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Abstract.
The detector description is an essential component that has to be used to analyse and simulate
data resulting from particle collisions in high energy physics experiments. Based on the DD4hep
detector description toolkit a flexible and data driven simulation framework was designed using
the Geant4 tool-kit. We present this framework and describe the guiding requirements and the
architectural design, which was strongly driven by ease of use. The goal was, given an existing
detector description, to simulate the detector response to particle collisions in high energy
physics experiments with minimal effort, but not impose restrictions to support enhanced or
improved behaviour.
Starting from the ROOT based geometry implementation used by DD4hep an automatic
conversion mechanism to Geant4 was developed. The physics response and the mechanism to
input particle data from generators was highly formalized and can be instantiated on demand
using known factory patterns. A palette of components to model the detector response is
provided by default, but improved or more sophisticated components may easily be added using
the factory pattern. Only the final configuration of the instantiated components has to be
provided by end-users using either C++ or python scripting or an XML based description.

1. Introduction
The development of a coherent set of software tools for the description of high energy physics
detectors from a single source of information has been on the agenda of many experiments
for decades. The application simulating the detector response from particle collisions are of
major importance both for the studies during the planning and construction phase as well
as during the running of the detector. The simulation applications are expected to mimic
the energy deposits of particles in the detector which then are digitized to emulate the
response of the readout electronics. This simulated data is then fed, in the same way as
data collected from the electronics in a real experiment, into the reconstruction and further
on into the analysis applications. The generic detector description toolkit DD4hep [1] provides
an appropriate, consistent and generic detector view to support simulation, reconstruction and
analysis applications for high energy physics experiments. The detector simulation application
DDG4 which shall be presented in the following is based on the DD4hep detector description
and uses the Geant4 toolkit [2] as a simulation engine. The design is strongly driven by ease
of use; developers of detector descriptions and applications using them should have to provide
only minimal information and minimal specific code to achieve the desired result.
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The organization of this paper is the following. We will briefly recapitulate the general structure
of the DD4hep geometry description toolkit. Then the the guiding requirements and the
architectural design is discussed. From the client’s view DDG4 should be a minimalistic toolkit
to perform detector simulation seamlessly integrated in Geant4, the detector simulation software
used in high energy physics. Finally we will briefly discuss a few examples realized with this
design and formulate some conclusions.

2. The DD4hep Detector Description Toolkit
The design of the DD4hep toolkit [1] is shaped by the experience of detector description systems,
which were implemented for the LHC experiments, in particular the LHCb experiment [3, 4], as
well as the lessons learnt from other implementations of geometry description tools developed
for the Linear Collider community [5, 6]. DD4hep aims to widely reuse existing software
components, in particular the ROOT geometry package [7], part of the ROOT project [8], a tool
for building, browsing, navigating and visualizing detector geometries. The code is designed to
optimize particle transport through complex structures and works standalone with respect to
any Monte Carlo simulation engine. The second component is the Geant4 simulation toolkit [2],
which is used to simulate the detector response from particle collisions in complex designs.

Figure 1. The components of the DD4hep detector geometry toolkit.

DD4hep implements a mechanism to create from a compact detector description in XML format
with the help of specialized code fragments, so called Detector constructors [1] a model of a
detector in memory as shown in Figure 1. The code fragments instantiate a model of the
detector defined by a set of C++ classes. This in-memory model is the base to create any other
representation such as the Geant4 geometry, a GDML file or others. In the following sections
the focus will be put on the automatic conversion leading with supplementary though minimal
information to a valid application simulating detector collisions using the Geant4 toolkit [2].

3. Concepts and Toolkit Design
3.1. Toolkit Requirements
The detector simulation application DDG4 should provide the detector response of any
experimental setup defined in DD4hep similar to the real experiment. The motivation of the
chosen approach is to minimize effort. However, the effort of users to add new or to enhance
existing functionality must not be limited:

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072017 doi:10.1088/1742-6596/664/7/072017

2



• Minimalistic Approach: The effort of users to retrieve simulated detector response should
be minimal. Any existing in-memory geometry model together with a selection of plugin-
components to compute the detector response and the definition of the contributing physics
processes from an existing palette must be sufficient. If desired, users may define specialized
components, which are automatically integrated into the existing toolkit.

