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Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach.
However this dynamical behavior and its underlying mechanism remain unknown. This effect is highly
relevant for the LHC as an unexpected closest tune approach varying with amplitude modifies the
frequency content of the beam and, hence, the Landau damping. Furthermore the single particle stability
would also be affected by this effect as it would modify how particles with varying amplitudes approach
and cross resonances. We present analytic derivations that lead to a mechanism generating an amplitude
dependent closest tune approach.
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I. INTRODUCTION

The closest tune approach, represented as ΔQmin, is the
minimum distance between the fractional parts of the
transverse tunes that can be achieved when trying to
bring them together in presence of linear transverse
coupling [1]. Colliders traditionally operate very close to
the diagonal (Qx ≈Qy) where large resonance-free regions
can accommodate the tune spread generated by beam-beam
interactions. Figure 1 shows an illustration for the LHC.
A hypotheticalΔQmin ¼ 8 × 10−3 would drastically reduce
the available resonance-free space. Significant effort is
invested in controlling the linear and the chromatic cou-
pling in the LHC [2,3].
Compelling experimental observations in the LHC [5]

suggested the existence of an amplitude dependent closest
tune approach. These experimental observations have been
further complemented with computer simulations of the
LHC in [6] identifying the key ingredients to reproduce the
observations, namely linear coupling and normal octupole
fields. Furthermore, [6] also shows the possibility to
penetrate the linear coupling stopband for increasing
amplitudes thanks to octupoles. This implies a reduction
of the closest tune approach with amplitude. The under-
lying mechanisms generating amplitude dependent closest
tune approach are explored in this paper for the first time.
In [7] emittance exchange during resonance crossing is

studied in the presence of space charge. This phenomena
has great similarities with emittance exchange driven by
linear coupling [8]. An intensity dependent closest tune
approach is proposed and evaluated through multiparticle
simulations in [7]. This could be interpreted as the result of
the amplitude dependent closest tune approach generated

by the nonlinear space charge fields acting on the ensemble
of particles.
The influence of linear difference coupling resonance in

the long-term particle stability has been thoroughly studied
[9–12]. The mechanisms are twofold, linear coupling
directly modifies the excitation of lattice resonances but
it also affects how resonances are approached and crossed
via the transverse emittance exchange and the closest tune
approach. For example, in [13,14] a skew octupolar
Hamiltonian term (h1012), which can be generated via
linear coupling and octupoles, is identified as particularly
relevant for the long-term particle stability. An amplitude
dependent closest tune approach would further contribute
to the previous mechanisms.
Landau damping is generated in the LHC via strong

octupoles [15] and it is fundamental to suppress instabilities
from collective effects. It has been observed that linear
coupling can destabilize the beam in HERA [16] and
possibly also in LHC [17,18]. An amplitude dependent
closest tune approach would modify the frequency content
of the beam altering the effective Landau damping. The
impact of this mechanism is being investigated in [18].
The structure of the paper is as follows. Section II

introduces the linear coupling theory and the nomenclature.
Section III illustrates that an amplitude detuning closest
tune approach is not generated in a trivial manner.
Section IV identifies a mechanism for the appearance of
an amplitude dependent closest tune approach based on the
interplay between linear coupling and cross amplitude
detuning (h1111). Other mechanisms contributing to the
amplitude dependent closest tune approach are not dis-
carded. This is illustrated in Sec. V by exploring the
interplay between linear coupling and the Hamiltonian
term h2002. The complexity of the equations avoids the
explicit identification or refutation of any amplitude de-
pendent closest tune approach. In the last Sec. VI LHC
simulation results under realistic conditions with linear
coupling and octupoles show qualitative agreement with

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 071003 (2016)

2469-9888=16=19(7)=071003(7) 071003-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071003
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071003
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071003
http://dx.doi.org/10.1103/PhysRevAccelBeams.19.071003
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


the predictions from Sec. IV, which assumed the interplay
between linear coupling and the h1111 amplitude detuning
term as the main mechanism for amplitude dependent
closest tune approach.

