

CP violation and mixing in charm from LHCb

Sam Harnew

Outline

- ► Charm at LHCb.
- ▶ Introduction to charm mixing and CPV.
- ▶ D-mixing in $D \to K\pi\pi\pi$ decays [preliminary result].
- ▶ $\Delta A_{\rm CP}$ in $D \to hh$ decays [new result].
- ► Conclusions.

Going to show just a couple of the most recent LHCb results - many more have already been published!

Charm at LHCb

- ► LHCb has the world's largest sample of charm decays.
- $\mathcal{O}(5 \times 10^{12}) \ c\bar{c}$ pairs produced in LHCb Run1...
- ▶ and plenty more to come in Run2.

Run1 @ 7 TeV*
$$\sigma(c\bar{c}) = 1419 \pm 12(\mathrm{stat}) \pm 116(\mathrm{syst}) \pm 65 \ (\mathrm{frag}) \ \mu \mathrm{b} \ [1]$$
 Run2 @ 13TeV* $\sigma(c\bar{c}) = 2940 \pm 3 \ (\mathrm{stat}) \pm 180(\mathrm{syst}) \pm 160(\mathrm{frag}) \ \mu \mathrm{b} \ [2]$ * $p_T < 8 \ \mathrm{GeV}, 2.0 < y < 4.5$

- ▶ High COM collision energy gives *D* mesons a large flight distance in LHCb.
- lacktriangle Tracking within $5\,\mathrm{mm}$ of the beam
 - Excellent decay-time resolution of $\sim 0.1\tau$.

[1] Nuclear Physics, Section B 871 (2013), pp. 1-20 [2] arXiv:1510.01707

Mixing in neutral mesons

Mass eigenstates are a superposition of flavour eigenstates:

$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$

 $|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$

Mixing depends on the mass and width difference:

$$x \equiv (m_2 - m_1)/\Gamma$$
$$y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$$

- ► Takes $\sim 1000~D^0$ lifetimes for a full oscillation.
- ► *D* mixing now well established with several independent observations.

Mixing in neutral mesons

Mass eigenstates are a superposition of flavour eigenstates:

$$|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$$
$$|D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$$

Mixing depends on the mass and width difference:

$$x \equiv (m_2 - m_1)/\Gamma$$
$$y \equiv (\Gamma_2 - \Gamma_1)/2\Gamma$$

- ▶ Takes $\sim 1000~D^0$ lifetimes for a full oscillation.
- ▶ D mixing now well established with several independent observations.

CPV in charm

Direct CPV: $|\mathcal{A}(D^0 \to f)| \neq |\mathcal{A}(\overline{D}^0 \to \overline{f})|$

- lacktriangle Search in time-integrated measurements of D^0 or D^\pm decays.
- ▶ Most likely in Singly Cabbibo suppressed decays such as $D^0 \to hh$ [see later]

Indirect CPV:

$$\mathcal{P}(D^0 \to \overline{D}^0) \neq \mathcal{P}(\overline{D}^0 \to D^0)$$

$$\qquad \qquad \bullet \quad \text{in interference: } \arg \left(\frac{\mathcal{A}(D^0 \to f)}{\mathcal{A}(D^0 \to \overline{D^0} \to f))} \right) \neq \arg \left(\frac{\mathcal{A}(\overline{D}^0 \to \overline{f})}{\mathcal{A}(\overline{D}^0 \to D^0 \to \overline{f})} \right)$$

Requires time-dependent analysis

No evidence for CPV in charm

Flavour Tagging

- ▶ In both mixing and CPV studies it's important to tag the D^0 flavour.
- ► Two methods at LHCb:
 - ▶ $D^*(2010)^+ \to D^0 \pi_s^+$ decays [used for both analyses presented here].
 - ► Semileptonic *B* meson decays.