• Ease of Use influenced the design and the implementation. A minimalistic approach means
not burdening users with code development. The usage of provided components must be
easy.

• Flexible Extensions: The presence of an appropriate mechanism to build complete
execution blocks from existing simple components. The configuration of the building blocks
must be easy. Component configuration must be possible both during the configuration
phase and, once Geant4 is started, from the Geant4 provided interactivity mechanism.

3.2. User Entry Points defined by Geant4
It was found that the requirements enumerated in section 3.1 can easily be implemented by
modeling all Geant4-provided user entry points as user defined sequences of more atomic actions
each handling one aspect. These sequences have customized interfaces depending on the calling
signatures. Geant4 provides the following entry points to allow for user interaction [2]:

• The Generation Action is called before the the event processing starts. The Geant4 kernel
expects here all primary particles and primary vertices to be declared.

• The Event Action is called at the begin or the end of the event processing.

• The Tracking Action is called at the begin and the end of the tracking of one track object
through the detector.

• The Stepping Action is called at the beginning of each step of the simulation process.

• The Sensitive Response: Callback to compute the energy deposit of a given step in a sensitive
volume of the detector.

• The Physics List: This object only needs to be instantiated and defines the processes used
for interaction with material during the overall simulation process.

3.3. Design Choices
A design of a simulation application fulfilling the requirements of section 3.1 must respect a
number of criteria. These choices, which strongly influence the implementation are as follows:

• The natural sequencing of the simulation application as it is foreseen by Geant4 should
remain unchanged. Consequently only Geant4 provided mechanisms for the interaction
between Geant4 and user code should be used.

• In DD4hep the in-memory geometry representation is the blue-print for any other
representation needed by user applications. The translation of the geometry to the Geant4
representation should be automatic and generic. Users should not deal with it.

• Flexible component instantiation in C++ is typically based on a factory mechanism. After
being instantiated the components need to be configured using the same interface: each
component offers a set of properties to the user, who then may alter the default values.

• The user entries listed in section 3.2 must offer a flexible interface. Building complex actions
by chaining simple atomic actions must be simple. Hence, all user entries are modeled as
programmable action sequences with callback signatures suitable for the action in question.
Event actions for example receive a reference to the G4Event structure and a tracking
actions receives a reference to the G4Track structure. When called, these action sequences
internally call a sequence of function callbacks which were registered earlier by the user
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and a sequence of objects for the callback type in question, which were instantiated and
assigned by the client during the setup phase.

• Calls to user defined member functions are needed by specialized objects, which collect
information during various stages of the processing of one event such as e.g. the propagation
of Monte Carlo truth information. The difference to the inheritance approach is marginal:
whereas in the first event the object to be called must provide a member function with the
required signature, in the latter the behavior is enforced by inheritance from a base class
common to one of the different action types listed above.

4. Toolkit Implementation
4.1. Geometry Translation to Geant4
Geant4 requires an internal, Geant4 specific, representation of the detector geometry,
which is different from the geometry implementation of DD4hep based on the ROOT
geometry package. A generic mechanism implementing the Geant4 provided user interface
G4VUserDetectorConstruction [2] automatically converts all geometry entities like shapes,
materials, volumes and volume placements to Geant4. The mechanism is identical for all
applications. The implemented mechanism scans the geometry tree starting with the top level
element and recursively collects all entities. The translation of objects representing this geometry
hierarchy happens in the reverse order i.e. first the volumes and placements representing the
most detailed structures are translated before larger substructures are created. The recursion
ends with the translation of the top level volume. Special attention was put on entities where the
implementation concepts differ between the Geant4 geometry and the ROOT based geometry
such as shape assemblies. Figure 2 illustrates the geometry scan of a hypothetical Time
Projection Chamber (TPC) detector.

Figure 2. The geometry scan of a hypothetical TPC. The scan starts from the top level volume
”World” and recursively descends to all placed children within each volume. The instantiation
of the translated objects is reverse: small structures get placed into bigger structures.

