
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 188.184.3.56

This content was downloaded on 08/03/2016 at 14:49

Please note that terms and conditions apply.

Multicore job scheduling in the Worldwide LHC Computing Grid

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 664 062016

(http://iopscience.iop.org/1742-6596/664/6/062016)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/664/6
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Multicore job scheduling in the Worldwide LHC

Computing Grid

A Forti1, A Pérez-Calero Yzquierdo2,3, T Hartmann4, M Alef4, A
Lahiff5, J Templon6, S Dal Pra7, M Gila8, S Skipsey9, C
Acosta-Silva2,10, A Filipcic11, R Walker12, C J Walker13, D Traynor13,
S Gadrat14

1 School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13
9PL, UK.
2 Port d’Informació Cient́ıfica (PIC), Universitat Autónoma de Barcelona, Barcelona, Spain.
3 Centro de Invest. Energéticas, Medioamb. y Tecnológicas, CIEMAT, Madrid, Spain.
4 Karlsruhe Institute of Technology, Steinbuch Centre for Computing, Karlsruhe, Germany.
5 Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX110QX, UK.
6 National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam,
Netherlands.
7 INFN-CNAF, viale Berti-Pichat 6/2, 40127 Bologna, Italy.
8 Swiss Center for Scientific Computing, ETH Zentrum, RZ, Clausiusstrasse 59, CH-8092
Zurich, CH.
9 School of Physics and Astronomy, Kelvin Building, University of Glasgow, Glasgow, G12
8QQ, UK.
10 Institut de F́ısica d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona,
Barcelona, Spain.
11 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
12 Ludwig-Maximilians-Universitat, Munchen, Fakultat fur Physik Schellingstrasse 4, 80799
Munich, Germany.
13 Queen Mary University of London, School of Physics and Astronomy, Mile End Road,
London E1 4NS, UK.
14 Centre de Calcul de l’IN2P3, 43 Bd du 11 Novembre 1918, F-69622 Cedex, France.

E-mail: alessandra.forti@cern.ch, aperez@pic.es

Abstract. After the successful first run of the LHC, data taking is scheduled to restart
in Summer 2015 with experimental conditions leading to increased data volumes and event
complexity. In order to process the data generated in such scenario and exploit the multicore
architectures of current CPUs, the LHC experiments have developed parallelized software for
data reconstruction and simulation. However, a good fraction of their computing effort is still
expected to be executed as single-core tasks. Therefore, jobs with diverse resources requirements
will be distributed across the Worldwide LHC Computing Grid (WLCG), making workload
scheduling a complex problem in itself. In response to this challenge, the WLCG Multicore
Deployment Task Force has been created in order to coordinate the joint effort from experiments
and WLCG sites. The main objective is to ensure the convergence of approaches from the
different LHC Virtual Organizations (VOs) to make the best use of the shared resources in
order to satisfy their new computing needs, minimizing any inefficiency originated from the
scheduling mechanisms, and without imposing unnecessary complexities in the way sites manage
their resources. This paper describes the activities and progress of the Task Force related to
the aforementioned topics, including experiences from key sites on how to best use different
batch system technologies, the evolution of workload submission tools by the experiments and
the knowledge gained from scale tests of the different proposed job submission strategies.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



1. The WLCG multicore deployment task force
Running multicore was a long standing problem in WLCG. The problem had three aspects:
the first one involved the application, as the HEP code is inherently sequential and required
additional development to run on multicore slots; the second was at experiments submission
level, it is easy enough to send one job requesting N cores, it is not so easy to integrate large
scale submission to a distributed system; the third front was at the site level, different batch
systems have different capabilities to handle multicore and sites can be shared and multicore and
single core jobs have to coexist. While the first aspect was clearly in the experiments domain,
the more general grid and site submission required coordination between the different parties.
The WLCG multicore TF [1] was set up with the explicit mandate to find a set of easy to
implement recommendations to schedule multicore without waisting resources at the WLCG
sites by reviewing the two different experiments approaches and the capability of the different
batch systems. The problem was of course complicated by WLCG being a distributed system
and having to deal with a variety of sites different by size, batch systems, Computing Elements,
number of VOs supported, on top of the differences between the two experiments philosophies.

2. The scheduling problem

Figure 1. Resource draining required to create
slots to which the multicore job can be allocated.

