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Summary

Recent observations in the LHC point to the existence of an amplitude dependent closest tune approach. However
this dynamical behavior and its underlying mechanism remain unknown. This effect is highly relevant for the
LHC as an unexpectedly closest tune approach varying with amplitude modifies the frequency content of the
beam and, hence, the Landau damping. Furthermore the single particle stability would also be affected by this
effect as it would modify how particles with varying amplitudes approach and cross resonances. We present analytic
derivations that lead to a mechanism generating an amplitude dependent closest tune approach.

1 Introduction

Compelling experimental observations in the LHC [1] suggested the existence of an amplitude dependent
closest tune approach. These have been further complemented with computer simulations of the LHC
in [2] identifying the key ingredients to reproduce the observations, namely linear coupling and normal
octupole fields. Furthermore, [2] also shows the possibility to penetrate the linear coupling stopband for
increasing amplitudes thanks to octupoles. This implies a reduction of the closest tune approach with
amplitude.

In [3] emittance exchange during resonance crossing is studied in presence of space charge. This
phenomena has great similarities with emittance exchange driven by linear coupling [4]. An intensity
dependent closest tune approach is proposed and evaluated through multiparticle simulations in [3]. This
could be interpreted as the result of the amplitude dependent closest tune approach generated by the
non-linear space charge fields acting on the ensemble of particles.

The influence of linear difference coupling resonance in the long-term particle stability has been
thoroughly studied [5, 6, 7, 8]. The mechanisms are twofold, linear coupling directly modifies the
excitation of lattice resonances but it also affects how resonances are approached and crossed via the
transverse emittance exchange and the closest tune approach. For example, in [9, 10] a skew octupolar
Hamiltonian term (h1012), which can be generated via linear coupling and octupoles, is identified as
particularly relevant for the long-term particle stability. An amplitude dependent closest tune approach
would further contribute to the previous mechanisms.

Landau damping is generated in the LHC via strong octupoles [11] and is fundamental to suppress
instabilities from collective effects. It has been observed that linear coupling can destabilize the beam in
HERA [12] and possibly also in LHC [13]. An amplitude dependent closest tune approach would modify
the frequency content of the beam altering the effective Landau damping.

The structure of the paper is as follows. Section 2 introduces the linear coupling theory and the
nomenclature. Section 3 illustrates that an amplitude detuning closest tune approach is not generated in
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a trivial manner. Section 4 identifies a mechanism for the appearance of an amplitude dependent closest
tune approach based on the interplay between linear coupling and cross amplitude detuning (h1111). Sec-
tion 5 explores the interplay between linear coupling and the Hamiltonian term h2002 but the complexity
of the equations avoids the identification of any amplitude dependent closest tune approach. In the last
Section 6 LHC simulation results with linear coupling and octupoles show qualitative agreement with
the predictions from Section 4, this is, assuming the interplay between linear coupling and the h1111

amplitude detuning term as the main mechanism for amplitude dependent closest tune approach.

2 Linear coupling theory

In [14] the Hamiltonian of the linear coupled motion is given as

H =
1
2
[
K1x

2 +K2z
2 + p2

x + p2
z

]
+Kxz (1)

including only skew quadrupoles as perturbing Hamiltonian, H1 = Kxz. x, z, px, pz are the canonical
variables and K1,2 represent the linear uncoupled gradients. The general solution of the unperturbed
Hamiltonian is given by

x = a1u(θ)eiQHθ + a1u(θ)e−iQHθ ,

z = a2v(θ)eiQV θ + a2v(θ)e−iQV θ , (2)

where u, v and u, v are the Floquet functions and their complex conjugates, respectively. a1, a2, a1, a2

are the constants of motion. Always following [14] the equations of motion in presence of the perturbing
Hamiltonian are derived using the former constants of motion as new variables,

da1

dθ
= i

∂U

∂a1

da1

dθ
= −i ∂U

∂a1
(3)

da2

dθ
= i

∂U

∂a2

da2

dθ
= −i ∂U

∂a2

where U is the perturbing Hamiltonian as function of the new variables and admits the following Fourier
expansion,

