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Abstract. The Large Hadron Collider (LHC) experiments will collect unprecedented data
volumes in the next Physics run, with high pile-up collisions resulting in events that require a
complex processing. Hence, the collaborations have been required to update their Computing
Models to optimize the use of the available resources and control the growth of resources, in
the midst of widespread funding restrictions, without penalizing any of the Physics objectives.
The changes in computing for Run2 represent significant efforts for the collaborations, as well
as significant repercussions on how the WLCG sites are built and operated.

This paper focuses on these changes, and how they have been implemented and integrated
in the Spanish WLCG Tier-1 centre at Port d’Informació Cient́ıfica (PIC), which serves the
ATLAS, CMS and LHCb experiments. The approach to adapt a multi-VO site to the new
requirements, while maintaining top reliability levels for all the experiments, is as well presented.
Additionally, a description of work done to reduce the operational and maintenance costs of the
Spanish Tier-1 centre, in agreement with the expectations from WLCG, is provided.

1. Introduction
The LHC, at the European Laboratory for Particle Physics (CERN, Switzerland), started
operating in November 2009. The successful first run (Run1) ended in February 2013, and
the accelerator entered into a period of shutdown (LS1) for maintenance and upgrade works.
The LHC is expected to start producing physics collisions by June 2015, with a performance
at almost the design level. The LHC experiments components were revised and upgraded to
prepare for the new period, in which the beams will collide at almost double the energy than
previously recorded, and with reduced time between bunch crossings, down to 25 ns.

To analyze the unprecedented rate of PetaBytes (PB) of data per year generated by the
LHC, a Grid-based computer network infrastructure was built. The largest scientific distributed
computing infrastructure in the world adds up the computing resources of more than 170 centres
in 34 countries to form the Worldwide LHC Computing Grid (WLCG [1][2]). In Run1, the
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infrastructure proved to be a key component for prompt analysis and reconstruction of the LHC
data. During LS1, all of the Run1 data was reprocessed and simulations with the new LHC
conditions were produced. At the dawn of Run2, the LHC data volume sums up about 300 PB
of raw, simulated and processed data, from all of its detectors.

The computing centres are functionally classified in Tiers in WLCG. Eleven of these centres
are the so-called Tier-1s, receiving a fraction of the raw data in real time from the Tier-0 at
CERN, and in charge of massive data processing, storage and distribution. Spain contributes
with a Tier-1 centre: Port d’Informació Cient́ıfica (PIC), located in the campus of the Universitat
Autònoma de Barcelona, near the city of Barcelona. PIC provides services to three of the LHC
experiments, ATLAS, CMS and LHCb. It accounts for 5.1% of the total Tier-1 resources of
ATLAS and CMS, and 6.5% for LHCb, acting as the reference Tier-1 for the Tier-2 centres in
Spain and Portugal, and sites located in Valparaiso (Chile) and Marseille (France).

The next period of LHC running will be producing more data, composed by more complex
events, in comparison to Run1. During LS1, the computing models of the experiments underwent
a series of revision, in order to cope with the high data volume expected for the second LHC
run, while keeping a controlled growth of computing resources elsewhere.

2. Computing Upgrades during LS1
The experiments have revised their computing models during the LS1. The goal is to keep a
controlled growth of resources for the next years, in a flat-funding model [3], i.e. assuming
that regions and sites are operated without a substantial budget increase, and benefiting from
technology evolution trends in order to provide the needed growth of resources. This had many
implications on the way the experiments operate, and the computing models were modified in
many aspects: the available resources are exploited in a more flexible manner, and experiment
tools have been improved, decreasing the operational efforts while being ready to confront the
next LHC run needs. The disk space is better managed: the most popular datasets are kept on
disks at the sites, and cleaning mechanisms of non-popular files from disks are present, or being
deployed, reducing the disk needs at the sites.

New access protocols have been introduced allowing remote data access. This naturally
enables easy failback mechanisms when access to a particular file locally at a site fails. It also
allows running activities out of sites, busy in terms of computing, and hence allowing sites
to process data without downloading the datasets locally. Many common services used by
the experiments have been simplified, with less service instances and more easily manageable
deployments and operational procedures. FTS3 is a good example of a service of this type,
provided for all of the WLCG community by only a few sites. HLT farms, opportunistic
resources, Tier-0 resources, and some other sites, are being exploited regularly by means of
Cloud Computing techniques, complementing the resources needs from the experiments.