Scheduling multicore jobs is more compli-
cated than scheduling single core, which in
itself is a complicated problem that may de-
pend on fairshares, priorities and resource
requirements, but that can still be reduced
to when one slot is freed the job at the top
of the queue occupies it. Conversely a mul-
ticore job requires an amount of resources
corresponding to multiple single core slots
and when it arrives at the top of the queue
it has to wait for the resources it required to
be freed by the batch system. This process
is called draining (Fig. 1) and it’s an expen-
sive operation because, depending on other
types of workloads running, it can take sev-
eral hours, and in some cases few days, to
free these slots which during all this time
remain idle. Furthermore the place at top of the queue is not fixed. The batch system rear-
ranges jobs in the queue when new jobs arrive with different priorities. If new single core jobs
have a higher priority they jump in front of our multicore job and occupy the partially freed
slots wasting all the idle time further and the draining process has to restart from scratch once
the multicore job is back at the top. This is also negative for the multicore jobs users since
their jobs take a very long time to run if they run at all. In the LHC experiments case this is
made even more difficult by requesting all the slots for a job on the same node. Taking all this
into account it is clear that preserving the slots as a way to reduce the draining becomes a very
important part of running multicore.

2.1. ATLAS and CMS models
Both ATLAS and CMS VOs rely on the concept of pilot jobs for resource allocation, pilots
being submitted ahead of the job proper in order to reserve resources. However, each of the
collaborations has proposed a particular model on how to perform the mixed scheduling of single
and multicore jobs. Therefore, from the point of view of the sites, they present different job
submission patterns. As Fig.2 shows, ATLAS submits single and multicore jobs in single and

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

2



multicore pilots respectively [2]. Moreover, a single job (payload) is run for each pilot. When
jobs end, pilots are terminated as well, resources being return under control of the site. In
contrast, CMS model foresees to employ multicore pilots exclusively. Multiple jobs of different
core counts can be executed for a single pilot, which is capable of internally readjusting its
partitioning in a dynamic way [3].

Figure 2. Scheduling models for Atlas and CMS.

The CMS model, presenting
a single and unified resource re-
quest, is intended to allow the
experiment more control of its
distributed resources. Prioriti-
zation among different tasks is
removed from the site responsi-
bility, as is the mixing of single
and multicore jobs. For ATLAS,
scheduling the mix of jobs is en-
tirely a site responsibility. How-
ever, even considering the CMS
model, sites providing resources
to several VOs would still need
to handle a mixed load of re-
quests, so only sites exclusive
to CMS would be relieved com-
pletely from such a task.

In general, the CMS model,
allows for good predictability of pilot running times, as the internal fluctuations in the type of
workflow being executed are hidden from the site within the pilot. A potentially wide distribution
of job running times is averaged by the multi-payload pilot model, sites only perceiving pilot
running times. ATLAS submission model is less predictable, both in terms of alternating periods
of high and low activity and also with respect to job running times. However, returning the
resources after each payload is run produces a faster rotation rate in the use of CPUs, so a site
has increased flexibility to satisfy the requests from all its VOs in a shorter time interval.

2.2. Initial observations
Initial observations from sites - reported also by other sites at later stages - were quite indicative
of the problems to solve.

• Multicore require continuous draining of slots. Once the process of draining starts the
problem is to contain the waste

• Short jobs, less than 6 hours don’t exploit enough the slots that have taken so much effort
to drain. On the other hand at shared sites too long jobs, longer than 24h, can be a problem
because they don’t allow a quick enough turn over for all the users to have a go at running.
There must be a balance. At dedicated sites this is a much more muted problem.

• Much longer queuing times for multicore due to all the draining cycle. Sometimes not
running for days.

• Bursty submission is unanimously considered the most problematic. Sites can come up
with different strategies that will limit the waste while running constantly but the ramp
down will give back the slots to single core jobs causing peaks of draining (wasted idle slots)
during the subsequent ramp up.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

3



In Fig. 3 it is shown the effect of much longer waiting times for multicore as compared to
single core and the effect of too short jobs always compared with single core experienced at
GridKA

Figure 3. Initial observations of multicore scheduling at KIT: waiting time (left) and running
time (right) for single core (top) and multicore (bottom) jobs.

Figure 4 shows instead RAL experience. It was noted that a constant draining of WNs, called
defragmantation in HTCondor [4] jargon, was needed in order to sustain a continuous load of
multicore jobs. As the first picture shows, if the defragmentation procedure is disabled, the scale
of running multicore jobs decreases. Uncontrolled defragmentation however produces excessive
node draining, hence unused cores. The second picture shows how the amount of wasted CPU
cores decreased as the first methods to control the defragmentation rate were introduced.

As we have seen, once the multicore slots are assigned the major task is to keep them occupied
and not let single core take them back. The most important strategy to keep the slots alive
is for experiments to maintain a continuous and stable supply of multicore jobs, this with an
agreed multicore size at each site (default 8) will help the batch systems to replace multicore
with multicore. The experiments should also optimize the length of jobs. As we have seen
too long may cause problems at shared sites and too short don’t exploit the resources enough
causing extra waste.

Sites on the other hand should try to allocate slots used by multicore jobs to multicore jobs
so that the batch system doesn’t have to drain to replace a finished job. The decision to have
the same multicore slot size at each site was taken to help with this reallocation. If they can’t
reallocate the slots, sites should at least try to rank/prioritize the multicore slots over the single
core ones.

