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The possible burst occurred in location and temporal consistence with gravitational wave event 
GW150914, as reported by Fermi GBM, offers a new way of constraining models with extra dimensions. 
Using the time delay in arrival of the gamma ray transient observed by Fermi Gamma-ray Burst Monitor 
(GMB) relative to the gravitational waves event triggered by the LIGO detectors we investigate the size 
of the spherical brane-universe expanding in multi-dimensional space–time. It is shown that a joint 
observation of gravitational waves in association with gamma ray burst can provide a very stringent 
bound on the spatial curvature of the brain.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Recently, the team of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) has reported on simultaneously detected 
identical chirp like signals in their both detectors [1]. This histor-
ical event, which became world wide known as GW150914, has 
been interpreted as the first detection of gravitational waves, pre-
dicted by the general relativity, from inspiral and merger of a pair 
of black holes (BHs) at a luminosity distance of about 0.4 Gpc. The 
inferred merger of the BH binary whose components have masses 
M1 = 36+5

−4 M� and M2 = 29+4
−4 M� has formed the final BH of mass 

M = 62+4
−4 M� releasing Egw = 3.0+0.5

−0.5 M�/c2 � 5.4 · 1054 erg in 
gravitational waves.

The Fermi Gamma-ray Burst Monitor (GBM), being exposed 
consistently with the direction of GW150914, revealed, at about 
3σ -level, the presence of a weak hard X-ray transient signal of 
luminosity Eγ � 10−49 erg at photon energies 10 and 1000 keV 
over 1 s that appeared 0.4 seconds after the gravitational wave 
event [2]. Although having ill-constrained localization, because of 
nonoptimal pointing of the GBM detector, it was suggested to as-
sociate this short lasted about 1 second transient with GW150914. 
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The properties of this Fermi GBM transient are broadly consistent 
with a short gamma ray burst (SGRB), apart the fact that it would 
be significantly harder than the typical Epeak − E iso relation for 
SGRBs [3]. We notice that so far no other instrument could re-
port on detection of an electromagnetic transient counterpart or 
an afterglow [4–10]. Also, no success has been achieved in high 
energy neutrino follow-up of GW150914 [10,11]. In addition, later 
on, two other gravitational waves event candidates from compact 
object mergers have been reported by LIGO, namely GW151226 
and the subthreshold LIGO-Virgo Trigger LVT151012. Eventually, 
GW151226 has been confirmed to occur due to the inspiral and 
merger binary black holes system, consisting of 14.2+8.3

−3.7 M� and 
7.5+2.3

−2.3M� components at the luminosity distance of 0.4 Gpc [12]. 
The subthreshold trigger has not been confirmed as being associ-
ated with a real astrophysical event. No electromagnetic counter-
part of GW151226 has been revealed either by gamma ray obser-
vations performed by Fermi GBM and LAT [13] or optical follow 
up campaigns [14,15]. With many more LIGO events expected in 
the future, it would be straightforward to test whether GRBs are a 
common byproduct of BHs mergers.

Right after the discovery of the gravitational wave signal, some 
tests on general relativity have been performed [16,17], including 
measurements of the velocity and mass of the graviton as well 
as violations of Shapiro delay and Einstein’s equivalence principle 
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between the gravitons at different frequencies [18]. It has been 
also understood that the putative association of the Fermi GBM 
transient with GW150914 can be compiled in spectacularly use-
ful results on general relativity, quantum gravity and astrophysics. 
In particular, time lag between arrival of GW150914 event and the 
Fermi GBM transient has been used in [3,19] to obtain the most 
stringent constraints on the velocity of the graviton.

Before detection of GW150914 putatively followed by the X-
ray transient there was no specific astrophysical analysis on the 
electromagnetic radiation counterparts from the merger of binary 
stellar BHs. However, provided that the BHs have spin, as seems 
inevitable, and there are relic magnetic fields and disk debris re-
maining from the formation of the BHs or from their accretion his-
tory, one can substantiate that merging BHs potentially provide an 
environment for gamma rays emission [20,21] and even for accel-
erating cosmic rays to ultrahigh energies [20]. Indeed, simulations 
of gas and magnetic fields around the merging systems suggest 
that the motion of two BHs in a magnetically dominated plasma 
could generate a magnetosphere and nebular structure similar to 
those inferred in pulsars, as well as collimated jets [22–29].

