This is not the case for signal events, for which
the direction of ~pmiss

T and hadronic activity is less correlated. For the calculation of the final
variable, jets are first grouped into unique pairs by requiring the smallest separation distances
in η − φ space. Of these, the invariant mass of the pair with the highest vector sum pT is found
in simulation to have a high probability to correspond to the decay of a W boson and is used to
suppress Z+jets events with Z→ νν.
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Table 2: Search regions for the T2tt and T2bW channels. The table lists the SUSY particle masses
used for the training of the BDTs, the cutoff on the BDT output, and the efficiency for the signal
to pass the BDT selection relative to the baseline selection. The event counts of the T2bW
discriminator training samples are limited and so four nearby mass points were used. They are
the four combinations of the two t̃ and two χ̃0

1 masses listed. The signal efficiency in each row
of the table is then that of the best case of the four, which in every case is the point with the
largest mt̃ and smallest mχ̃0

1
values of those indicated.

Search region mt̃ [GeV] mχ̃0
1

[GeV] x Cutoff Signal efficiency [%]
T2tt LM 300 25 — 0.79 8
T2tt MM 425 75 — 0.83 16
T2tt HM 550 25 — 0.92 25
T2tt VHM 675 250 — 0.95 19
T2bW LX 550 & 575 175 & 200 0.25 0.94 25
T2bW LM 350 & 375 75 & 100 0.75 0.73 10
T2bW MXHM 550 & 575 125 & 150 0.50 0.92 14
T2bW HXHM 400 & 425 25 & 50 0.75 0.82 10
T2bW VHM 550 & 575 25 & 50 0.75 0.93 12

7 Estimation of SM backgrounds
We divide the important SM backgrounds into three classes. The first class, referred to as
EW backgrounds, includes semileptonic and dileptonic decays of tt, W+jets, single top, and
Z+jets with Z→ νν. The second class of backgrounds originates from high-Emiss

T QCD multijet
processes, and the third arises from associated production of ttZ with Z → νν and both top
quarks decaying to hadrons. The latter produces a final state that is extremely similar to that of
the signal but is fortunately very rare. The diboson contributions to search regions are studied
in simulation and found to be negligible.

The estimation of the EW and QCD multijet backgrounds is based on MC samples in which
the events have been reweighted by scale factors with values that are generally within a few
percent of unity. As discussed in Section 7.1, the scale factors are extracted from data-MC com-
parisons in control regions. The reweighting of the events assures that the simulation samples
match data samples with regard to distributions of quantities that are relevant to the selec-
tion of events in the signal regions. However, it is important to note that the reweighted MC
samples are not used directly to estimate backgrounds in the signal region. Rather, the search
region yields and uncertainties are estimated by comparing the reweighted MC samples to data
in background-specific control regions that differ from the search regions only in that they are
obtained with selection criteria that simultaneously increase the purity of a single background
and reduce any potential signal contamination. In the case of the EW backgrounds the con-
trol regions are selected by requiring one or more isolated leptons, while for the QCD multijet
background it is selected by requiring ~pmiss

T to be aligned with one of the leading jets.

The ttZ background is estimated directly from a sample of next-to-leading-order (NLO) MC
simulation events generated with MC@NLO. This procedure is motivated by the fact that ttZ
has a much lower cross section than other SM processes, making it impossible to define control
regions that are both kinematically similar to the search regions and sufficiently well-populated
to enable the extraction of scale factors.
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Figure 7: Search regions providing the most stringent limits in the mt̃-mχ̃0
1

plane in the T2tt
signal topology (top left) and the T2bW signal topologies for mass splitting parameter values
x = 0.25, 0.50, 0.75. The T2tt LM, T2tt MM, T2tt HM, and T2tt VHM search regions are num-
bered 1, 2, 3, and 4, respectively. The T2bW LX, T2bW LM, T2bW MXHM, T2bW VHM, and
T2bW HXHM search regions are numbered 1, 2, 3, 4, and 5 respectively. In some regions, par-
ticularly with mχ̃0

1
similar to mt̃, the different search regions can have similar sensitivity, which

can lead to the fluctuations in choice of search regions in neighboring bins that is seen in some
areas.

7.1 EW and QCD background estimates with MC reweighting

This analysis uses MC samples as the basis for the estimation of SM backgrounds in signal
regions. These simulations have been extensively tested and tuned in CMS since the start of
LHC data taking in 2009. As a result, they accurately reproduce effects related to the detailed
geometry and material content of the apparatus, as well as those related to physics processes
such as initial-state and final-state radiation. Nevertheless, the MC samples are not assumed
to be perfect, discrepancies being observed with data in some kinematic regions. Comparisons
between data and MC simulation are therefore performed to derive scale factors in order to
reduce the observed discrepancies.
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The scale factors fall into two conceptually different categories. The first category involves
effects associated with detector modelling and object reconstruction that are manifested as dis-
crepancies in jet and Emiss

T energy scales and resolutions, lepton and b jet reconstruction effi-
ciencies, and trigger efficiencies. The second category corresponds to discrepancies associated
with theoretical modelling of the physics processes as represented by differential cross sec-
tions in collision events. The scale factors in this category are estimated separately for each SM
background process. The main sources of discrepancy here are finite order approximations in
matrix element calculations and phenomenological models for parton showering and hadro-
nisation. Scale factors are parameterised as a function of generator-level quantities controlling
post-simulation event characteristics relevant to the final selection criteria used in the analysis.
The scale factors are derived by comparing distributions of variables after full reconstruction
that are particularly sensitive to these generator-level quantities, as seen in comparisons of MC
with data. D’Agostini unfolding with up to four iterations [107], implemented with RooUn-
fold [108], is used to determine the correct normalization of the generator-level quantities such
that the distributions agree after full reconstruction. The scale factors are defined as the ratio
of the corrected values of generator-level quantities to their original values. The MC events are
reweighted by these scale factors, thereby eliminating any observed discrepancies with data.
The scale factors are generally found to be close to unity as a result of the high quality of the
MC simulation. The inclusive kinematic scale factors lead to no more than 10% shifts in any
regions of the distributions of HT and number of jets that are relevant to this analysis.