3. Implementations and solutions
Different strategies have been adopted by different sites, what follows are the solutions the task
force recommends for the most common batch systems.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

4



Figure 4. Initial observations of multicore scheduling at RAL: 8-core running jobs before
and after the HTCondor defragmentation daemon is switched off (top) and CPU wastage due
to defragmentation of the nodes before and after dynamic defragmentation rate is introduced
(bottom).

3.1. Dynamic partitioning of Torque at NIKHEF and PIC and LSF at CNAF
Tier-1 sites at NIKHEF, PIC and CNAF have implemented multicore slot conservation
introducing algorithms to produce a dynamic partitioning of CPU resources. NIKHEF and
PIC employ the mcfloat tool [5] for their Torque/Maui [6] batch systems, while CNAF has
implemented an analogous strategy for LSF [7, 8]. By means of separating their WNs into
different pools only accessible to each type of jobs, higher priority single-core workloads are
prevented from destroying the multicore slots. When multicore job pressure can’t be satisfied
with the current multicore pool, WNs are put to drain from single core jobs, then moved to
the multicore pool. The boundary between both pools is adjusted dynamically with policies
designed to avoid a) too many draining WNs, hence empty slots, at any point in time and b)
empty multicore slots when the supply of such jobs consistently decreases. Figure 5 shows the
observed performance in each of these three sites. Allocation of resources is successfully achieved
in every case keeping CPU wastage to a negligible level.

Figure 5. Dynamic partitioning of resources as a strategy to drain nodes and conserve and
recycle multicore slots at NIKHEF (left), CNAF (center) and PIC (right).

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

5



3.2. HTCondor at RAL
The solution at RAL is also using native solutions with some adjustment. As we have
seen one of the initial observations was that continuous draining is necessary to be able to
run multicore jobs. To achieve that they have enabled the defrag daemons, which tells
HTCondor to drain a configurable number of nodes and slots, with a cron job to adjust
these numbers according to the number of multicore jobs queued with the classAd expression
DEFRAG MAX CONCURRENT DRAINING. While they don’t do partitioning - their WN
are shared by multicore and single core jobs - they used GROUP SORT EXPR another classAd
expression to evaluate multicore jobs in the queue before single core, by doing so if a multicore
job is likely to be replaced by another multicore job. They also rank WNs by how many 8-slots
can be freed, i.e. a 32 slot WN will be picked in preference to a WN with only 8 slots. Figure
6 shows ATLAS and CMS both running at RAL (which is also another multi-VO site) and the
peaks of draining slots corresponding to a drop in the number of queued jobs and consequent
ramp up and to an increase of queued multicore. Draining waste has been confined between
0.5-2.5% with the peaks usually being narrow.

Figure 6. Multicore job scheduling with dynamic defragmentation for HTCondor at RAL:
running and queued multicore jobs (left) and percentage of wasted CPU (right).

3.3. Dynamic scheduling SGE at GRIDKA
While other sites have been willing to complement their batch systems with their own scripts the
goal at GridKA was to use only SGE native features to minimize the amount of resources wasted
with draining and let the experiments decide how they should use their fairshare ranking and
prioritizing their workload in their framework. They configured a SGE Parallel Environment
for the jobs to request the appropriate amount of resources and capped the number of slots that
can be drained at the time by using maxreservation. Their worker nodes are not partitioned
and can run single-core and multicore. With this setup they achieved a degradation of less than
2%. Figure 7 shows both ATLAS and CMS running at GridKA. They are a good show case of
how it is not possible to ignore single core jobs from other VOs at shared sites.

4. Backfilling, memory and passing parameters to the batch systems
Backfilling is a common technique native to many batch systems: jobs of lower priority are
allowed to utilize the reserved resources only if their prospective job end (i.e. the declared
wallclock usage) is before the start of the reservation. Figure 8 shows how this works. Successful
backfilling relies on two concepts:

• Entropy: there should be a distribution of jobs resources requests in order to increase the
likelihood of finding the right “piece” to fill each temporary hole in draining WNs.

• Predictability: job running times estimates, so that the scheduler can make a decision on
whether it should run this job in that hole or not.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

6



Figure 7. Multicore job scheduling with dynamic reservation for SGE at GRIDKA: running
and queued multicore jobs (left) and example of farm utilization for all VOs (right) for a period
of a month.

Backfilling requires the jobs ability to tell at submission time the estimate of the walltime to
the batch system. This hasn’t been achieved for many reasons: a) inherent the job themselves,
the same application can take shorter or longer depending on the type of event it is processing;
b) the variety of job resources a job can access in a distributed system and within a site; c) the
late binding phylosophy of the experiment frameworks; d) there is no standard set of parameters
to pass to different batch systems and the CEs behaviour is also not standard.