II. LINEAR COUPLING THEORY

In [1] the Hamiltonian of the linear coupled motion is
given as

H ¼ 1

2
½K1x2 þ K2z2 þ p2

x þ p2
z � þ Kxz ð1Þ

including only skew quadrupoles as perturbing
Hamiltonian, H1 ¼ Kxz. x, z, px, pz are the canonical
variables and K1;2 represent the linear uncoupled gradients.
The general solution of the unperturbed Hamiltonian is
given by

x ¼ a1uðθÞeiQHθ þ ā1ūðθÞe−iQHθ;

z ¼ a2vðθÞeiQVθ þ ā2v̄ðθÞe−iQVθ; ð2Þ

where u, v and ū, v̄ are the Floquet functions and their
complex conjugates, respectively. a1, a2, ā1, ā2 are the
constants of motion. Always following [1] the equations of
motion in presence of the perturbing Hamiltonian are
derived using the former constants of motion as new
variables,

da1
dθ

¼ i
∂U
∂ā1

dā1
dθ

¼ −i
∂U
∂a1

da2
dθ

¼ i
∂U
∂ā2

dā2
dθ

¼ −i
∂U
∂a2 ð3Þ

where U is the perturbing Hamiltonian as function of the
new variables and admits the following Fourier expansion,

U ¼
X
jklm

X∞
q¼−∞

hjklmqa
j
1ā

k
1a

l
2ā

m
2 e

i½ðj−kÞQHþðl−mÞQVþq�θ; ð4Þ

where

hjklmq ¼
1

2π

Z
2π

0

hjklme−iqθdθ; ð5Þ

and hjklm are the Hamiltonian terms.
Considering only the slowly varying U term close to the

difference coupling resonance (QH −QV ¼ p) the equa-
tions of motion are approximated by

da1
dθ

¼ iκ̄a2e−iΔθ

da2
dθ

¼ iκa1eiΔθ ð6Þ

with κ ¼ h1001−p and Δ ¼ QH −QV − p. The general
solution of these coupled differential equations follows,

a1 ¼ κ̄

�
Aþ
wþ

eiwþθ þ A−

w−
eiw−θ

�
;

a2 ¼ ðAþeiwþθ þ A−eiw−θÞeiθΔ; ð7Þ

where A� are complex constants of motion and w� are the
frequencies given by

w� ¼ −
Δ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ
2

�
2

þ jκj2
s

: ð8Þ

2jκj is therefore the minimum separation between the two
frequencies, i.e. the closest tune approach: ΔQmin ¼ 2jκj.
Some relevant quantities follow,

a1ā1 ¼ jκj2
�jAþj2

w2þ
þ jA−j2

w2
−

þ 2
jAþ∥A−j
wþw−

cos½ðwþ − w−Þθ þ ϕ�
�
;

a2ā2 ¼ jAþj2 þ jA−j2 þ 2jAþjjA−j cos½ðwþ − w−Þθ þ ϕ�;

a1ā2 ¼ κ̄e−iΔθ
�jAþj2
wþ

þ jA−j2
w−

þ AþA−

wþ
eiðwþ−w−Þθ

þ AþA−

w−
e−iðwþ−w−Þθ

�
ð9Þ

The reader can check that the quantities

C ¼ a1ā1 þ a2ā2 ð10Þ

Q ¼ ℜfa1ā2eiΔθg −
Δ
4κ

ða2ā2 − a1ā1Þ ð11Þ
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FIG. 1. LHC beam-beam tune footprint up to 6 beam sigma (in
blue). Resonance lines up to 10th order are shown [4]. A
hypothetical ΔQmin ¼ 8 × 10−3 stopband is drawn in light red
to illustrate the reduction of the available resonance-free area.
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are invariants of the motion. Furthermore, we define F as

F ¼ a2a2 − a1a1 ≡ C − 2a1a1; ð12Þ

which, for Δ ¼ 0, follows a second order differential
equation given by

d2F
dθ2

¼ −4κ2F: ð13Þ

This tight connection between F and the coupling coef-
ficient κ or, equivalently, the closest tune approach ΔQmin,
is exploited in the following.