7.1.1 Detector modelling and object reconstruction effects

The detector modelling and object reconstruction scale factors are grouped into the following
categories: lepton identification efficiency, jet flavour, jet pT, and ~pmiss

T .

For the lepton identification efficiency, the event yields of simulated data passing the lepton ve-
toes in the search regions are corrected by scale factors as described in Section 5. The associated
uncertainties in the search region predictions are denoted as “MVA lepton sel. scale factors”
in Tables 3 and 4. Similarly, in the control regions defined by the presence of a single lepton
as described in Section 3, scale factors are applied to the simulated electron and muon recon-
struction, identification, and trigger efficiencies. These scale factors are measured by applying
a “tag-and-probe” technique to the pairs of leptons coming from Z boson decays [71, 76, 109].

Identification of jet type via b tagging is important for the CORRAL top reconstruction algorithm
and the signal discriminator used in the T2tt search. Both use the CSV b tagging algorithm out-
put values directly rather than setting a particular cutoff value as is done for standard CMS
loose, medium, and tight working points [80]. It is therefore important that the CSV discrimi-
nator output distributions in simulated event samples match those seen in corresponding data
samples. To this end, the CSV discriminator output of each picky jet is corrected so that the
CSV output distributions for simulated tt and Z+jets event samples match those observed in
the inclusive tt and Z+jets control samples, respectively. Similarly, the quark-gluon likelihood
distribution for jets is corrected to match data. The jet energy scale is corrected as described in
Section 3, and the simulated picky jet pT spectrum is corrected as described in Section 4.

The rejection of SM backgrounds in this analysis is very much dependent on the measure-
ment of ~pmiss

T and its resolution, which is not modelled perfectly in simulation. Corrections
are therefore applied to MC simulated samples of EW and QCD multijet processes in order to
obtain good agreement with data in search region variables that depend on the correlation of
event activity with ~pmiss

T . There are three separate corrections [110] applied for EW processes
that are derived from a control sample of Z+jets events with Z → `+`− where, by conserva-



7.1 EW and QCD background estimates with MC reweighting 19

tion of energy and momentum, the reconstructed Z boson provides an accurate measure of
the energy associated with all other activity in the event as measured in the transverse plane.
Sources of genuine Emiss

T such as neutrinos in these events are rare and have a negligible effect
on the derived corrections. The corrections are based upon comparisons of data to simulation
in the inclusive Z+jets control sample in which ~pmiss

T is decomposed into components parallel
and perpendicular to the direction of the Z boson ~pT. The components and their resolutions
are then investigated as a function of a variety of quantities to look for systematic trends and
biases that can then be corrected. In this way, an Emiss

T scale correction of order 1% is obtained
as a function of both the boson pT and the distribution of hadronic energy in the event rela-
tive to the energy of the boson. The second and third corrections involve an increase in the jet
resolution by 9% and a smearing of the ~pmiss

T in both the directions parallel to the boson and
perpendicular to it by approximately 4.5 GeV. The measured resolutions of the components
of ~pmiss

T along and perpendicular to the boson direction as obtained in simulation match those
found in the data control regions after these corrections are applied.

For the EW backgrounds the ~pmiss
T corrections are parameterised in such a way that the cor-

rected MC samples are consistent with data in ~pmiss
T -related quantities, such as the recon-

structed W boson mT. In contrast, for the discrimination between QCD multijet events and
SUSY signal events, the angular correlations between ~pmiss

T and the ~pT of leading jets in the
event are the most important variables. Corrections are therefore obtained expressly for this
background process with the inclusive QCD multijet control sample. The corrected simulation
samples provide a good match to the angular correlations between ~pmiss

T and the leading jets in
data.

7.1.2 Corrections to the theoretical modelling of EW background processes

The kinematic distributions of simulated EW processes are validated and corrected with three
control samples having charged leptons in the final state: the high purity tt, the inclusive Z+jets,
and the inclusive W+jets control samples. Based on the physically reasonable assumption that
the kinematics of the rest of the event should be largely independent of the boson decay(s) in
these processes, the control samples are used in conjunction with corresponding MC samples to
extract scale factors described below that are parameterised by generator-level quantities. They
are then applied to MC samples in the search regions to estimate background contributions.

The scale factors are extracted as functions of the pT of the boson in the case of W+jets and
Z+jets or of the momenta of the top quarks in the case of tt. They also depend on the multi-
plicity and flavour of radiated jets as well as HT. Because the control samples have finite sizes,
the scale factors are organised into subsets that are derived and used sequentially. That is,
prior to each derivation step, the scale factors extracted in the previous derivation steps are ap-
plied. For example, scale factors for correcting the tt jet multiplicity and top quark spectra are
obtained and applied prior to calculating those used to correct the production of Z bosons in
conjunction with heavy-flavour jets, since as much as 60% of the events in the Z control sample
are tt events.

There is no suitable control region to accurately measure corrections to the theoretical mod-
elling of the single top process. However, a precise modelling of this process is not important
as its contribution in the search regions is much smaller than that of tt. A 50% systematic un-
certainty on the single top yield, estimated with simulation, is therefore used. It appears under
the label “Single top kinematics” in Tables 3 and 4.
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7.1.3 Estimation of EW background

The corrections to the MC event samples based on scale factors, as discussed above, result in an
agreement between MC and data distributions that is typically within 10% for all control sam-
ples, including samples that were not used to extract the scale factors. This level of agreement is
also found for distributions of many kinematic variables for which no corrections were explic-
itly applied. There are a few regions in which kinematic distributions disagree at the level of
20%, but these disagreements have been found to have a negligible impact on the search region
predictions. A bootstrapping procedure is used [111] to take into account statistical uncertain-
ties in the derived scale factors for distributions of kinematic quantities and their correlations.
The corresponding statistical uncertainty in the search region predictions is labelled “Kinemat-
ics reweighting” in Tables 3 and 4. While the corrected MC and data distributions are found to
agree in many control regions, the corrected MC is not used to directly estimate the background
in the search regions. Instead, corrections specific to each search region are derived in addition
to the more general scale factors previously described.