3. PIC Tier-1 compliance with Run2 requirements
PIC is an active and successful participant in the WLCG project since its start, and it has shown
its readiness for the LHC data taking periods. It has contributed to prototyping and testing of
the Grid middle-ware and services that were being developed, and successfully participated in
the Service Challenges carried out by the experiments, testing campaigns aimed to progressively
ramp-up the level of load on the infrastructure under conditions as realistic as possible, achieving
breakthrough performances. PIC showed good performance results during Run1, and during
LS1 it worked to be fully compliant with the Run2 requirements from the experiments, tendered
and provisioned resources for data taking re-start, and prepared all of its infrastructure for the
resources growth that are expected in the next years. Figure 1 shows the PIC resources growth
and usage during Run1, and the expected growth trends for Run2. PIC resources are expected
to double during Run2.
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Figure 1. CPU (top), disk (center) and tape (bottom) resources installed and used at PIC, since
2008. The expected evolution of the resources growth during LHC Run2 is as well displayed.

As of today, the computing resources installed in PIC comprise around 5500 cores managed
by Torque/Maui batch system and scheduler. This corresponds to about 70000 HEP-SPEC06
(HS06, see Ref. [4]). The servers are typically two quad-core x86 CPUs, with at least 2GB RAM
per core (recent E5-2640-v3 purchases have 4GB/core). Each of these nodes typically has two
10Gbps Ethernet interfaces which are then aggregated in switches and connected to the storage
infrastructure. The main servers consist of Blades (HP) and Dual-Twins (Dell).

The storage service at PIC is managed by dCache [5] and Enstore [6] softwares. The dCache
software provides uniform and efficient access to the disk space provided by many file servers,
and talks to the Enstore software to interface to magnetic tape storage. As of today, 6 PB of
disk space is installed, by means of around 2000 hard disks of 2, 3 and 6 TB, distributed on
around 50 servers based on x86 technology, each connected by one or two 10Gbps Ethernet,
depending on the hardware. The servers brands comprises DataDirect, SGI, and SuperMicro.

The current tape infrastructure at PIC is provisioned through a Sun StorageTek 8500SL
library, providing around 6650 tape slots which are expected to cover the PIC tape needs in the
coming years. Enstore manages 12 PB of tape storage, with access to a total of 4.3 million files.
The supported technologies are LTO-4, LTO-5 and T10KC, containing 29%, 10% and 61% of
the total data respectively, in around 6000 tape cartridges. A total of 24 tape units are installed
to read/write the data (12 LTO-4, 4 LTO-5 and 8 T10KC). Aggregated read/write rate has
achieved hourly average rates peaking at 3.5GB/s.

3.1. Data management upgrades
With better and increased network capabilities among centres, the Tier-1s can naturally become
major data servers to the whole Grid. New protocols were deployed in LS1 to allow for remote
data access, namely XRootD [7] and standard HTTP/WebDAV.
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XRootD failback is enabled in all of the PIC computing nodes. This means that if PIC
storage is busy or a file of a dataset is missing or not accessible, running jobs can read those files
from remote centres. Thus, entire workflows can be executed in PIC reading remote datasets,
preventing the need for data pre-placement to PIC. ATLAS and CMS are increasingly using
these functionalities. Additionally, ATLAS and CMS disk-only data can be XRootD-accessed
from remote centres, a worth of ∼4 PB of data which is accessed by the majority of Tier-1 and
Tier-2 sites. LHCb data can be as well HTTP-accessed from remote centres (∼800 TB).

Joining the data federations required substantial R&D and tuning. First of all, it needed a
deployment of compatible data management software (i.e. a compatible dCache version). Tape
systems need to be protected against uncontrolled accesses, hence disk-pool areas were created
and populated. This naturally allowed end user analysis for CMS collaboration to be enabled
at the centre. Dedicated experiment monitoring plugins were installed, as well as site ’local’
XRootD redirectors (which translate Logical File Names to Physical File Names, and interact
with the storage for file discovery).

Exposing the majority of the data to remote centres forced PIC to implement dedicated
monitoring and establish protection mechanisms to control/limit the access of the resources, if
necessary. This new way of accessing data is being commissioned and it is expected to gain in
popularity (hence usage) once the LHC Run2 starts. Since its deployment at PIC, the XRootD
exports are at 15%-20% levels of the total data export traffic.

3.2. Computing service upgrades
Given the evolution of LHC running conditions at the restart of the data taking in mid 2015,
the experiments are developing multi-core applications in order to cope with the analysis of
complex events with large pile-up. Many experiment workflows are being migrated to multi-
core applications, which will keep the usage of RAM per job during execution at a reasonable
level. There are many challenges for sites in this new scenario, and PIC has shown very active
in this context co-coordinating the WLCG multi-core deployment task force [8].