U =
∑
jklm

∞∑
q=−∞

hjklmqa
j
1a
k
1a
l
2a
m
2 e

i[(j−k)QH+(l−m)QV +q]θ , (4)

where

hjklmq =
1

2π

∫ 2π

0
hjklme

−iqθ dθ , (5)

and hjklm are the Hamiltonian terms.
Considering only the slowly varying U term close to the difference coupling resonance (QH−QV = p)

the equations of motion are approximated by

da1

dθ
= iκa2e

−i∆θ

da2

dθ
= iκa1e

i∆θ (6)
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with κ = h1001−p and ∆ = QH − QV − p. The general solution of these coupled differential equations
follows,

a1 = κ

(
A+

w+
eiw+θ +

A−
w−

eiw−θ
)
,

a2 =
(
A+e

iw+θ +A−e
iw−θ

)
eiθ∆ , (7)

where A± are complex constants of motion and w± are the frequencies given by

w± = −∆
2
±

√(
∆
2

)2

+ |κ|2 . (8)

2|κ| is therefore the minimum separation between the two frequencies, i.e. the closest tune approach.
Some relevant quantities follow,

a1a1 = |κ|2
[
|A+|2

w2
+

+
|A−|2

w2
−

+ 2
|A+||A−|
w+w−

cos((w+ − w−)θ + φ)
]
,

a2a2 = |A+|2 + |A−|2 + 2|A+||A−| cos((w+ − w−)θ + φ) , (9)

a1a2 = κe−i∆θ
[
|A+|2

w+
+
|A−|2

w−
+
A+A−
w+

ei(w+−w−)θ +
A+A−
w−

e−i(w+−w−)θ

]
The reader can check that the quantities

C = a1a1 + a2a2 (10)

Q = <
{
a1a2e

i∆θ
}
− ∆

4κ
(a2a2 − a1a1) (11)

are invariants of the motion.

3 A first exploration

Finding mechanisms that truly generate an amplitude dependent closest tune approach is not trivial. In
this section we try to find a Hamiltonian that would lead to the following equations of motion

da1

dθ
= iκ(C)a2e

−i∆θ

da2

dθ
= iκ(C)a1e

i∆θ (12)

which are identical to Eqs. (6) but with an amplitude dependent κ via the only action-like invariant of
the motion C. This change is transparent to the differential equations and yields the same solutions as
in Eqs. (7) and (8) but keeping the C dependency in κ, implying a pure amplitude dependent closest
tune approach. Now it only remains to identify which kind of Hamiltonian terms could produce such
differential equations with κ(C). From Eqs. (3),

i
∂2U

∂a1∂a2
=

∂

∂a2

(
da1

dθ

)
=

∂

∂a1

(
da2

dθ

)
. (13)

and using Eqs. (12) yields,

∂κ(C)
∂a2

a2e
−i∆θ =

∂κ(C)
∂a1

a1e
i∆θ . (14)
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This condition imposes severe constraints in the possible κ(C). From Eq. (10)

∂C
∂aj

= aj ,withj ∈ {1, 2} , (15)

which turns Eq. (14) into

∂κ(C)
∂C

a2
2e
−i∆θ =

∂κ(C)
∂C

a2
1e
i∆θ (16)

taking the absolute value yields, ∣∣∣∣∂κ(C)
∂C

∣∣∣∣ (|a2|2 − |a1|2
)

= 0 , (17)

and as a1 and a2 are independent in general, this leaves as only possible solution

∂κ

∂C
= 0 (18)

which implies the exact opposite of our initial quest. Therefore there is no Hamiltonian that leads to
Eqs. (12) with κ being a function of C, which would have automatically led to an amplitude dependent
closest tune approach. Of course, this does not exclude other mechanisms for the appearance of an
amplitude dependent closest tune approach, such as the one identified in the following section.