After correcting MC simulation samples for detector, reconstruction, and kinematic discrep-
ancies, a closure correction and its uncertainty are measured, where closure is defined as the
largest residual data-MC difference seen in a number of kinematic distributions. To this end,
data-MC comparisons are performed in a variety of leptonic control regions for which the kine-
matic distributions under study are as similar as possible to those in the search regions as seen
for MC samples that pass the signal selection criteria. The leptonic control samples used for the
closure tests are obtained by applying the full set of baseline requirements, with the exception
of the lepton vetoes. The control samples used to correct the tt, W+jets and single top processes,
referred to as the “1` closure samples,” are subsets of the inclusive tt control sample, in which
exactly one charged lepton has been identified. The charged lepton is removed from the list
of physics objects in the event, leading to an additional component of ~pmiss

T that simulates the
case in which the W boson decay has a large invisible component, which is common for events
passing the search region selection. As a result, many events with low intrinsic Emiss

T pass the
search region selection criteria, thereby enhancing the data statistics and significantly reducing
the closure uncertainty. For similar reasons, this procedure also reduces potential contami-
nation by semileptonic signal events to negligible levels. Likewise, “2` closure samples” are
subsets of the inclusive Z+jets control sample and are used to correct the Z+jets process. The
charged leptons are removed from the event, altering the ~pmiss

T to simulate the case in which
the Z boson decays to neutrinos.

Comparisons of the BDT discriminator outputs for data and corrected MC simulation for the 1`
closure samples, after removal of the single identified charged lepton in each event, are shown
in Figs. 8 and 9, with the first ten bins in each plot covering the full BDT discriminator range.
The closure is quantified by comparing the predicted event counts in MC simulation to those
found in data in a ‘validation region’, defined as the region containing the events with a sin-
gle lepton that pass all of the final signal selection criteria after the lepton is removed, and in
two control regions that extend the final search region to lower BDT discriminator values. The
latter are defined by doubling and tripling the difference between unity and the discriminator
cutoff value used for the final search region. These two additional regions are needed because
the search region is statistically limited in some cases. The results for the signal region and the
two extended regions are shown in the last three bins in Figs. 8 and 9, for the four T2tt and five
T2bW BDT discriminators, respectively. The differences seen in the event counts for data and
MC simulation in the extended regions are in general statistically compatible with the differ-
ence seen in the search region. Therefore, the data over simulation ratio in the first extended
region is used as a correction for any potential residual bias in the event counts obtained with
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MC samples in which the events pass all of the signal region selection criteria, now including
the lepton veto requirements. The uncertainty in the correction is taken to be the statistical
uncertainty in the data over simulation ratio in the last bin, which we have referred to as the
validation region. This choice assures that the uncertainty covers any potential unknown dif-
ferences between the search region and the first extended search region. For the four separate
T2tt search regions, the largest correction is 1.08± 0.13 in the medium-mass region, with the
closure uncertainties ranging from ±0.08 in the low-mass region to ±0.24 in the very-high-
mass region. For the five separate T2bW search regions, the largest correction is 0.85± 0.20,
and the uncertainties in the corrections range from ±0.09 to ±0.25. This uncertainty in the
search region predictions is denoted as “Closure (1`)” in Tables 3 and 4.
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Figure 8: Comparisons of BDT discriminator (D) outputs for data and corrected MC simulation
for the 1` closure samples, with leptons removed, for the four T2tt validation regions. The
three bins at the far right in each plot are used to validate the MC performance in the signal
region and its two extensions. The points with error bars represent the event yields in data.
The histogram labelled “MC without corr.” in the bottom pane of each figure plots the ratio
whose numerator is the total MC event count before corrections and whose denominator is
the event count for the corrected MC shown in the upper pane. The other histograms indicate
the contributions of the various background processes. The “LF” and “HF” labels denote the
subsets of the W+jets process in which the boson is produced in association with light and
heavy flavour (b) quark jets, respectively.

The simulated data are similarly compared to data in the 2` closure samples in Figs. 10 and
11. No statistically significant lack of closure is observed for any of the T2tt and T2bW search
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Figure 9: Comparisons of BDT discriminator (D) outputs for data and corrected MC simulation
for the 1` closure samples, with leptons removed, for the five T2bW validation regions. The
three bins at the far right in each plot are used to validate the MC performance in the signal
region and its two extensions. The points with error bars represent the event yields in data.
The histogram labelled “MC without corr.” in the bottom pane of each figure plots the ratio
whose numerator is the total MC event count before corrections and whose denominator is
the event count for the corrected MC shown in the upper pane. The other histograms indicate
the contributions of the various background processes. The “LF” and “HF” labels denote the
subsets of the W+jets process in which the boson is produced in association with light and
heavy flavour (b) quark jets, respectively.
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regions. However, the small sample size makes it impossible to probe comparisons near to
the search regions. An uncertainty is therefore obtained by measuring the largest data-MC
discrepancy for each individual MVA input variable in the kinematic phase space of the search
regions. This is defined for each input variable and search region as the ratio of event yields
in data relative to MC simulation after reweighting both distributions. The weights that are
used come from MC simulated distributions of the input variables after applying the MVA
discriminator cutoff that is used for the search region. The distributions are normalised to
unit area and the normalised bin contents are the final weights. The weights are applied to
binned events in both samples before taking the data/MC ratio in the control region where we
measure the uncertainty. The uncertainty in the Z+jets background prediction is then taken to
be the difference with respect to unity of this ratio for the variable with the largest degree of
nonclosure, defined as |(Data/MC) − 1|/σ where σ is the statistical uncertainty in the ratio.
This closure test is repeated with successively tighter MVA discriminator cutoffs to check if
the extracted closure uncertainty has any potential systematic trend related to discriminator
cutoff. No significant trend is observed. To be conservative, the nonclosure is measured for
an MVA discriminator value greater than or equal to 0.0 (−0.5) for T2tt (T2bW) search regions.
These cutoff values are the highest ones for which the magnitude of the statistical uncertainty
is smaller than the measured level of nonclosure. The uncertainties, denoted as “Closure (2`)”
in Tables 3 and 4, are found to range between 16% and 39%.

