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Abstract. HistFitter is a software framework for statistical data analysis that has been used
extensively in the ATLAS Collaboration to analyze data of proton-proton collisions produced by
the Large Hadron Collider at CERN. Most notably, HistFitter has become a de-facto standard
in searches for supersymmetric particles since 2012, with some usage for Exotic and Higgs boson
physics. HistFitter coherently combines several statistics tools in a programmable and flexible
framework that is capable of bookkeeping hundreds of data models under study using thousands
of generated input histograms.

HistFitter interfaces with the statistics tools HistFactory and RooStats to construct
parametric models and to perform statistical tests of the data, and extends these tools in
four key areas. The key innovations are to weave the concepts of control, validation and signal
regions into the very fabric of HistFitter, and to treat these with rigorous methods. Multiple
tools to visualize and interpret the results through a simple configuration interface are also
provided.

1. Introduction
HistFitter [I] is a software framework for statistical data analysis extensively used in the ATLAS
Collaboration [2] in (mainly) searches for supersymmetric particles, in which data of proton-
proton collisions produced by the Large Hadron Collider at CERN are analyzed. HistFitter
consists of a C++ part, for CPU-intensive calculations, and a Python part, used for configuration
purposes. The tool is built on top of the software packages ROOT [3],[4], RooFit [5], HistFactory
[6] and RooStats [7]. RooFit and HistFactory are used to build parametric models, RooFit to
fit those models and RooStats to perform statistical tests.

HistFitter extends the functionality of RooFit, HistFactory and RooStats in four key areas:

e it offers a programmable framework to perform complete statistical analyses starting from
a user-defined configuration file;
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Observable 2

Figure 1. Schematic analysis strategy with
control regions (CR1 - CR3) used to constrain
the background predictions in the signal regions
(SR1 — SR3). The obtained predictions are
Observable 1 validated using three validation regions (VR1 —
VR3).

e typical analysis strategies in particle physics rely on control, validation and signal regions
in the phase space of one or more quantities. These types of regions are deeply woven into
the design of HistFitter;

e it keeps track of numerous data models including the construction and statistical tests in
an organized way;

e it provides a collection of tools for interpreting results of statistical analyses. These include
tools to determine the statistical significance of signal hypotheses, to estimate the quality
of likelihood fits and tools for production plots and tables that summarize results.

2. Data analysis strategy with HistFitter

In particle physics experiments, large samples of data are analyzed to measure properties
of fundamental particles or to discover new physical processes. In order to interpret the
measurements, predictions for background and signal processes must be compared. This is
done though statistical models that describe the observed data. HistFitter configures and builds
such parametric models and provides various tools to help in the interpretation of the data.

In the construction and handling of these models, HistFitter deeply relies on the concept of
statistically independent control, validation and signal regions as illustrated in Figures |1f and
Signal regions are regions in a phase space that are defined through selections on kinematic
variables, for example the transverse momentum of one of the particles in an event. They
should be designed to be enriched in potential signal of interest in comparison to the predicted
background level.

In order to estimate the background in signal regions in a semi-data-driven way, control
regions enriched in background are defined. The predicted background is normalized to data
in the control regions using a likelihood fit to data. The now normalized background model
is extrapolated to a signal region using a transfer factor, which is the ratio of expected event
counts between each control and signal region. The extrapolation is verified using validation
regions, located in phase space between the control and signal regions. A major benefit of these
extrapolations is that systematic uncertainties that are identical in the ratios of predicted to
observed numbers of events in the control and signal regions no longer impact the final systematic
uncertainty on the total background prediction.

The parametric model that describes the data is represented by a Probability Density
Function (PDF). PDF's are built for every control, validation and signal region using HistFactory
[6]. Since the regions are statistically independent, the PDFs can be fitted simultaneously to
data, adjusting their parameters in the process. An important feature in the analysis strategy of
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Figure 2. A typical analysis strategy flow with HistFitter involving the control regions CR 1 —
CR N, validation regions VR 1 — VR N and signal regions SR 1 — SR N. Predictions from specific
signal models can be used in the signal region to test their compatibility with the observed data.
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HistFitter is the possibility to share parameters of the PDF's in different regions. This allows the
consistent use of information on signal and background processes and systematic uncertainties
in all regions.