The power of the gamma emission generated is however quite 
uncertain, and in general depends on parameters and unknown 
structural details of the system. Most models [23–29] are in line 
with the so called Blandford–Znajek (BZ) process [30] that extracts 
the space–time rotational energy of the BHs to generate a powerful 
electromagnetic outflow in externally supported magnetic field. On 
the cost of rescaling the BH mass and the magnetic field, it seems 
that the same mechanism can be applied to stellar BHs. Poynting 
flux for such kind of emission has been estimated in [31] and reads

LBZ = (GM)3 B2

c5 R

� 3.2 · 1046 erg s−1
(

M

100M�

)3 (
B

1011G

)2 (
R S

R

)
, (1)

where M is the final BH mass and B is the strength of the external 
magnetic field. The orbital radius R can be taken to be equal to the 
Schwarzchild radius R S = 2GM/c2 � 3 · 105(M/M�) cm.

Thus, if an external magnetic field of the order of � 5 · 1012 G
could be generated, equation (1) implies that the BZ process would 
extract enough electromagnetic luminosity to account for the level 
of emission of the transient reported by Fermi GMB. Although a 
magnetic field of such strength can be easily accounted for pulsars 
and magnetars, there is a certain concern on an ability of ambi-
ent plasma surrounding a BH to anchor the magnetic field of such 
strength [32]. Mostly, the concern is related to the fact that plasma 
in a close vicinity of the horizon of a resulting BH is expected to 
be diluted, since a BHs binary hollows out from material the in-
ner few hundreds of Schwarzschild radius before the merger [22]. 
However, as pointed out in [33], a small disk or celestial body may 
be involved in the binary of two BHs. In this case, magnetic field of 
required level would be supplied by the mini-disk via magnetohy-
drodynamic instabilities such as the magneto-rotational instability 
[33]. Also, as argued in [34] it would take infinite time, as mea-
sured by an external observer, for infalling matter to arrive at the 
horizon of a BH. Therefore, at the time of merger the accreted 
matter should be accumulated in the vicinity of the horizon form-
ing so called “frozen” or “black” star [35]. Thus, due to presence 
of significant amount of matter directly at the horizon which has 
been accreted with an angular momentum the magnetic field may 
be compressed in the shell of the “black” star and amplified up 
to the level of neutron star or magnetar making the BZ mecha-
nism working effectively [36]. A generic version of BZ mechanism 
with respect to the association of the Fermi GBM transient and 
GW150914 is discussed in [37]. Other models, outside the lore of 
the BZ process, are also discussed in the literature. In [38], it has 
been suggested that the merging BHs might have been generated 
in course of a collapse of a rapidly rotating massive star, that at the 
end a GRB occurs from a jet that originated in the accretion flow 
around the remnant BH. Another possibility of having in a binary 
system two gravitationally collapsing objects with non-vanishing 
electric charge has been discussed in [39]. In this case, the com-
penetration of the two magnetospheres occurring during the co-
alescence, through turbulent magnetic reconnection, produces a 
highly collimated relativistic outflow that becomes optically thin 
and can power a SGRB. More exotic possibility of generation of an 
electromagnetic counterpart of the GW150914 due to the appear-
ance of a short living naked singularity during the merger has been 
discussed in [40].

Future gravitation wave observations with larger coverage from 
Fermi GMB or other gamma ray bursts orbiters should settle if 
the binary BHs mergers indeed are accompanied by a gamma ray 
emission. However, it might happen that due to observer angle ef-
fects, the association of gravitational waves events from BHs merg-
ers will only be confirmed once a reasonably large sample of grav-
itational waves and gamma ray observations has collected. Indeed, 
as one can see from the above discussion, GRB models usually in-
voke jets emitted along the rotation axis of their progenitor BH. 
Thus, we can assume, due to Doppler boosting, that our viewing 
angle is within the opening angle of the jet, otherwise the electro-
magnetic emission would be substantially suppressed bellow the 
limit of detectability. Therefore, the most favorable situation for 
both gravitational waves detection and collimated electromagnetic 
emission is in case we view the binary system, perpendicular to 
the rotation plane. It is clear, that the gravitational waves signal 
should not have a strong dependence on the viewing angle. The 
difference in gravitational waves signal to noise ration between on 
face and on edge line of sight to the rotation plane of the binary 
system can be accounted by factor 

√
8 ≈ 2.8 [1]. Due to a known 

degeneracy between the inclination angle of the line of sight and 
distance, in general all the inclination angles are allowed by gravi-
tational waves data [1]. The observed gamma rays however suggest 
that we see the system close to on face to the rotation plane line 
of sight. The latter might not be the case in the observational con-
figuration of GW151226 and thus caused negative results of its 
electromagnetic follow up campaigns [13–15].