A separate control sample, which is similar to the baseline selection but with relaxed jet and
b-tag requirements, is studied as an independent check of the Z+jets and W+jets processes.
Discrepancies of roughly 5% in the event counts relative to those predicted are observed for
both the Z+jets and W+jets processes. The full magnitude of this discrepancy is taken as an
additional uncertainty in the event counts for these background processes and it is included as
“Closure (relaxed baseline)” in Tables 3 and 4.

While the efficiencies for selecting electrons and muons in simulation are relatively well matched
to what is seen in data, the efficiency for selecting τ leptons is observed to be significantly
higher in simulation than in data for high values of some of the T2bW search region discrimi-
nators. The discrepancy is traced to a mismodelling of mT, which, as discussed in Section 5, is
used for a preselection requirement of the tau veto. The mismodelling of mT is due to the an-
gular component of ~pmiss

T and is uncorrelated with its magnitude. To address this, a correction
and associated uncertainty are determined by means of a control region made up of modified
events that is safe from signal contamination. The control region is defined by applying the full
search region selection criteria to events in which search region discriminator values are calcu-
lated with a Emiss

T value that is randomly selected from the distribution of Emiss
T values obtained

for the search region in MC simulation. A τ lepton veto efficiency is then obtained separately
in data and simulation by taking the ratio of the number of events that pass the full set of signal
region selection criteria but fail the τ lepton veto to the total number of events that pass the se-
lection criteria prior to applying the τ lepton veto. The ratio of the τ lepton efficiency in data to
the efficiency in simulation is then used to correct the efficiency for the simulated background
samples with τ leptons from W boson decays in the signal region. This correction reduces the
data-MC discrepancy to a level that is not statistically significant and decreases the simulated
τ lepton efficiency by a maximum of 29% in all cases considered, with an uncertainty of 13%.
This uncertainty is included with the other lepton selection scale factor uncertainties under the
label of “MVA lepton sel. scale factors” in Tables 3 and 4.

The predictions in all search regions together with a breakdown of the various contributions
to their uncertainties are provided in Tables 3 and 4. After applying all corrections described
in this section to the MC simulated data, no statistically significant discrepancies with data are
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Figure 10: Comparisons of BDT discriminator (D) outputs for data and corrected MC simu-
lation for the 2` closure samples, with leptons removed. All four T2tt validation regions are
plotted. The points with error bars represent the event yields in data. The histogram labelled
“MC without corr.” in the bottom pane of each figure plots the ratio whose numerator is the
total MC event count before corrections and whose denominator is the event count for the cor-
rected MC shown in the upper pane. The other histograms provide the contributions of the
various background processes. The “LF” and “HF” labels denote the subsets of the Z+jets pro-
cess in which the boson is produced in association with light and heavy flavour (b) quark jets,
respectively.

observed in any bin of search region discriminator value for any search region.

7.1.4 Estimation of the QCD multijet background

Kinematic distributions obtained with the inclusive QCD multijet control sample are compared
to those found in QCD multijet MC simulation. The same method of deriving a series of scale
factors parameterised by generator-level quantities that was used in the estimation of the EW
processes is applied here, but distributions of different quantities are used. In particular, the
jet pT spectrum and angular correlations among jets in the event are the quantities that provide
the most power in the identification of QCD background. We also consider the distributions
of quantities related to heavy-flavour production and the relative momenta of jets in the event.
After all corrections are applied, good closure is obtained: discrepancies between data and
simulation are less than 10% in distributions used to determine reweighting scale factors.
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Figure 11: Comparisons of BDT discriminator (D) outputs for data and corrected MC simu-
lation for the 2` closure samples, with leptons removed. All five T2bW validation regions are
plotted. The points with error bars represent the event yields in data. The histogram labelled
“MC without corr.” in the bottom pane of each figure plots the ratio whose numerator is the
total MC event count before corrections and whose denominator is the event count for the cor-
rected MC shown in the upper pane. The other histograms provide the contributions of the
various background processes. The “LF” and “HF” labels denote the subsets of the Z+jets pro-
cess in which the boson is produced in association with light and heavy flavour (b) quark jets,
respectively.
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Table 3: Estimated contributions and uncertainties for the SM backgrounds in the T2tt search
regions. The tt, W+jets, single top, Z+jets, and QCD multijet background estimates make use
of MC simulated samples that have been weighted by scale factors obtained from data-MC
comparisons as discussed in the text. The ttZ background is estimated directly from simulation,
with uncertainties assigned for sources of MC mismodelling.

T2tt LM T2tt MM T2tt HM T2tt VHM
tt, W+jets, and single top prediction 19.8 8.53 3.22 1.11
Single top fraction (%) 3.69 7.71 19.1 29.8
W+jets fraction (%) 2.27 < 1% < 1% < 1%

MC statistical uncertainty 1.39 1.09 0.64 0.37
MVA lepton sel. scale factors 2.47 0.82 0.29 0.13
Kinematics reweighting 0.27 0.20 0.10 0.04
Closure (1`) 1.61 1.01 0.55 0.25
Closure (relaxed baseline) 0.02 0.01 0.01 0.01
Single top kinematics 0.37 0.33 0.31 0.17

Total uncertainty (yield) 3.29 1.74 0.95 0.50
Total uncertainty (%) 16.6 20.4 29.5 44.7
Z+jets prediction 0.69 2.30 1.92 0.59

MC statistical uncertainty 0.18 0.32 0.26 0.14
Kinematics reweighting 0.08 0.38 0.54 0.18
Closure (2`) 0.11 0.74 0.57 0.15
Closure (relaxed baseline) 0.03 0.12 0.10 0.03

Total uncertainty (yield) 0.23 0.90 0.84 0.28
Total uncertainty (%) 33.5 38.9 43.8 46.4
ttZ prediction 1.34 2.66 1.62 0.99

MC statistical uncertainty 0.11 0.18 0.15 0.11
MC simulation 0.10 0.42 0.24 0.26
MC normalisation 0.42 0.82 0.50 0.31
Kinematic closure 0.21 0.85 0.49 0.26

Total uncertainty (yield) 0.49 1.27 0.75 0.49
Total uncertainty (%) 36.6 47.7 46.6 49.5
QCD multijet prediction 0.33 <0.01 <0.01 <0.01

MC statistical uncertainty ±0.27 ±0.01 ±0.01 ±0.01
MVA discriminator shape ±0.16 ±0.01 ±0.01 ±0.01
∆φ shape upper and lower bounds +1.48,−0.33 +0.22,−0.01 +0.07,−0.01 +0.01
Low luminosity bins upper bound — +0.11 +0.02 +0.02

Integrated uncertainty band (µ) 0.91 0.17 0.04 0.01
Integrated uncertainty band (σ) 0.58 0.07 0.02 0.01
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Table 4: Estimated contributions and uncertainties for the SM backgrounds in the T2bW search
regions. The tt, W+jets, single top, Z+jets, and QCD multijet background estimates make use
of MC simulated samples that have been weighted by scale factors obtained from data-MC
comparisons as discussed in the text. The ttZ background is estimated directly from simulation,
with uncertainties assigned for sources of MC mismodelling.