4 Amplitude dependent closest tune approach via linear coupling and
h1111

The Hamiltonian term h1111 generates cross amplitude detuning. The differential equations in presence
of linear coupling and this Hamiltonian term follow (h1 = h1111),

da1

dθ
= iκa2e

−i∆θ + ih1a1a2a2

da2

dθ
= iκa1e

i∆θ + ih1a2a1a1 . (19)

We assume κ to be a real positive number without any loss of generality as its phase can be evenly split
between a2 and a1 in Eqs. (19). In the absence of coupling a1a1 corresponds to the action invariant of
the motion Jx. According to Eqs. (19) its derivative versus θ is expressed as

d(a1a1)
dθ

= −2=
{
κa2a1e

−i∆θ
}

d(a2a2)
dθ

= −2=
{
κa1a2e

i∆θ
}
, (20)

from these equations it can be seen that C = a1a1 + a2a2 is a constant of the motion. Defining

F = C − 2a1a1 = a2a2 − a1a1 (21)
S = a1a2e

i∆θ (22)
(23)

we obtain

dF
dθ

= −4κ={S} (24)

dS
dθ

= iF [κ+ h1S] + ∆iS . (25)
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Inspecting the real and imaginary parts of Eq. (25) the following expression is obtained,

d(<{S})
dθ

= −={S}(Fh1 + ∆) =
1

4κ
dF
dθ

(Fh1 + ∆) . (26)

This equation can actually be integrated, resulting in

<{S} =
h1

8κ
F 2 +

∆
4κ
F +Q , (27)

where Q is another constant of the motion yielding to the invariant

Q = <{S} − h1

8κ
F 2 − ∆

4κ
F . (28)

Note that these equations require |κ| > 0. For |κ| = 0 the motion is simply an amplitude dependent
betatron oscillation. Computing the second derivative of a1a1,

d2(a1a1)
dθ2

= 2κ2F + 2κ(Fh1 + ∆)<{S} , (29)

and therefore using F = C − 2a1a1 and Eq. (27)

d2 F

dθ2
= −F

(
4κ2 +

h2
1

2
F 2 +

3∆h1

2
F + 4h1κQ+ ∆2

)
− 4κ∆Q , (30)

For h1 = 0 the linear motion is retrieved. To find the closest tune approach we are interested in ∆ = 0,

d2 F

dθ2
= −F

(
4κ2 +

h2
1

2
F 2 + 4h1κQ

)
. (31)

This equation can be transformed into the cn(x, k) Jacobi elliptic differential equation, however a pertur-
bative approach is enough to illustrate the appearance of the amplitude dependent closest tune approach.
By assuming F = A cos(2κ̂θ) +B cos(6κ̂θ), and neglecting terms of order above h2

1 we obtain a new am-
plitude dependent κ̂ given by

κ̂ =

√
κ2 + h1κQ+

3h2
1

32
A2 (32)

The choice of F implies that the initial a1a2 is real and A = a2a2 − a1a1, therefore

κ̂ =

√
κ2 + h1κa1a2 −

h2
1

32
(a2a2 − a1a1)2 (33)

This equation shows the appearance of a non-linear closest tune approach when both κ and h1 are
different than zero. An important feature of this equation is that the closest tune approach can increase or
decrease with amplitude depending on the phase space initial conditions and the sign of the Hamiltonian
terms.

5 Does h2002 generate amplitude dependent closest tune approach?

The Hamiltonian term h2002 is investigated in this section. The differential equations in presence of
linear coupling and this Hamiltonian term follow (h2 = h2002),

da1

dθ
= iκa2e

−i∆θ + ih2a1a
2
2e
−i2∆θ

da2

dθ
= iκa1e

i∆θ + ih2a
2
1a2e

i2∆θ . (34)
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After some algebra similar to previous section we find

dF
dθ

= −4=
{
S(κ+ h2S)

}
(35)

dS
dθ

= iF [κ+ h2S] + i∆S (36)

For simplicity we assume that both h2 and κ are real numbers. Separating S into its real and
imaginary parts S = RS + iIS Eq. (36) is rewritten as

dF
dθ

= −4IS(κ+ 2h2RS) (37)

dIS
dθ

= F [κ+ h2RS ] + ∆RS (38)

dRS
dθ

= IS(h2F −∆) (39)

The first and the third equations can be combined to reach the following integrable equation,

dF
dθ

(h2F −∆) = −4
dRS
dθ

(κ+ 2h2RS) , (40)

resulting, after integration, in

1
2
h2F

2 − F∆ + X = −4(κRS + h2R
2
S) , (41)

where X is a constant of the motion. This equation allows to express F as a function of RS . Taking the
second derivative of RS in Eqs. (36) and operating an equation including only RS is obtained,

d2RS
dθ2

= (κF +RS(h2F + ∆))(h2F −∆) +
dRS
dθ

h2

h2F −∆
dF
dθ

(42)

This equation is highly complicated and no amplitude dependent closest tune approach can be easily
identified, contrary to the previous case with h1111. Nevertheless it cannot be discarded that h2002

generates amplitude dependent closest tune approach.