The HistFitter software framework is designed based on the analysis strategy in Figure
and illustrated in Figure |3] Starting from a user-defined configuration and input data, binned
histograms are created by HistFitter in a first processing step. In a second step, PDFs are
constructed based on the histograms using HistFactory tools. In subsequent steps, the model
is analyzed by performing fits, the calculations of limits. The results can be presented easily in
plots and tables. These steps utilize tools both from RooFit and RooStats, as well as HistFitter-
specific tools that are described in Sections [4] and

3. Configuration and construction of PDF's
The analysis flow presented requires substantial bookkeeping and an extended configuration
machinery. Inn particular if working with hundreds of different models this is the case, as for
example for many different hypotheses for new physics beyond the Standard Model.

In HistFitter, an analysis configuration consists of a user-defined configuration file that
interacts with a configuration manager. The configuration manager is implemented as two
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Figure 4. Illustration of an example fit strategy in HistFitter. Samples can be shared

between various channels and systematics can be shared between various samples, allowing easy
configuration of complex models.

singleton objects, one in Python, with which the user interacts, and the other in C++4. It
organizes and creates fitConfig objects. A fitConfig object contains the PDF of a certain
model, with meta-data that contains information about fitting, visualization and interpretation
of the model. A fitConfig object thus represents one row in Figure [3| and acts as factory of a
model. The configuration manager functions as ‘factory of factories’.

PDFs are constructed using HistFactory. The resulting likelihood has the general form

L(n,0°|psig, b,0) = PgR x Por % Ceyst

= P(n5|)‘s(ﬂsig7b70)) X H P(ni’/\i(ﬂsigab70)) X CSySt(O()?o)v (1)
icCR

the product of Poisson distributions of event counts in signal and control regions (PgR and
PR ) and of additional constraint terms for systematic uncertainties (Cgygt). The likelihood
depends on number of observed events n in all regions, nuisance parameters @ that parameterize
the impact of systematic uncertainties with their central values 8", a signal strength Hsig and
the predictions b for the various background sources.

The likelihood has three different building blocks: Channels, Samples and Systematics.
Channels include all control, validation and signal regions. Signal and background processes are
Samples in these channels. Statistical, experimental and theoretical uncertainties on processes
are implemented as Systematics.

HistFitter extends and mirrors the classes in HistFactory for these building blocks. The three
building blocks are put together through a fitConfig object in the construction of each PDF,
which links them to the input data. A schematic overview is given in Figure 4 A fitConfig
object can have multiple channels that may be one- or multi-bin and can be either control,
validation or signal regions. Samples, corresponding to components of the PDF decorated with
meta-data, are attached to a Channel. They can also be correlated between multiple Channels.
The data input for the sample can be provided as ROOT TTree or TH1, and also as floating-
point numbers. Systematics attached to a Sample are typically provided by 1o up and down
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Table 1. Subset of the systematic methods available in HistFitter. The methods are specified by
a string argument containing a combination of basic HistFactory methods and optional HistFitter
keywords: norm, OneSide and/or Sym. Systematic objects can be built with Tree-based, weight-
based, floating-point numbers or histogram input methods in all cases.

Basic systematic methods in HistFactory

overallSys uncertainty of the global normalization, not affecting the
shape

histoSys correlated uncertainty of shape and normalization

shapeSys uncertainty of statistical nature applied to a sum of samples,
bin by bin

Additional systematic methods in HistFitter

overallNormSys overallSys constrained to conserve total event count in a list
of region(s)

normHistoSys histoSys constrained to conserve total event count in a list of
region(s)

normHistoSysOneSide one-sided normHistoSys uncertainty built from tree-based or

weight-based inputs
normHistoSysOneSideSym symmetrized normHistoSysOneSide

overallHistoSys factorized normalization shape and uncertainty, described
with overallSys and histoSys respectively
overallNormHistoSys overallHistoSys in which the shape uncertainty is modeled

with a normHistoSys and the global normalization uncertainty
is modeled with an overallSys
shapeStat shapeSys applied to an individual sample

variations w.r.t. the nominal histogram of the Sample. They can be correlated between multiple
Samples. Systematics can be implemented using different methods of interpolation between
up and down histograms and extrapolations. These methods are listed in Table

HistFitter allows the description of a complicated PDF by few lines of code through a ‘trickle-
down mechanism’: Samples added to a fitConfig object are added to all Channels. Similarly,
all Systematics added to a fitConfig or Channel are propagated down to the level of Samples.
This design, together with the concepts of the fitConfig class and the configuration manager,
eases the construction of complex analyses setups considerably.

4. Fit strategies and presentation of fit results
HistFitter provides different fit strategies to fit the PDF. These are listed in Table [2]

The background-only fit is used to estimate the number of events in the signal and/or
validation regions through an extrapolation from the control regions. It constrains the PDF
in only the control regions.