T2bW LX T2bW LM T2bW MXHM T2bW HXHM T2bW VHM
tt, W+jets, and single top prediction 6.88 31.3 3.89 12.7 2.31
Single top fraction (%) 21.4 8.54 31.8 14.8 28.6
W+jets fraction (%) 13.5 4.53 6.60 14.6 4.17

MC statistical uncertainty 0.73 1.62 0.49 1.13 0.37
MVA lepton sel. scale factors 1.05 2.30 0.60 1.68 0.37
Kinematics reweighting 0.17 0.42 0.11 0.23 0.10
Closure (1`) 1.60 2.69 0.65 1.93 0.58
Closure (relaxed baseline) 0.05 0.07 0.01 0.09 0.01
Single top kinematics 0.73 1.34 0.62 0.94 0.33

Total uncertainty (yield) 2.18 4.13 1.19 2.96 0.85
Total uncertainty (%) 31.8 13.2 30.5 23.3 36.7
Z+jets prediction 1.88 4.57 1.66 1.77 1.24

MC statistical uncertainty 0.23 0.46 0.24 0.26 0.21
Kinematics reweighting 0.51 0.62 0.46 0.36 0.38
Closure (2`) 0.73 1.46 0.50 0.57 0.31
Closure (relaxed baseline) 0.09 0.23 0.08 0.09 0.06

Total uncertainty (yield) 0.93 1.67 0.72 0.73 0.54
Total uncertainty (%) 49.3 36.6 43.6 41.0 43.4
ttZ prediction 0.59 2.46 0.83 1.72 0.62

MC statistical uncertainty 0.07 0.15 0.09 0.14 0.08
MC simulation 0.02 0.10 0.10 0.17 0.02
MC normalisation 0.18 0.76 0.26 0.53 0.19
Kinematic closure 0.23 0.79 0.25 0.55 0.15

Total uncertainty (yield) 0.30 1.11 0.39 0.79 0.26
Total uncertainty (%) 51.2 45.1 46.3 46.3 42.2
QCD multijet prediction 0.51 0.07 0.10 <0.01 <0.01

MC statistical uncertainty ±0.21 ±0.06 ±0.08 ±0.01 ±0.01
MVA discriminator shape ±0.17 ±0.06 ±0.08 ±0.01 ±0.01
∆φ shape upper and lower bounds +0.58,−0.21 +0.54,−0.07 +0.07,−0.10 +0.01,−0.01 +0.01
Low luminosity bins upper bound +0.01 +0.11 +0.03 +0.02 +0.01

Integrated uncertainty band (µ) 0.71 0.36 0.10 0.01 0.01
Integrated uncertainty band (σ) 0.35 0.19 0.12 0.01 0.01

The one quantity that does, however, require special consideration is Emiss
T . Most of the QCD

multijet background is eliminated by high-Emiss
T requirements. The events that are not elimi-

nated largely originate from the extreme tails of very broad distributions associated with two
mechanisms. Namely, in order to produce large Emiss

T , a QCD multijet event must either involve
production of a heavy-flavour hadron that decays leptonically, or involve one or more jets that
are poorly resolved, leading to severe underestimates of their momenta.

The simulation of these sources of Emiss
T , particularly for the rare cases in which the events sur-

vive all selection requirements for the search regions, is not well understood, and it is difficult
to study these mechanisms directly in data. This means that the QCD multijet background
cannot be estimated precisely and so a reliable upper bound is found instead. This is suffi-
cient because the QCD multijet contribution is small compared to other backgrounds. To this
end, simulation samples having sources of large Emiss

T are compared with Emiss
T -triggered data

in control regions to obtain scale factors and associated uncertainties that are used to reweight
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simulated events. The resulting weights are then applied to simulation samples in the signal
region. Additional systematic uncertainties are applied to cover the uncertainties in the extrap-
olations of these corrections into the search regions.

The high Emiss
T QCD multijet control sample, which is defined with the requirement that ~pmiss

T
be aligned with one of the jets to a degree that is consistent with expectations for either of the
two sources of Emiss

T discussed above, is used to derive scale factors. The jet with which ~pmiss
T

is aligned is referred to as the probe jet in such events. The negative vector sum of momenta
of all jets in the event, other than the probe jet, provides an alternative estimate of the probe jet
momentum, since pT is conserved, within uncertainties, in the absence of other severe mismea-
surements. The recoil response, defined as the ratio of the momenta of the probe jet to that for
the rest of the activity in the event, (pT,probe/pT,recoil), is a very good estimator for the true re-
sponse of the probe jet, (pT,probe/pT,true), in the tails of the distribution, where mismeasurement
of the probe jet momentum dominates over the mismeasurement of the recoil momentum. It
is therefore used to derive separate scale factors for the jet resolution, parameterised by jet pT,
for each of the two sources of Emiss

T . These scale factors range between 0.6 and 1.8.

The central values of the QCD background predictions are taken to be the MC simulation yields
in the signal regions after applying all of the corrections defined above. The various statistical
and systematic uncertainties are highly asymmetric and in many cases non-Gaussian. There-
fore, in each search region an MC integration procedure is used to properly combine the un-
certainties. As expected from the central limit theorem, the combination of uncertainties can be
approximated by a Gaussian distribution, the parameters of which are listed in Tables 3 and 4
under the label of “Integrated uncertainty band.”