4.2. Common Base Class for all Components
The implementation of plugin components and their use, is greatly simplified if all collaborating
components use a common base class. The base class should be simplistic, but still provide
access to all objects needed to perform its work. It should implement provisions to deal with
all common functionalities such as external configuration of the component properties, Geant4
interactivity and access to data provided either by Geant4 or the detector description toolkit. All
components inherit from the Geant4Action. The diagram in Figure 3 illustrates the connections
between the base class and the embedding framework:
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• The reference to the Geant4Context allows the user to access Geant4 interna such as the
run manager, the geometry setup and the DD4hep detector description.

• The PropertyManager allows the user to externalize object properties. These may be atomic
primitives or complex structures1.

• The reference to the Geant4UIMessenger allows to export component properties and
component functions to the Geant4 interactive prompt.

• To facilitate object instantiations, all Geant4Action derivatives must conform to common
constructor patterns. Sensitive actions, which compute the detector response of active
volumes have a constructor of the form:
Geant4Action* (*plugin)(Geant4Context* context, const string& name,

DetElement sd, LCDD& lcdd);

All other actions must provide the simplified constructor of the form:
Geant4Action* (*plugin)(Geant4Context* context, const string& name)

All actions have access to the Geant4 and geometry internals. Sensitive elements for
convenience reasons also have access to the attached detector and its sub-components like
the readout structure and the segmentation of the sensitive areas [1].

Figure 3. The basic relationships of the base class Geant4Action common to all components.

Using the Geant4Action, specific sequence actions can be constructed as illustrated in Figure 4
for an example of the event generation action:

• The sequence starts with an initialization step. Event related properties are initialized and
the event context available to all actions is prepared.

• Then the first input data source is accessed: Data of event type ”Signal” is read from
persistent medium (or alternatively generated). The resulting primary vertices of this sub-
event and all resulting tracks are then boosted and the primary vertices are smeared in
subsequent modules according to certain beam profiles and beam conditions.

• In a third step a second data source is accessed: Data of type ”Background” is read. Again
the interaction is boosted and the primary vertices smeared. Note that though the modules
used to boost and smear the primaries are identical for both input streams, the instances
are different, the property values and thus the component behavior may differ.

• So far both interactions are kept separate. They now need to be merged to one single record
combining the primary vertices and outgoing primary tracks of both interactions.

• Finally the record containing all primary vertices and all primary tracks must be given to
Geant4. Now the detector simulation can start.

4.3. Monte Carlo Truth Handling
A basic functionality every simulation application must solve is the correct assignment of
generated energy deposits, so-called ”hits” to the track object which created the deposit. In
practice there are multiple approaches to achieve this functionality.

1 Any data structure, which can be described by the mechanisms provided by boost::spirit [9] is understood.
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Figure 4. An example of a more complex generation action sequence used to merge signal and
background events for a simultaneous simulation. For simplicity the base classes are not shown.

• Full history: The full history track is kept containing all energy deposits and the full record
of creating tracks. Except for detailed studies this mode typically is impractical, because
the huge number of secondary tracks causes the output record to become too large.

• Reduced history: Only the most relevant secondary tracks are kept. Energy deposits created
by low energetic tracks are reassigned to the track parents. Typically energy deposits in
calorimeters are handled differently from deposits in tracking detectors.

DDG4 offers a generic component to propagate the Monte Carlo truth information between hits
and tracks for both modes. The truth handler uses an internal track object model, which at
the output stage may be easily converted to a user defined track model. The results during the
simulation of the complete event may later be used when the actual energy deposits and tracks
are written to the output record.

4.4. The DDG4 Component Palette
In the early stages of an experiment, simulation activities are mostly used to de- and refine
the setup of the experiment. For these users a palette of ready-to-use components is provided.
These include:

• Standard input modules capable of reading primary interactions created by generators in
the format lcio[10], StdHEP[10] or HepMC[11].

• Standard modules to manipulate primary interactions like smearing or boosting the primary
vertex (see Figure 4), merging several interactions etc.