Figure 8. Backfilling is used to
minimize the wastage of resources while
draining them to allocate multicore
jobs.

The task force has taken on board the work to do to
resolve c) and d) thus extending it’s original mandate
including also the handling of high memory jobs. This
has required reviewing the whole chain for memory and
time parameters used by the jobs and review of the
meaning of memory and time parametrs in the whole
chain from the experiment framework, to the CEs,
to the batch systems, to the kernel which ultimately
determines what can or cannot be done with them.

5. Accounting
The main problem with accounting was that batch
systems register the amount of CPU time used by
all the slots requested by the multicore job but the
walltime as the realtime used by the job. While this
is the correct thing to do, the way WLCG calculates the efficiency for the jobs is dividing the
job CPUtime by the walltime and this resulted in efficiencies being off by a factor 8. To fix this
required modifying the way APEL (WLCG accounting system) clients collect the information
from the batch systems and the accounting portal to report the new information being correctly
displayed. To update the clients and their configuration became part of the multicore deployment
campaign and was done in cooperation with EGI, who is responsible for the APEL system. The
new portal to display the information correctly is still in development.

6. Status of deployment to sites
At the moment of writing, the two experiments have different targets of deployment. CMS
priority for 2015 is multicore prompt data reconstruction [10] which requires T0 plus 50% of

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

7



T1 CPU resources and the deployment target has been achieved [3]. ATLAS has 95% of the
resources enabled. Figure 9 shows the increasing fraction of resources being used by ATLAS
multicore jobs over the past few months progressing towards the target of 80% of its production
at all sites.

Figure 9. Fraction of CPU resources used by ATLAS as a function of the job core-count.

7. Conclusions and outlook
Over the past year we have reviewed the experiements models to run multicore, the batch
systems capabilities, and found a set of strategies for the main batch systems to run the jobs for
both experiments at shared sites. A deployment campaign for enabling multicore at sites and
the proper accounting has resulted in the required resources being enabled. There is still some
work to do to optimize both the experiments submission and the sites scheduling where needed,
but the infrastructure to run multicore is setup and already in use. We will continue to work
also on the extra tasks that have been assigned, namely passing memory and time parameters
to the batch system and how this integrates with the changed way the kernel handles cpu and
memory limits and to test backfilling [11] at sites that wish to implement this strategy.

References
[1] WLCG Multicore Deployment Task Force, 2015, https://twiki.cern.ch/twiki/bin/view/LCG/

DeployMultiCore

[2] Crooks D et al 2012, Multi-core job submission and grid resource scheduling for ATLAS AthenaMP, J. Phys.:
Conf. Ser. 396 032115 doi:10.1088/1742-6596/396/3/032115.

[3] Perez-Calero Yzquierdo A et al 2015, Evolution of CMS workload management towards multicore job support,
these proceedings and https://indico.cern.ch/event/304944/session/4/contribution/409

[4] HTCondor Homepage: http://research.cs.wisc.edu/htcondor/

[5] Templon J et al 2015, Scheduling multicore workload on shared multipurpose clusters, these proceedings and
https://indico.cern.ch/event/304944/session/6/contribution/281

[6] TORQUE and Maui Homepage: http://www.adaptivecomputing.com/products/open-source/

[7] Platform LSF Homepage: www.ibm.com/systems/platformcomputing/products/lsf/

[8] Dal Pra S, Efficient provisioning for multicore applications with LSF, these proceedings and https:

//indico.cern.ch/event/304944/session/9/contribution/455

[9] Son of Grid Engine Homepage: https://arc.liv.ac.uk/trac/SGE

[10] Hufnagel D et al 2015, The CMS Tier-0 goes Cloud and Grid for LHC Run 2, these proceedings and
https://indico.cern.ch/event/304944/session/5/contribution/119

[11] Passing parameters project, 2015, https://twiki.cern.ch/twiki/bin/view/LCG/BSPassingParameters

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 062016 doi:10.1088/1742-6596/664/6/062016

8

https://twiki.cern.ch/twiki/bin/view/LCG/DeployMultiCore
https://twiki.cern.ch/twiki/bin/view/LCG/DeployMultiCore
https://indico.cern.ch/event/304944/session/4/contribution/409
http://research.cs.wisc.edu/htcondor/
https://indico.cern.ch/event/304944/session/6/contribution/281
http://www.adaptivecomputing.com/products/open-source/
www.ibm.com/systems/platformcomputing/products/lsf/
https://indico.cern.ch/event/304944/session/9/contribution/455
https://indico.cern.ch/event/304944/session/9/contribution/455
https://arc.liv.ac.uk/trac/SGE
https://indico.cern.ch/event/304944/session/5/contribution/119
https://twiki.cern.ch/twiki/bin/view/LCG/BSPassingParameters