Two shape uncertainties are assigned to the QCD multijet estimation in each search region. The
first is a systematic uncertainty associated with the search region MVA discriminator distribu-
tion, denoted as “MVA discriminator shape” in Tables 3 and 4. It is obtained from a comparison
of the distribution in MC simulation to that in data for the high Emiss

T QCD multijet control sam-
ple after also requiring that events pass the baseline selection criteria, with the exception of the
requirements on the angular separation between the leading jets and ~pmiss

T . Dropping these
criteria leads to a significant increase in the contribution of QCD multijet events to the final
sample relative to all other backgrounds or signal. A second systematic uncertainty, labelled
“∆φ shape upper and lower bounds” in Tables 3 and 4, is obtained from the same samples by
comparing the MC distribution of the angle between ~pmiss

T and the leading jets to that for data
for a variety of discriminator cutoffs. The distributions are found to differ increasingly with
rising b-tagged jet multiplicity. The bias is eliminated by smearing the φ values of the ~pT of b
jets with a Gaussian having a standard deviation of about 0.02. The upper bound on the QCD
background is then obtained by increasing the width of the Gaussian until there is a larger
number of MC events predicted to pass the selection criteria than is observed in data. The up-
per bounds found in this way are different for different search regions as a result of variations
in statistics and contributions of other SM processes. The values of the Gaussian width that are
found to cover all cases are 0.07 in the case of T2tt and 0.05 in the case of T2bW.

Finally, the QCD multijet simulated data are generated in discrete bins of HT in the case of
MADGRAPH and in bins of quark and gluon pT in the case of PYTHIA. The effective integrated
luminosity for some of the samples in particular bins can be much smaller than the 18.9 fb−1

of integrated luminosity collected in proton-proton collision data. A systematic uncertainty is
therefore applied to each QCD background prediction to cover a possible underprediction that
could be the result of a lack of events in these highly weighted bins. It is denoted as “Low
luminosity bins upper bound” in Tables 3 and 4.
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7.2 Estimation of the ttZ background

Standard model ttZ production is a rare process (σ ∼ 0.2 pb) that becomes an important back-
ground in CORRAL-based search regions for the T2tt signal model where general tt backgrounds
have been greatly suppressed. There are no sufficiently populated and uncontaminated data
control regions in which to perform careful studies of this rare SM process. The simulated data
are studied instead, making use of variations in the parameters that control the generation and
parton showering to establish systematic uncertainties in the estimated event counts in the sig-
nal regions. In addition, the relative difference in yields between the default MC@NLO sample,
with parton showering by HERWIG, and a separate MADGRAPH sample, with parton show-
ering by PYTHIA, is used to estimate a systematic uncertainty associated with MC generators.
This uncertainty, listed in Tables 3 and 4 with the label “MC simulation,” ranges between 3%
and 26% depending on the search region.

The uncertainty in the ttZ production cross section is estimated from a data control sample with
three reconstructed charged leptons drawn from a larger event sample that has been collected
with a set of dilepton triggers used for multilepton SUSY searches [112]. The two charged
leptons picked up by these triggers most often originate from the decay of a Z boson and are
thus oppositely charged, same-flavour leptons. The third lepton can arise via the semileptonic
decay of a W coming from the decay of a top quark in ttZ events. The selection of events for
this control sample thus includes the requirement that two of the reconstructed leptons must
be consistent with the expectations for leptons from Z boson decay in flavour, charge, and the
invariant mass of the pair. In order to reduce the contamination from other SM backgrounds,
events are also required to have at least three or more jets, at least six picky jets, and one or
more b-jets tagged with the medium CSV working point [80] in order to increase the relative
contribution of the ttZ process.

With a contribution of approximately 10%, diboson production is a leading SM process in this
region after ttZ. Thus, a diboson-enriched control region is established that makes use of the
same selection criteria described above for the ttZ control region, except that the b tagging
requirement is inverted to form a corresponding b-tag veto. This sample is used to normalise
the overall diboson process in MC simulation to that observed in data.

The ttZ and the diboson processes in the enriched control regions described above have esti-
mated event yields that are statistically consistent with the event yields predicted by simulation
samples. In view of this, the data-MC scale factors are taken to have a central value of unity,
and no correction is applied. The statistical uncertainty in the ttZ scale factor is 31%. This is
adopted as a systematic uncertainty in the estimated yield of this background source and is
denoted as “MC normalisation” in Tables 3 and 4.

A final systematic uncertainty takes into account differences observed between the kinematic
distributions in MC simulation and data. To this end, we make use of the closure uncertainties
in the W+jets (including tt and single top) and Z+jets background predictions that have been
derived in the lepton control regions as necessitated by the lack of an appropriate ttZ data con-
trol sample. The maximum estimated uncertainty found for either of the two processes is taken
to be the uncertainty in the modelling of the kinematics for the ttZ process. This uncertainty
ranges between 16% and 39%, depending on the signal sample, and is included under the label
of “Kinematic closure” along with the ttZ prediction and all other associated uncertainties in
Tables 3 and 4.
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8 Results and interpretation
The predicted distributions of discriminator values for the various T2tt and T2bW searches
described earlier are shown in Figs. 12 and 13. Event yields in data are plotted with their statis-
tical uncertainties and compared to the SM background predictions. The latter are represented
by the coloured histograms in the upper pane. Error bars on the ratios of the observed to pre-
dicted event yields in the bottom pane include only statistical uncertainties. The filled band in
the lower pane of each plot represents the relative systematic uncertainty in the background
predictions. A vertical dashed red line near the right edge in the lower pane of each plot marks
the MVA discriminator value that is used to define the lower boundary of the search region.
Note that these figures are for illustrative purposes only, and so some minor uncertainties in
event yields in the more inclusive regions did not receive the detailed treatment applied to the
uncertainties in the final search region yields.