The model-dependent signal fit is used to derive exclusion limits on a specific model or to
measure the properties of an excess over the number of events given by the background-only
hypothesis. This fit strategy uses background and signal samples in control and signal regions.
The simultaneous fitting of multiple signal regions is possible and often used to increase the
exclusion power (‘shape fit’).

The model-independent signal fit is used to derive model-independent limits on the number of
events allowed on top of the expected number of events in a specific, non-binned, signal region.



21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 072004 doi:10.1088/1742-6596/664/7/072004

Table 2. Summary of the different fit strategies possible with HistFitter.

Model-dependent
signal fit

Model-independent
signal fit

Fit setup: Background-only fit

Purpose search for excess limit setting upper limit on Ng;g

Samples used backgrounds backgrounds + signal backgrounds +
dummy signal
Fit regions CR(s) CR(s) + SR(s) CR(s) + SR

Other signal regions are not allowed in this fit. No assumption is made on the signal, which
is only allowed to appear in the signal region and not in any of the control regions. These
constraints lead to the necessity of exactly one single-bin signal region in this fit.

The results of the fits can be easily presented in multiple ways. HistFitter provides scripts to
produce tables and plots indicating the before and after fit event yields in the regions, as well
as scripts to produce pull plots that illustrate the agreement of the fitted background estimates
with the observed data. Examples of such plots are given in Figures [5] and [6]
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Figure 5. The jet multiplicity distribution in a control region before (left) and after (right)
fitting it to the observed data. The benefit of constraining background predictions to data in
control regions is readily apparent.
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Figure 6. The agreement
between estimated background
yields and observed data in the
validation and/or signal regions
(top) can be illustrated in a pull
plot (bottom). The data in signal
regions can be blinded to aid
the optimization of control region
definitions.
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5. Interpretation of results

In order to draw conclusions whether observed data is compatible with a certain hypothesis,
statistical tests must be performed. The observed data can be interpreted in hypothesis tests
in HistFitter through calls to the appropriate functions and classes of RooStats [7]. HistFitter
also provides macros for the production of plots and tables to display the results.

MSUGRA/CMSSM: tanf = 10, A= 0, u>0

;500 e
3 450 - L"=4701b" Vs=7 TeV —— Observed limit (+1 oo
= = Tutorial contour o E
g e Expected limit (+1 o)
€ 400 Figure 7. Exclusion limits in a
350 - class of supersymmetric models that

are characterized by the parameters on

300F the z- and y-axes. Models below the

F red observed limit are excluded. The

250 result is derived through hypothesis

200 - tests that compare signal models to

s the observed data; the lines are an

150 g(l)o ‘ 460 ‘ ‘660‘ ‘ 860 ' 1060 ‘ ‘1210(‘) ‘ i400 interpolation between the results of
m, [GeV] these tests.

The interpretations are based on either the model-dependent or model-independent signal
fit. Limits on a particular signal model can be placed in two ways using the model-dependent
fit strategy. Exclusion limits on this specific model can be derived in a hypothesis test, given a
null hypothesis and a measurement. Alternatively, an upper limit on the allowed signal strength
given the data can be derived through repeated hypothesis tests with varying signal strengths.
Figure [7]shows a graphical example of the exclusion limits derived for a particular set of models,
as a function of two parameters that determine the models’ properties.

6. Summary
We have presented HistFitter, a software framework for statistical analyses. HistFitter is a
programmable framework used to build, fit and test data models of nearly arbitrary complexity.
Starting from a user-defined configuration file and using HistFactory and RooFit functionality
PDFs are configured, constructed and fit. Interpretations of the constructed models are obtained
through statistical tests that rely on functionality available in the RooStats software package.
Among the innovative features of HistFitter is the modular configuration interface, with
a trickle-down mechanism that eases the construction of complicated PDFs. HistFitter is
designed to provide the bookkeeping to work with hundreds of different signal models at once,
providing an additional level of abstraction and ease of configuration over existing tools. Built-in
concepts of control, validation and signal regions allow a particular rigorous statistical treatment
of extrapolations from control to signal regions, as commonly used in numerous background
estimation techniques in particle physics. In addition, HistFitter offers a sizable collection of
tools for presenting final results in a publication-style quality.

7. Public release

The HistFitter software package is publicly available through http://cern.ch/histfitter and
requires ROOT release v5.34.20 or greater. The page contains a description of the source code,
a tutorial on how to set up an analysis, and working examples of how to run HistFitter.
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