III. A FIRST EXPLORATION

Finding mechanisms that truly generate an amplitude
dependent closest tune approach is not trivial. In this
section we try to find a Hamiltonian that would lead to
the following equations of motion

da1
dθ

¼ iκðCÞa2e−iΔθ

da2
dθ

¼ iκðCÞa1eiΔθ ð14Þ

which are identical to Eqs. (6) but with an amplitude
dependent κ via the only action-like invariant of the motion
C. This change is transparent to the differential equations
and yields the same solutions as in Eqs. (7) and (8) but
keeping the C dependency in κ, implying a pure amplitude
dependent closest tune approach. Now it only remains to
identify which kind of Hamiltonian terms could produce
such differential equations with κðCÞ. From Eqs. (3),

i
∂2U

∂ā1∂ā2 ¼
∂
∂ā2

�
da1
dθ

�
¼ ∂

∂ā1
�
da2
dθ

�
ð15Þ

and using Eqs. (14) yields,

∂κðCÞ
∂a2 a2e−iΔθ ¼

∂κðCÞ
∂ā1 a1eiΔθ: ð16Þ

This condition imposes severe constraints in the possible
κðCÞ. From Eq. (10)

∂C
∂aj ¼ aj; with j ∈ f1; 2g; ð17Þ

which turns Eq. (16) into

∂κðCÞ
∂C a22e

−iΔθ ¼ ∂κðCÞ
∂C a21e

iΔθ ð18Þ

taking the absolute value yields,

				 ∂κðCÞ∂C
				ðja2j2 − ja1j2Þ ¼ 0; ð19Þ

and as a1 and a2 are independent in general, this leaves as
the only possible solution

∂κ
∂C ¼ 0 ð20Þ

which implies the exact opposite of our initial quest.
Therefore there is no Hamiltonian that leads to Eqs. (14)
with κ being a function of C, which would have automati-
cally led to an amplitude dependent closest tune approach.
Of course, this does not exclude other mechanisms for
the appearance of an amplitude dependent closest tune
approach, such as the one identified in the following
section.

IV. AMPLITUDE DEPENDENT CLOSEST TUNE
APPROACH VIA LINEAR COUPLING AND h1111

The Hamiltonian term h1111 generates cross amplitude
detuning. The differential equations in presence of linear
coupling and this Hamiltonian term follow (h1 ¼ h1111),

da1
dθ

¼ iκ̄a2e−iΔθ þ ih1a1a2a2

da2
dθ

¼ iκa1eiΔθ þ ih1a2a1a1: ð21Þ

We assume κ to be a real positive number without any loss
of generality as its phase can be evenly split between a2 and
a1 in Eqs. (21). In the absence of coupling a1a1 corre-
sponds to the action invariant of the motion Jx. According
to Eqs. (21) its derivative versus θ is expressed as

dða1a1Þ
dθ

¼ −2ℑfκa2a1e−iΔθg
dða2a2Þ

dθ
¼ −2ℑfκa1a2eiΔθg; ð22Þ

from these equations it can be seen that C ¼ a1a1 þ a2a2 is
a constant of the motion. Defining

F ¼ C − 2a1a1 ¼ a2a2 − a1a1 ð23Þ

S ¼ a1a2eiΔθ ð24Þ

we obtain

dF
dθ

¼ −4κℑfSg ð25Þ

dS
dθ

¼ iF½κ þ h1S� þ ΔiS: ð26Þ
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Inspecting the real and imaginary parts of Eq. (26) the
following expression is obtained,

dðℜfSgÞ
dθ

¼ −ℑfSgðFh1 þ ΔÞ ¼ 1

4κ

dF
dθ

ðFh1 þ ΔÞ: ð27Þ

This equation can actually be integrated, resulting in

ℜfSg ¼ h1
8κ

F2 þ Δ
4κ

F þQ; ð28Þ

where Q is another constant of the motion yielding to the
invariant

Q ¼ ℜfSg − h1
8κ

F2 −
Δ
4κ

F: ð29Þ

Note that these equations require jκj > 0. For jκj ¼ 0 the
motion is simply an amplitude dependent betatron oscil-
lation. Computing the second derivative of a1a1,