The line in the lower pane of each plot in Figs. 12 and 13 labelled “MC without corr.” rep-
resents the sum of the MC contributions, relative to the prediction, prior to weighting by the
corrective scale factors discussed in the preceding sections. There are no statistically significant
differences observed upon comparing the data with the uncorrected (or corrected) MC sam-
ples. Figures 14 and 15 provide a completely equivalent set of plots to those just described, but
in this case, no lepton vetoes have been included in the selection of events. The event yields
therefore are much higher in these cases. These data are used to provide a useful cross-check
of the tt, W+jets, and single top kinematic closure test. They also allow for a check of the agree-
ment in event kinematics between MC simulation and data, without any potential biases that
might arise in association with the application of the lepton vetoes to the simulation. Only
those data with discriminator values less than 0.4 are used for these cross-checks because po-
tential signal contamination could be non-negligible for larger discriminator values. Data and
simulation agree within ±20% for all search regions.

The predicted and observed yields in the T2tt and T2bW search regions are summarized in
Tables 5 and 6. No statistically significant excess in data is observed. We therefore use these
results to set upper bounds on the production cross sections for the T2tt and T2bW families of
signal models.

Table 5: Predicted and observed data yields in the T2tt search regions. The uncertainties in
the background predictions are the combined systematic and statistical uncertainties. The T2tt
yields correspond to the simplified model points with (mt̃, mχ̃0

1
) = (500 GeV, 200 GeV) and

(700 GeV, 0 GeV). The uncertainties in the signal yields are statistical only.

Search region yield
T2tt LM T2tt MM T2tt HM T2tt VHM

tt, W+jets, and single top 19.8± 3.3 8.53± 1.74 3.22± 0.95 1.11± 0.50
Z+jets 0.69± 0.23 2.30± 0.90 1.92± 0.84 0.59± 0.28
ttZ 1.34± 0.49 2.66± 1.27 1.62± 0.75 0.99± 0.49
QCD multijet 0.91± 0.58 0.17± 0.07 0.04± 0.02 0.01± 0.01

All SM backgrounds 22.7± 3.4 13.7± 2.3 6.8± 1.5 2.7± 0.8
Observed data 16 18 7 2
T2tt (500, 200) 10.9± 0.4 27.2± 0.6 12.0± 0.4 5.53± 0.27
T2tt (700, 0) 1.04± 0.04 7.11± 0.09 11.2± 0.1 8.50± 0.10

The signal yields and their corresponding efficiencies are estimated by applying the event se-
lection criteria to simulated data samples. Systematic uncertainties in the signal selection effi-
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Figure 12: Observed and predicted event yields for each T2tt search region discriminator (D).
The bottom pane of each plot shows the ratio of observed to predicted yields where the error
bars on data points only include the statistical uncertainties in the data and MC event yields.
The filled bands represent the relative systematic uncertainties in the predictions.
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Figure 13: Observed and predicted event yields for each T2bW search region discriminator (D).
The bottom pane of each plot shows the ratio of observed to predicted yields where the error
bars on data points only include the statistical uncertainties in the data and MC event yields.
The filled bands represent the relative systematic uncertainties in the predictions.
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Figure 14: Observed and predicted event yields for each T2tt search region discriminator (D)
before lepton vetoes are applied, which are used for the cross-checks discussed in the text. The
bottom pane of each plot shows the ratio of observed to predicted yields where the error bars
on data points only include the statistical uncertainties in the data and MC event yields. The
filled bands represent the relative systematic uncertainties in the predictions.
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Figure 15: Observed and predicted event yields for each T2bW search region discriminator (D)
before lepton vetoes are applied, which are used for the cross-checks discussed in the text. The
bottom pane of each plot shows the ratio of observed to predicted yields where the error bars
on data points only include the statistical uncertainties in the data and MC event yields. The
filled bands represent the relative systematic uncertainties in the predictions.
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Table 6: Predicted and observed data yields in the T2bW search regions. The uncer-
tainties in the background predictions are the combined systematic and statistical uncer-
tainties. The T2bW yields correspond to the simplified model points with (mt̃, mχ̃0

1
; x) =

(500 GeV, 175 GeV; 0.25) and (600 GeV, 0 GeV; 0.75). The uncertainties in the signal yields are
statistical only.

Search region yield
T2bW LX T2bW LM T2bW MXHM T2bW HXHM T2bW VHM

tt, W+jets, and single top 6.88± 2.18 31.3± 4.1 3.89± 1.19 12.7± 3.0 2.31± 0.85
Z+jets 1.88± 0.93 4.57± 1.67 1.66± 0.72 1.77± 0.73 1.24± 0.54
ttZ 0.59± 0.30 2.46± 1.11 0.83± 0.39 1.72± 0.79 0.62± 0.26
QCD multijet 0.71± 0.35 0.36± 0.19 0.10± 0.12 0.01± 0.01 0.01± 0.01

All SM backgrounds 10.1± 2.4 38.7± 4.6 6.5± 1.4 16.2± 3.2 4.2± 1.0
Observed data 12 47 6 14 4
T2bW (500, 175; 0.25) 13.8± 1.1 3.49± 0.58 6.70± 0.76 3.12± 0.54 1.36± 0.33
T2bW (600, 0; 0.75) 4.66± 0.13 7.21± 0.16 8.79± 0.18 8.77± 0.18 8.99± 0.18

ciencies are assessed as a function of the t̃ and χ̃0
1 masses, and as a function of the mass split-

ting parameter x in the case of the T2bW signal. The uncertainty in the jet energy scale (JES)
has the largest impact on signal yield, followed by the b tagging efficiency uncertainty. The
uncertainty associated with the parton distribution functions is evaluated by following the rec-
ommendation of the PDF4LHC group [113–117]. Uncertainties in the jet energy resolution,
initial-state radiation, and integrated luminosity [73] are also included. For the T2tt channel,
we assign three additional uncertainties. The first accounts for the difference observed in the
performance of the CORRAL algorithm between the standard CMS full and fast detector simula-
tions. This difference decreases with increasing top quark pT and so depends on the difference
between mt̃ and mχ̃0

1
, reaching 20% for cases where mχ̃0

1
is close to mt̃. The other two uncer-

tainties each have a magnitude of 5% and cover the differences observed in parton shower
(PS) algorithms (PYTHIA versus HERWIG) and top quark reconstruction efficiencies in data ver-
sus simulation. Table 7 lists the magnitude of each systematic uncertainty in signal points for
which this search has sensitivity. For T2tt, the total systematic uncertainty is less than 15% for
mt̃ −mχ̃0

1
> 300 GeV.