In this note, we exploit the relative timing of GW150914 and 
Fermi GBM events to bound the spatial curvature in a class of 
models with large extra dimensions, where matter particles and 
radiation are localized on a brane while the gravity can propagate 
in the bulk outside the brane.

The main virtue in warped extra dimensional models is their 
ability to solve many long standing problems in particle physics, 
for instance, the hierarchy problem [41,42]. A particular class of 
the brane scenario is the shall-universe model, where the uni-
verse is represented as a 3-shell expanding in a higher dimensional 
hyper-universe [43–45]. Interestingly, the hyper-sphere is a simple 
space possessing a positive curvature. Recent analysis of CBM data, 
combined with other astronomical observations, suggests that the 
universe is nearly flat, but possibly with small positive curvature, 
i.e. finite. Moreover, some observational data such as the isotropic 
runaway of galaxies, the deficiency in the first modes of the angu-
lar power spectrum and an existence of the preferred frame in the 
universe support this model. The shell-universe model also pre-
dicts a correct value of the redshift parameter that corresponds to 
the transition from cosmic deceleration to acceleration without in-
troduction of dark energy on the brane [44] and provides a natural 
mechanism for the local increment of the brane tension, leading to 
the modified Newton’s law at galaxy scales, alternative to galactic 
dark matter [45].
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Since within the shell-universe scenario, the Standard Model 
particles are localized on the 3D spherical brane, the propagation 
of a radiation probe (light) between two points should be affected 
by the curvature of the universe. The graviton being able to propa-
gate outside the brain, can make a shortcut between these points, 
what would look like if in our 3D world the graviton was traveling 
faster than light. In the simplest case of a spherically symmetric 
3D shell, the distance covered by a radiation probe propagated be-
tween two points on the sphere should be represented by an arc 
distance L between the source and the observer. In the same time, 
the bulk shortcut of the graviton would connect these points sim-
ply via span of the arc. Thus, measuring an extent d of the shortcut 
(span) one can calculate the distance excess �x accumulated due 
to the curvature of the brain,

�x = L − d ≈ Rα − 2R sin
α

2
≈ R

α3

24
. (2)

Here,

R ∝ a(t) (3)

is the bulk radial coordinate of the expanding brane, which serves 
as the dimensionful cosmological scale factor for the brane (shell) 
observer, and

α = d

R
(4)

is the central angle subtended by an arc on the 3-shell between 
the points of the source and the observer. Therefore, as soon we 
get in our disposal a gravitational wave signal along with an elec-
tromagnetic counterpart associated with it, the size of the expand-
ing shell (3) and hence the curvature of the observable universe 
for the brane observer can be measured.

In the case of the Fermi GBM transient arrived 0.4 seconds later 
in coincidence with GW150914, one can constrain the distance ex-
cess accumulated during the propagation of the radiation probe,

�x � 105 km . (5)

Then using the estimation for the distance to the source of GWs 
given by LIGO [1]

d ∼ 1022 km 	 �x , (6)

from (2) and (4) we estimate the curvature radius of the shell-
universe:

R =
√

d3

24�x
� 1030 km . (7)

Note that this value is much larger than the radius of the observ-
able universe (Hubble sphere),

R H � 107 , (8)

where the Hubble constant is expressed as H = Ṙ/R , according to 
relation (3).

One can write down the expression for spatial curvature density 
of the universe,

�K = 1 − �M − �� = − 1

R2 H2
, (9)

where �M represents the sum of the density fractions of baryons 
and the dark matter, while �� stands for the density fraction of 
the dark energy. Using Eq. (8) one arrives to the constraint:

|�K | � 10−14 . (10)
The bound (10) is much stringent than the one deduced by Plank, 
|�K | < 0.005 [46]. Of course, the constraint obtained here to be 
considered a definitive as much as the Fermi GBM transient can 
be regarded a firm observation of a photon flash in coincidence 
with GW150914. Moreover, in light of negative results of the elec-
tromagnetic follow up campaigns of another, more resent, LIGO’s 
gravitational waves event GW151226 performed by Fermi GRB and 
LAT as well as by other instruments [13–15], the bound (10) to 
be treated as a prospective one requiring an accumulation of a 
much more sizeable sample of confirming observations. Indeed, 
provided that gravitational waves signals from compact mergers 
are not strongly dependent on the orientation of the rotation plane 
of the binary while prompt gamma rays are essentially not ex-
pected if we are not inside the jet opening angle one may not 
expect that only few gravitational waves signals followed up by 
electromagnetic observations can confirm or falsify the association 
of the Fermi GBM transient with GW150914.
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