D-mixing in
$$D^0 \to K^+\pi^-\pi^+\pi^-$$
 decays

Preliminary result: soon to be submitted to PRL

Formalism + Motivation

- ► Measure the time dependent ratio of WS to RS decays
- ▶ Sensitive to D-mixing (x,y), interference between CF and DCS amplitudes $(R_D^{K3\pi}, \delta_D^{K3\pi})$ and their relative magnitudes $r_D^{K3\pi}$.
- Use mixing parameters x,y as input to constrain $R_D^{K3\pi}, \delta_D^{K3\pi}$

$$\frac{{_{WS(t)}^{WS(t)}}}{{_{RS(t)}^{K3\pi}}} \approx (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (y\cos\delta_D^{K3\pi} - x\sin\delta_D^{K3\pi}) \Gamma t + \frac{x^2 + y^2}{4} (\Gamma t)^2$$

From charm mixing to CKM phase γ

- ▶ Why are we interested in the relative magnitude and interference of CF and DCS amplitudes? $(R_D^{K3\pi}, \delta_D^{K3\pi})$ and $r_D^{K3\pi}$)
- ▶ If we look at the decay $B^- \to DK^-, D \to K^+\pi^-\pi^+\pi^-$ things look remarkably similar...

- ► This mode is sensitive to the CKM phase γ , but requires prior knowledge of $R_{L}^{K3\pi}$, $\delta_{L}^{K3\pi}$ and $r_{L}^{K3\pi}$.
- ightharpoonup Constraints will be used for future determinations of γ in this decay mode.

Data sample

- ▶ Using full Run1 dataset (3 fb⁻¹).
- ▶ Huge number of RS decays reconstructed with a high purity.

$$N(RS) = 11\,383\,000 \pm 4600$$

$$N(WS) = 42500 \pm 320$$

Mixing Significance

ightharpoonup Evaluate the mixing significance by comparing the χ^2 between mixing and no mixing hypotheses:

▶ Mixing-allowed:
$$r(t) = \overbrace{(r_D^{K3\pi})^2 - r_D^{K3\pi}}^a \overbrace{R_D^{K3\pi} y'_{K3\pi}}^b t + \overbrace{\frac{1}{4}(x^2 + y^2)}^c t^2$$

• No-mixing: $r(t) = (r_D^{K3\pi})^2$

 8.2σ Mixing Significance

Mixing-constrained fit

Also perform a mixing-constrained fit where external constraints are included for mixing parameters x and y (HFAG)

$$r(t) = (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (\mathbf{y} \cos \delta_D^{K3\pi} - \mathbf{x} \sin \delta_D^{K3\pi}) t + \frac{1}{4} (\mathbf{x^2 + y^2}) t^2$$

- ▶ This allows constraints in the $(R_D^{K3\pi}, \delta_D^{K3\pi})$ plane.
 - ▶ Previous constraints from $\psi(3770) \rightarrow D_{\mathrm{CP}} + D_{\mathrm{CP}}$ at CLEO-c [1].
 - ightharpoonup Naive combination gives a factor ~ 2 improvement on constraints.

[1] Phys. Lett. B, Section B 731 (2014), pp. 197

Mixing-constrained fit

Also perform a mixing-constrained fit where external constraints are included for mixing parameters x and y (HFAG)

$$r(t) = (r_D^{K3\pi})^2 - r_D^{K3\pi} R_D^{K3\pi} (\mathbf{y} \cos \delta_D^{K3\pi} - \mathbf{x} \sin \delta_D^{K3\pi}) t + \frac{1}{4} (\mathbf{x}^2 + \mathbf{y}^2) t^2$$

- ▶ This allows constraints in the $(R_D^{K3\pi}, \delta_D^{K3\pi})$ plane.
 - ▶ Previous constraints from $\psi(3770) \rightarrow D_{CP+}D_{CP-}$ at CLEO-c [1].
 - ▶ Naive combination gives a factor ~ 2 improvement on constraints.