The scheduling of both multi-core and single-core jobs at a site should be effective and
efficient, as both types of jobs are expected to co-exist from all of the LHC VOs during Run2.
Static splitting of resources for both type of jobs should be avoided to maximize site CPU
usage. In order to schedule multi-core jobs, n-core slots must be created in the site computing
nodes. Effective node draining prevents single core jobs taking resources of ending jobs, hence
creating the n-core job slot in a node. Using short running jobs while sufficient resources are
being reserved to create a multi-core slot might be possible. However, this backfilling is not
currently practical, as the LHC VOs are not scheduling short jobs with an estimation of the
expected duration time being provided at submission time. Draining thus represents wastage
at this point, an unavoidable price to be paid. Therefore, once the cost has been paid, batch
systems should avoid immediate multi-core slot destruction, to optimize future multi-core jobs
allocation and CPU usage in the farms.

Controlled draining and multi-core slot conservation at PIC is achieved with a dynamic
partitioning of computing resources. This is achieved by the mcfloat tool (as developed by
NIKHEF [9]) for Torque/Maui. Controlled ramp up of multi-core resources reduces draining
impact on farm utilization. Figure 2 shows a controlled allocation of multi-core jobs in PIC,
for ATLAS Tier-1/Tier-2 and CMS Tier-1 jobs. At the end of this ramp-up, half of the slots
offered by PIC were used by multi-core jobs. During this ramp up period, the farm occupancy
was measured to be at 98%, validating the method for efficient multi-core scheduling in PIC.

Experiment applications are still being adapted to the new multi-core schema, and as of today,
some experiments send a fraction of single-core jobs that needs high memory provisioning. PIC
has deployed a high-memory queue for ATLAS, which offers 256 slots with 4GB/core, which are
used by standard tasks when no ATLAS high-memory jobs are scheduled in PIC.
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Figure 2. Controlled allocation of multi-core jobs in PIC, for ATLAS Tier-1/Tier-2 and CMS
Tier-1 jobs, keeping the farm utilization at 98% levels.

3.3. Network upgrades
Network access to data allows for a significant cost optimization, as disk is the most expensive
resource to be deployed and operated at a site. However, the remote data access scenario
has shown to add more load on the network. Therefore, careful planning of network upgrades
was required. New switches were acquired, router upgrades were needed, and more powerful
firewalls were deployed. There is the tendency in WLCG to consider that network is ’free’, but
it should be noted that network equipment is typically expensive, and deployment efforts are
FTE demanding. These activities, on top of other increasing network demands, might as well
result in an increase on site WAN connectivity. PIC is connected to its network provider through
a 10Gbps line. This WAN ’last-mile’ connection has also a cost, which impacts on the budget of
the centre. In PIC, a line of 10Gbps is deployed for LHCOPN [10], 10Gbps for LHCONE, and
2x10Gbps for General IP services. Even if the main 10 Gbps from PIC to our NREN is not yet
saturating, WAN bandwidth increase is being drafted with the involved parties.

4. Reducing operational and maintenance costs at PIC
In order to pave a secured and efficient road for future site growth, PIC invested efforts in order
to reduce maintenance and operational costs at the site. Typical life cycle of equipment at PIC
is set to 4 years. This is strictly followed for disk resources, however CPU servers are provisioned
with 5 years maintenance support, if possible. Since the beginning of 2013, the PIC computing
farm power is adjusted to electricity cost: less CPU power is offered during high cost periods,
and vice-versa, without negatively affecting the annual WLCG pledges. The power consumption
per unit of performance (Watts/HS06) is more or less constant since a few years, the oldest CPU
servers are used to modulate the computing power. The net effect was a reduction of ∼10% in
the electricity bill.

At the end of Run1, PIC deployed a RedHat Enterprise Virtualization system (RHEV 3.4.2,
KVM-based). The production system is installed over an HPBlade box with seven hypervisors,
each of them equipped with 16 cores and 96GB RAM (HP Proliant BL460c) with 2x10GbE
ports. The hypervisors are connected via fiber-channel to a NetApp FAS3220 (2TB, Thin
Provisioning, with qcow2 image formats). Around ∼125 services are run in the system. This
reduces the number of physical machines by a factor 10, without any impact on the reliability
and performance of the services, and reducing the costs substantially. In order to save licence
costs, Ovirt 3.5 is being tested at scale. Four hypervisors, in a similar environment, are used to
run up to 60 test services. The new setup is expected to be deployed in production soon.
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Constant efforts are made to simplify and improve configuration management and
automation. The majority of the services at PIC are managed by Puppet [11]. The
implementations are flexible enough to rapidly evolve following changing technologies. All code
has been recently migrated to Puppet 3.6. Local repositories for code development projects at
PIC have been migrated from SVN to GIT/gitlab, which eases the use and maintenance of the
service. Thanks for the large automation of services, PIC is operated with less manpower than
the average Tier-1 centre[12].