d2ða1a1Þ
dθ2

¼ 2κ2F þ 2κðFh1 þ ΔÞℜfSg; ð30Þ

and therefore using F ¼ C − 2a1a1 and Eq. (28)

d2F
dθ2

¼ −F
�
4κ2 þ h21

2
F2 þ 3Δh1

2
F þ 4h1κQþ Δ2

�

− 4κΔQ; ð31Þ

For h1 ¼ 0 the linear motion is retrieved. To find the closest
tune approach we are interested in Δ ¼ 0,

d2F
dθ2

¼ −F
�
4κ2 þ h21

2
F2 þ 4h1κQ

�
: ð32Þ

This equation can be transformed into the cnðx; kÞ Jacobi
elliptic differential equation, however a perturbative
approach is enough to illustrate the appearance of the
amplitude dependent closest tune approach. By assuming
F ¼ A cosð2κ̂θÞ þ B cosð6κ̂θÞ with jBj ≪ jAj and neglect-
ing terms of order above h21 we obtain a new amplitude
dependent κ̂ and B given by

κ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ h1κQþ 3h21

32
A2

r
ð33Þ

B ¼ −
h21A

3

256κ̂2
: ð34Þ

Note that the assumption jBj ≪ jAj implies 16κ̂ ≫ h1A.
The choice of F implies that the initial a1ā2 is real and
A ¼ a2a2 − a1a1, therefore

κ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ h1κa1a2 −

h21
32

ða2a2 − a1a1Þ2
r

: ð35Þ

This equation shows the appearance of a nonlinear closest
tune approach when both κ and h1 are different than zero.
An important feature of this equation is that the closest
tune approach can increase or decrease with amplitude
depending on the phase space initial conditions and the
sign of the Hamiltonian terms. Idealized simulations
containing only κ and h1 for LHC parameters have been
used to verify the above findings and equations. However,
realistic simulations of the LHC, with all nonlinear
components, are used in Sec. VI to qualitatively bench-
mark the predictions of the theory in a realistic configu-
ration. A more quantitative comparison would require
extending the theory to more octupolar Hamiltonian
terms, which is considerably harder as shown in the next
section.

V. DOES h2002 GENERATE AMPLITUDE
DEPENDENT CLOSEST TUNE APPROACH?

The Hamiltonian term h2002 is investigated in this
section. The differential equations in presence of linear
coupling and this Hamiltonian term follow (h2 ¼ h2002),

da1
dθ

¼ iκ̄a2e−iΔθ þ ih2a1a22e
−i2Δθ

da2
dθ

¼ iκa1eiΔθ þ ih2a21a2e
i2Δθ: ð36Þ

After some algebra similar to the previous section we
find

dF
dθ

¼ −4ℑfSðκ þ h2SÞg ð37Þ

dS
dθ

¼ iF½κ̄ þ h2S̄� þ iΔS: ð38Þ

For simplicity we assume that both h2 and κ are real
numbers. Separating S into its real and imaginary parts
S ¼ RS þ iIS Eq. (38) is rewritten as

dF
dθ

¼ −4ISðκ þ 2h2RSÞ ð39Þ

dIS
dθ

¼ F½κ þ h2RS� þ ΔRS ð40Þ

dRS

dθ
¼ ISðh2F − ΔÞ: ð41Þ

The first and the third equations can be combined to reach
the following integrable equation,
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dF
dθ

ðh2F − ΔÞ ¼ −4
dRS

dθ
ðκ þ 2h2RSÞ; ð42Þ

resulting, after integration, in

1

2
h2F2 − FΔþ X ¼ −4ðκRS þ h2R2

SÞ; ð43Þ

where X is a constant of the motion. This equation allows
us to express F as a function of RS. Taking the second
derivative of RS in Eqs. (38) and operating an equation
including only RS is obtained,

d2RS

dθ2
¼ ðκF þ RSðh2F þ ΔÞÞðh2F − ΔÞ

þ dRS

dθ
h2

h2F − Δ
dF
dθ

: ð44Þ

This equation is highly complicated and no amplitude
dependent closest tune approach can be easily identified,
contrary to the previous case with h1111. Nevertheless it
cannot be discarded that h2002 generates amplitude depen-
dent closest tune approach.