[1] Phys. Lett. B, Section B 731 (2014), pp. 197

Time integrated asymmetries in $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$ decays.

arXiv:1602.03160 submitted to PRI

Formalism

▶ First define $A_{CP}(f)$ for some final state f.

$$A_{\rm CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to \overline{f})} \equiv a_{\rm CP}^{\rm dir}(f) \left(1 + \frac{\langle t(f) \rangle}{\tau} y_{\rm CP}\right) + \frac{\langle t(f) \rangle}{\tau} a_{\rm CP}^{\rm ind}$$

▶ Then define $\Delta A_{\rm CP}$ between $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$.

$$\Delta A_{\rm CP} \equiv A_{\rm CP}(K^+K^-) - A_{\rm CP}(\pi^+\pi^-) \equiv \Delta a_{\rm CP}^{\rm dir} \left(1 + \frac{\overline{\langle t \rangle}}{\tau} y_{\rm CP}\right) + \frac{\Delta \langle t \rangle}{\tau} a_{\rm CP}^{\rm ind}$$

- lacktriangle Contributions from indirect CPV are either neglible ($y_{\rm CP}\sim 0.5\%$) or cancel.
- ▶ SM predicts $a_{\rm CP}^{\rm dir}(\pi^+\pi^-) \sim -a_{\rm CP}^{\rm dir}(K^+K^-)$ so direct CPV contributions are enhanced (< 10^{-2} within SM).

Production and detection aysmmetries

▶ What we actually measure is:

$$A_{\rm CP}^{\rm RAW}(f) \equiv A_{\rm CP}(f) + \overbrace{A_{\rm D}(f)}^{=0} + \overbrace{A_{\rm D}(\pi_s^+)}^{\lesssim 1\%} + \overbrace{A_{\rm P}(D^{*+})}^{\sim 1\%}$$

► Giving:

$$\Delta A_{\rm CP}^{\rm RAW} \equiv A_{\rm CP}(f) + \Delta A_{\rm D}(\pi_s^+) + \Delta A_{\rm P}(D^{*+})$$

▶ For a given kinematical region of the D^{*+} , $\Delta A_{\rm D}(\pi_s^+)$ and $\Delta A_{\rm P}(D^{*+})$ are zero.

Production and detection aysmmetries

▶ What we actually measure is:

$$A_{\text{CP}}^{\text{RAW}}(f) \equiv A_{\text{CP}}(f) + \overbrace{A_{\text{D}}(f)}^{=0} + \overbrace{A_{\text{D}}(\pi_s^+)}^{\lesssim 1\%} + \overbrace{A_{\text{P}}(D^{*+})}^{\sim 1\%}$$

► Giving:

$$\Delta A_{\rm CP}^{\rm RAW} \equiv A_{\rm CP}(f) + \Delta A_{\rm D}(\pi_s^+) + \Delta A_{\rm P}(D^{*+})$$

▶ For a given kinematical region of the D^{*+} , $\Delta A_{\rm D}(\pi_s^+)$ and $\Delta A_{\rm P}(D^{*+})$ are zero.

Result

$$\Delta A_{\rm CP} = (-0.10 \pm 0.08({\rm stat}) \pm 0.03({\rm sys})\%)$$

▶ Most precise determination of ΔA_{CP} , and compatible with muon-tagged result.

No evidence for direct or indirect CPV in charm.

Conclusions

- ▶ LHCb has the world's largest sample of charm decays.
- ▶ Large number of publications, too many to cover here...
- ▶ First observation of *D*-mixing in $D \to K^+\pi^-\pi^+\pi^-$ decays.
 - Also provides constraints on charm interference parameters that are useful input for CKM phase γ determination.
- ► Most precise determination of a time-integrated CP asymmetry in charm.
 - ► Sadly, no hints of CPV.
- ► Run 2 of the LHC has started many new and updated results to come soon!

Backup

Detection asymmetries.

- ► Trajectories of soft pion are bent in different directions for +ve and -ve.
- At LHCb it is possible to flip the magnet polarity, cancelling out such asymmetries.
 - but we do not rely on this cancellation remove areas of large asymmetry.