• Output modules to write simulated data in the lcio data format or to ROOT using the
internal data structures.

• Generic components collecting the detector response of tracking detectors or calorimeters.

This palette allows the user to perform all necessary simulation activities of detector designs
such as ILD [5] and SiD [6]. It is understood that the palette is not complete and all users are
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welcome to contribute to the palette for example if a new detector response module is being
developed or a new input/output data format should be supported. The default palette can
only contain modules which are sufficiently generic to be applied to a variety of designs. Specific
and detailed implementations are still supported by the DDG4 plugin mechanism. The code
however should then be part of the experiment’s framework. The same approach was earlier
adopted for the DD4hep detector palette.
Though such generic modules are very convenient, a price is to be paid: The Geant4 track
objects are stack based, the objects have a limited lifetime. Track objects are only guaranteed
to exist between the beginning and the end of the tracking action of one track. To provide track
data to populate the output record an internal track model was introduced to save the basic
track quantities. Because no structure can a posteriori satisfy all users, client defined extension
data may be added to each track structure.

4.5. The Handling of the Physics List
Similar to the instantiation of actions, the Geant4 physics setup is encapsulated in a set of
factories. Hence, instantiations to particle constructors, physics processes, physics constructors
or predefined physics lists as provided by Geant4 are implemented using the factory bindings.
The factory bindings are provided by DDG4. In section 4.6 a simple example of the configuration
of a physics list is shown.

4.6. Configuration of the Simulation Application
Special emphasis was put on the configuration of the application. Technically all methods must
initiate the following functionality:

• convert the in-memory geometry to Geant4,

• configure action sequences,

• start the simulation activity from the Geant4 run manager.

To configure the application DDG4 offers three choices:

• XML: The simulation application may be bootstrapped from data in an XML file.

• C++ script: Since the toolkit is written in this language, this is the natural way to configure
the application, but any change to the configuration requires to recompile and to relink.

• Python script: Python and the ROOT supported interface PyROOT is the most flexible
and still robust way to bootstrap a DDG4 simulation application. The python interface is
for free provided the ROOT dictionaries are generated. The dictionary mechanism exports
the same classes to python which are present in C++ leading to very similar configuration
code. This approach does not require recompilation after a change.

As an illustration it is best to show a python code snippet which loads the geometry, sets up
the Geant4 user interface and then adds a particle gun to the generation action sequence:

def run():

######## Bootstrap and load the geometry

kernel = DDG4.Kernel()

kernel.loadGeometry("file:../examples/CLICSiD/compact/compact.xml")

######## Setup the Geant4 user interface

ui = DDG4.Action(kernel,"Geant4UIManager/UI")

ui.HaveVIS = True

ui.HaveUI = True

ui.SessionType = ’csh’

kernel.registerGlobalAction(ui)

######## Create particle gun object and set properties:
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gun = GeneratorAction(self.kernel,"Geant4ParticleGun/Gun")

gun.energy = 25*GeV

gun.particle = "e-"

gun.position = ( 0*mm, 0*mm, 1*mm )

self.kernel.generatorAction().add(gun)

######## Instantiate physics list

phys = kernel.physicsList()

phys.extends = "QGSP_BERT"

phys.addParticleConstructor(’G4BosonConstructor’)

phys.addParticleProcess(’e[+-]’,’G4eMultipleScattering’,-1,1,1)

phys.addPhysicsConstructor(’G4OpticalPhysics’)

.......

5. Conclusions
Based on the detector description toolkit DD4hep a component oriented simulation application
was designed which allows users to simulate the physics response of detector setups with minimal
effort. Though the toolkit is equipped with numerous predefined components suited for many
activities, users may at any time add more sophisticated implementations. The early adoption
of parts of the linear collider community [5, 12, 13] and the Future Circular Colider Study group
(FCC) – though currently only for evaluation purposes – has been an invaluable asset to verify
the usefulness of the implemented design. These early end-users help to continuously verify that
the implemented functionality fulfills the needs of experiments. The hope is that these early
adopters also contribute to complete the existing component palette for the benefit of the high
energy physics community.
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