VI. OBSERVATIONS FROM SIMULATIONS

Simulations are presented in this section supporting the
existence of an amplitude dependent closest tune approach
and in qualitative agreement with predictions from Sec. IV.
A model of the LHC beam 2 at injection is tracked using
MADX and PTC. The LHC is equipped with 2 families of
Landau damping octupoles (MOF and MOD) and their
nominal settings corresponding to the first part of 2012 is
−3 m−4. The vertical tune is matched to values ranging
from 59.28 to 59.30 and for each of these settings kicks
between 0.1 mm to 4.5 mmwere performed (at βx ¼ 175 m
and βy ¼ 179 m). The actions are reconstructed using
the amplitude and the beta functions for each beam position
monitor (BPM), as described in [5].
Using the nominal model without any skew quadrupolar

components the detuning behaves linearly, as seen in Fig. 2.
We observe that none of the points are on the diagonal
which could indicate a small closest tune approach without
a clear trend with amplitude.
Coupling is introduced using the skew quadrupoles

placed in the LHC arcs to generate a closest tune approach
of 0.015. Figure 3 shows the tunes for different initial tune
splits demonstrating that there is a mechanism pushing the
tunes away from each other already far away from the linear
closest tune approach (light red area). This is accompanied
with an enhanced exchange of transverse emittances
compared to the expectation from linear coupling, as shown
in [5].
Figure 4 shows the situation where the focusing octu-

poles (MOF) are powered with the opposite strength
compared to the defocusing octupoles (MOD) but with

same absolute value as in the previous case. This configu-
ration causes the h1111 Hamiltonian term to be very close to
zero. In this case we observe that tunes reach the linear
coupling stopband independently of the amplitude. This is
consistent with the fact that the amplitude dependent
closest tune approach requires both κ and h1111 to be
different than zero. This configuration with opposite MOF
and MOD polarities might be interesting for the LHC
operation to feature Landau damping but with fully sup-
pressed amplitude dependent closest tune approach even in
the presence of linear coupling.
The same tracking procedure is repeated for kicks in the

horizontal plane and nominal octupole powering. The
horizontal tunes are changed but the linear coupling and

FIG. 2. Tunes from particle tracking for different initial tunes
and for increasing amplitudes of the vertical kicks. The color code
represents the sum of the horizontal and vertical actions. The
black diagonal line indicates the resonance Qx ¼ Qy.

FIG. 3. Tunes from tracking with linear closest tune approach
of 0.015 and nominal octupoles. The vertical kicks ranged from
0.5 mm to 4.5 mm while the horizontal were kept at 0.5 mm. The
light red area delimits the linear closest tune approach of 0.015.
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vertical tune are kept the same and the magnitude of the
horizontal kicks were increased, see Fig. 5. It is a
remarkable observation that for some of the kicks, starting
close to the linear closest tune approach, the particles
penetrate the stopband. This means that the tunes can
approach each other closer than what is possible in linear
coupling theory at larger amplitudes.
To assess the relevance of the h2002 Hamiltonian term,

which as described in Sec. V did not feature an easily
identified amplitude dependence of the closest tune

approach, tracking simulations of the nominal LHC optics
(Qx ¼ 64.28 and Qy ¼ 59.31) were compared with results
for an optical configuration with the same integer tunes in
the horizontal and vertical planes (Qx ¼ 62.28 and
Qy ¼ 62.31). The linear ΔQmin was held constant for
the two configurations with jC−j ¼ 0.01, and octupole
settings in both cases were set to −3 m−4. In this way the
average value of h2002 was suppressed by a factor ∼2
while retaining the amplitude detuning coefficients (and
hence h1111) close to their nominal values. Table I shows a
comparison of h1111 and h2002 for the two optics configu-
rations. Results from tracking simulations of the two
configurations are shown in Fig. 6, where as in the previous
figures the applied vertical kick has been increased incre-
mentally. It is seen that in spite of a substantial reduction of
hjh2002ji relative to h1111 the closest tune approach has not
been substantially affected, implying that the h2002 plays a
minimal role in the observed behavior.
Similar tracking simulations, performed with a variety

of different nonlinear elements, were used to exclude
alternative sources of amplitude dependent closest tune
approach. In particular skew octupoles on their own did not
generate any similar behavior. An optics with nominal