Table 7: Summary of the systematic uncertainties in the signal selection efficiencies. The un-
certainties can depend on signal topology, mass values, and search region. The quoted value
ranges capture the variations associated with these dependencies. In all cases, the upper bound
corresponds to the region in which mχ̃0

1
is close to mt̃.

Systematics source Magnitude [%]
b tagging 5–10
Jet energy scale 5–20
Jet energy resolution <5
Initial-state radiation 1–20
Parton distribution functions 1–15
Integrated luminosity 2.6
CORRAL FastSim (T2tt) 1–20
CORRAL dependence on PS (T2tt) 5
CORRAL reconstruction (T2tt) 5

In the absence of any significant observed excesses of events over predicted backgrounds in
the various search regions, the modified frequentist CLS method [118–120] with a one-sided
profile likelihood ratio test statistic is used to define 95% confidence level (CL) upper limits on
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the production cross section for both the T2tt and T2bW simplified models as a function of the
masses of the SUSY particles involved. Statistical uncertainties related to the observed numbers
of events are modelled as Poisson distributions. Systematic uncertainties in the background
predictions and signal selection efficiencies are assumed to be multiplicative and are modelled
with log-normal distributions.

For each choice of SUSY particle masses, the search region with the highest expected sensitivity
(Fig. 7) is chosen to calculate an upper limit for the production cross section. The expected and
observed upper limits in the production cross section for both the T2tt and T2bW topologies in
the mt̃−mχ̃0

1
plane are displayed in Fig.16. For the T2tt topology this search is sensitive to mod-

els with mt̃ < 775 GeV, or 755 GeV when conservatively subtracting one standard deviation of
the theoretical uncertainty, and provides the most stringent limit to date for proton-proton col-
lisions at

√
s = 8 TeV on this simplified model for mt̃ > 600 GeV. Sensitivity extends to models

with mχ̃0
1
< 290 GeV and this search is especially sensitive to the case of large mt̃ and low mχ̃0

1

for which events typically have both large Emiss
T and a high CORRAL top pair reconstruction ef-

ficiency. In contrast, the analysis has no sensitivity to models with mt̃ −mχ̃0
1
< 200 GeV despite

the large cross section of some signal scenarios.

This search is considerably less sensitive to the T2bW topology because that model does not
feature on-shell top quark decays. The sensitivity in this case applies to scenarios with mt̃ <
650 GeV, with the strongest results for large x models for which mχ̃± is closer to mt̃ than mχ̃0

1
,

resulting in a harder Emiss
T spectrum. For scenarios with x = 0.25 the search has less sensitivity

to models with mχ̃0
1
≈ 0 GeV than to those with moderate mχ̃0

1
. In the former case the χ̃± and W

boson are close in mass and the signal has a low efficiency to pass the baseline selection’s Emiss
T

criterion. The search also has less sensitivity to models with mχ̃0
1
+ mW ≈ mχ̃± because in this

scenario the signal has a low efficiency to pass the baseline selection’s jet-multiplicity criterion.

9 Summary
We report a search for the direct pair production of top squarks in an all-hadronic final state
containing jets and large missing transverse momentum. Two decay channels for the top
squarks are considered. In the first channel, each top squark decays to a top quark and a
neutralino, whereas in the second channel they each decay to a bottom quark and a chargino,
with the chargino subsequently decaying to a W boson and a neutralino. A dedicated top
quark pair reconstruction algorithm provides efficient identification of hadronically decaying
top quarks. The search is carried out in several search regions based on the output of multi-
variate discriminators, where the standard model background yield is estimated with corrected
simulation samples and validated in data control regions. The observed yields are statistically
compatible with the standard model estimates and are used to restrict the allowed parameter
space for these two signal topologies. The search is particularly sensitive to the production of
top squarks that decay via an on-shell top quark. For models predicting such decays, a 95%
CL lower limit of 755 GeV is found for the top squark mass when the neutralino is lighter than
200 GeV, extending the current limits based on Run 1 searches at the LHC on these models by
50–100 GeV. In models with top squarks that decay via a chargino, scenarios with a top squark
mass up to 620 GeV are excluded.
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Figure 16: Observed and expected 95% CL limits on the t̃̃t production cross section and ex-
clusion areas in the mt̃ − mχ̃0

1
plane for the T2tt (top left) and T2bW signal topologies (with

x = 0.25, 0.50, 0.75). In the rare cases in which a statistical fluctuation leads to zero signal
events for a particular set of masses, the limit is taken to be the average of the limits obtained
for the neighboring bins. The ±1σtheory lines indicate the variations in the excluded region due
to the uncertainty in the theoretical prediction of the signal cross section.
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W.L. Aldá Júnior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, M. Hamer,
C. Hensel, C. Mora Herrera, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato7, A. Custódio, E.M. Da Costa,
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Y. Kuessel, A. Künsken, J. Lingemann, A. Nehrkorn, A. Nowack, I.M. Nugent, C. Pistone,
O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, I. Asin, N. Bartosik, O. Behnke, U. Behrens, A.J. Bell, K. Borras18,
A. Burgmeier, A. Campbell, S. Choudhury19, F. Costanza, C. Diez Pardos, G. Dolinska,
S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, E. Gallo20, J. Garay
Garcia, A. Geiser, A. Gizhko, P. Gunnellini, J. Hauk, M. Hempel21, H. Jung, A. Kalogeropoulos,
O. Karacheban21, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, I. Korol, W. Lange,
J. Leonard, K. Lipka, A. Lobanov, W. Lohmann21, R. Mankel, I. Marfin21, I.-A. Melzer-Pellmann,
A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari,



52 A The CMS Collaboration

H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M.Ö. Sahin, P. Saxena, T. Schoerner-
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Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa ,c,2, S. Argiroa ,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa,
N. Cartigliaa, M. Costaa ,b, R. Covarellia,b, A. Deganoa ,b, N. Demariaa, L. Fincoa,b ,2, B. Kiania ,b,
C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila ,b, M.M. Obertinoa ,b,
L. Pachera ,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia ,b, F. Raveraa,b, A. Romeroa ,b,
M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
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