Cooling is a natural place to save costs for a large computing centre. Given the growth
expectations, and coinciding with the LHC shutdown period, PIC improved the energy efficiency
of its main computing room. This occurred during fifteen consecutive weeks of work in 2014,
without any downtime, interruption and/or negative impact in operations (see [13] for more
details). Before the intervention, there was no separation of cold/hot air in the main computing
room. Several CRAHs (Computer Room Air Handler) were managing the air through a cold
water battery, injecting air at 14◦ C to get a room temperature of 22-23◦ C. This system showed
a PUE (Power Usage Effectiveness) of 1.8, offering room for improvements.

Three free-cooling units, acting as indirect heat exchangers with outside air and equipped
with adiabatic cooling humidifiers, replaced some CRAH units. Direct free-cooling was not
considered, as the region were PIC is located has high humidity values and it is within a dusty
environment. Figure 3 shows some photographs of the free-cooling units installation. Hot and
cold flows are separated in the room, and a ceiling was installed to contain the hot air from
the room, as can be seen in Figure 4. Inlet temperature was increased to 20◦ C, according to
ASHRAE recommendations[14].

Figure 3. Free-cooling units being installed in PIC, in mid June 2014.

This work was completed in September 2014. A period of one year has been defined to study
and adjust the system, in order to reach the maximum energy efficiency possible. Dedicated
monitors for the most important climate parameters have been installed to help in this direction.
Once tuned, the PUE is expected to be in the range 1.45-1.3. In December 2014, a PUE of 1.3
was measured, even without a fully tuned system, which is really promising. Electricity costs
savings in the next 3-3.5 years will amortize the new cooling installation.

As of today, around 200 kW of IT equipment is installed in PIC. The UPS system of the
centre was at the end of its lifetime, presenting power losses up to 15%. At the beginning of
2015 a new UPS of 550 kVA, with Insulated-Gate Bipolar Transistor (IGBT) technology that
provides efficiency in the range of 97%-99%, was installed, impacting positively on the electricity
bill of the centre.
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Figure 4. PIC main computing room before (left) and after (right) completion of hot/cold air
separation and confinement.

Last, but not least, around 70% of CPU resources are installed in a compact module in PIC
basement. This module is expected to be upgraded with liquid cooling solutions (immersion)
by the end of 2015 or beginning of 2016.

5. A reliable, high-capacity Tier-1 service
One of the main characteristics of Tier-1 centres, beyond a very large storage and computing
capacity, is to provide these resources through services that need to be extremely reliable. Being
closely connected to the detectors’ data acquisition, a maximum time for unintended interruption
of the services in a Tier-1 is set to 4 hours, and a maximum degradation of Tier-0 to Tier-1 data
acceptance of 6 hours [15]. Critical services in a Tier-1 operate in 365x24x7 mode.

Service quality and stability are amongst the cornerstones of the project, therefore they are
closely tracked by monitoring two metrics provided by the SAM monitoring framework: site
availability and reliability. These are built from dozens of sensors, for each of the experiments,
which hourly probe all of the site Grid services, ensuring peer pressure and guaranteeing that
the reliability of WLCG service keeps improving[16].

Figure 5. Site Reliability ranking plots for Tier-0 and Tier-1s, during 2014. Target for site
reliability is set to 97%, according to the WLCG MoU.

21st International Conference on Computing in High Energy and Nuclear Physics (CHEP2015) IOP Publishing
Journal of Physics: Conference Series 664 (2015) 052014 doi:10.1088/1742-6596/664/5/052014

7



Figure 5 shows the reliability ranking results of Tier-0 and Tier-1s for 2014. PIC Tier-1 is at
the top of these Reliability rankings (99.9% ATLAS, 99.4% CMS, 99.9% LHCb), and well above
the WLCG target, which is set to 97%. These figures were obtained during a year in which
many new services were deployed and interventions were made to improve the site efficiency.
PIC is one of the smallest Tier-1 centres in WLCG, but supports 3 LHC VOs. PIC has an expert
contact person per experiment on site (the liaison), communicating and coordinating priorities
with each of the experiments and resolving operational problems. This helps PIC being at top
reliability and stability levels.

6. Conclusions
LHC LS1 has been a very active period for computing. In a budget-constrained period,
experiments were required to modify their computing models and improve the efficiency of
resources usage. The resources growth profiles for the next years are compatible with a flat-
funding model, in which the growth is achieved by means of technology trends. PIC Tier-1
deployed many new services which were required, and validated them during LS1, demonstrating
its readiness for the next LHC data-taking period. Benefiting from the LHC shutdown,
PIC improved its computing infrastructure, with new elements that translate in a significant
reduction of the electricity costs for the next years. This work gives strength to the centre for
the following challenges it will be facing.
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