FIG. 4. Tunes from tracking with linear closest tune approach
of 0.015 and h1111 ¼ 0 by powering MOF with opposite polarity
than MOD. The vertical kicks range from 0.5 mm to 4.5 mm
while the horizontal were kept at 0.5 mm. The light red area
delimits the linear coupling stopband of 0.015.

FIG. 5. Tunes from tracking with linear closest tune approach
of 0.015 and nominal octupoles. The kicks in the horizontal plane
ranged from 0.5 mm to 4.5 mm while the kicks in the vertical
plane were kept at 0.5 mm. The light red area indicates the linear
stopband of 0.015 for all cases. The two black lines show the
resonances Qx ¼ Qy and Qy ¼ 1=3 respectively.
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0.31

0.28 0.29 0.30 0.31

Q
y

Qx

|C-|=0.01

Qx - Qy = 0

Qx=64.28 / Qy=59.31

Qx=62.28 / Qy=62.31

FIG. 6. Comparison of tracking simulations with incremental
vertical kicks, for optics configurations with Qx ¼ 64.28, Qy ¼
59.31 and Qx ¼ 62.28, Qy ¼ 62.31. In both cases jC−j ¼ 0.01
and Landau octupoles are applied with a strength of −3 m−4.

TABLE I. Detuning coefficients, jh1111j and hjh2002ji for the
optics configurations studied, where hi represents the average
value around the ring. Detuning terms and Hamiltonian coef-
ficients were determined using PTC.

Qx=Qy

∂Qy=∂ϵy
[103 m−1]

∂Qx=∂ϵy
[103 m−1]

jh1111j
[103 m−1]

hjh2002ji
[103 m−1]

64.28=59.31 −22.8 11.8 18.5 5.8
62.28=62.31 −24.0 11.6 18.2 3.1

TOMÁS, PERSSON, and MACLEAN PHYS. REV. ACCEL. BEAMS 19, 071003 (2016)

071003-6



octupoles, zero linear coupling, and unsplit tunes also failed
to produce an amplitude dependent closest tune approach.

VII. CONCLUSION

Motivated by LHC experimental observations and sim-
ulations we have found analytically a mechanism to
generate an amplitude dependent closest tune approach
based on the interplay between linear coupling and the
cross term amplitude detuning h1111 given by

ΔQmin ¼ 2jκ̂j

≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ h1111κa1a2 −

h21111
32

ða2a2 − a1a1Þ2
r

;

ð45Þ

with jκj > 0. This equation predicts that the amplitude
dependence of the closest tune approach can be positive or
negative depending on the phase space coordinates a1;2, the
linear coupling κ and the octupolar term h1111. Simulations
have confirmed that both linear coupling and h1111 are
fundamental to generate a sizable amplitude dependent
closest tune approach, and that this can be both positive and
negative depending on the excitation plane. The linear
stopband has been penetrated in simulations with octupoles
at large oscillation amplitudes. A reduction of the
Hamiltonian term h2002 by about a factor 2 while keeping
constant all detuning terms has not shown any significant
change in the amplitude dependent closest tune approach.
A particularly interesting case for the LHC consists in
canceling the h1111 term while keeping a large Landau
damping by using opposite strength in one of the LHC
octupole families. In this configuration, as expected, there
is no amplitude dependent closest tune approach.
The new concept of amplitude dependent closest tune

approach can be described by the mechanism outlined in
this paper. A complete description of amplitude dependent
behavior in the presence of linear coupling will require an
extension of the theory to include additional octupolar
Hamiltonian terms.
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