6 Observations from Simulations

Simulations are presented in this section supporting the existence of an amplitude dependent closest tune
approach and in qualitative agreement with predictions from Section 4. A model of the LHC beam 2 at
injection is tracked using MADX and PTC. The LHC is equipped with 2 families of Landau damping
octupoles (MOF and MOD) and their nominal settings corresponding to the first part of 2012 is -3 m−4.
The vertical tune is matched to values ranging from 59.28 to 59.30 and for each of these settings kicks
between 0.1 mm to 4.5 mm were performed (at βx=175 m and βy=179 m). The actions are reconstructed
using the amplitude and the beta functions for each BPM, as described in [1].

Using the nominal model without any skew quadrupolar components the detuning behaves linearly,
as seen in figure 1. We observe that none of the points are on the diagonal which could indicate a small
closest tune approach without a clear trend with amplitude.

Coupling is introduced using the skew quadrupoles placed in the LHC arcs to generate a closest tune
approach of 0.015. Figure 2 shows the tunes for different initial tune splits demonstrating that there
is a mechanism pushing the tunes away from each other already far away from the linear closest tune
approach (light red area).
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Figure 2: Simulated kicks for different tunes and ampli-

tudes of the vertical kicks. The black diagonal line indi-

cates the resonance Q� = Qy .

plitude dependent �C�� a large number of simulations were

launched using Polymorphic Tracking Code �PTC) [10]. It

used the nominal model of the LHC for Beam 2 and the

particles were tracked for 1050 turns. The optics used was

injection optics and the octupoles were at nominal settings

of the first part of 2012 �-3m��, the powering was 6A). The

horizontal tune was matched to values ranging from 64.28

to 64.30 and for each of these settings different transverse

kicks were applied. The size of the kicks were between

0.1 mm to 4.5 mm at a location with β� = 44 m and

βy = 350 m. The action was reconstructed using the am-

plitude and the beta functions for each BPM, as described

in [9].

Using the nominal model without any skew quadrupolar

components the detuning behaves almost linearly, as seen

in Fig. 2. We, however, observe that none of the points are

on the diagonal which could indicate a small �C��. This

possible stopband is very small in comparison to the obser-

vation, as seen in Fig. 1.

In order to have a more realistic situation, linear coupling

was introduced using the skew quadrupoles. Running this

simulation for different initial fractional tune splits showed

that there is a mechanism pushing the tunes away from each

other already far away from the linear �C�� which in this

case was set to 0.015. The light red area shows the stop-

band for the linear �C��. This is shown in Fig. 3. In par-

ticular it is interesting to observe how the particles starting

close to the �C�� are pushed away from the stopband.

The same procedure was repeated for kicks in the hori-

zontal plane and shown in Fig. 4. The horizontal tunes were

changed but the linear coupling and vertical tune was kept

the same and the magnitude of the horizontal kicks were

increased. It is a remarkable observation that for some of

the kicks, starting close to the �C��, the particles penetrate

Figure 3: Simulated kicks for different tunes and ampli-

tudes. The vertical kicks ranged from 0.5 mm to 4.5 mm

while the horizontal were kept at 0.5 mm. The light red

area indicates the linear �C�� stopband which was kept at

0.015. The octupoles were kept at nominal powering.

the stopband. This means that the tunes can approach each

other closer than what is possible in linear coupling the-

ory. This shows that the �C�� is only a true stopband in the

linear approximation of coupling.

A set of simulation for different linear �C��was also per-

formed. The result showed that the smaller linear coupling

the smaller was the effect on the amplitude detuning. How-

ever, the effect that particles with larger amplitude have a

relative larger tune split remained.

Figure 5 shows the dependence of the tune split on the

powering of the octupoles. In this case both the focus-

ing and defocusing octupoles were changed and the ini-

tial tunes for the zero kick case were matched to Q� =

64.289� Qy = 59.31. In case of small values for the oc-

tupoles the amplitude detuning decreases and we observe a

merely linear amplitude detuning. When the powering of

the octupoles is increased we can observe how the tune split

first decrease and then stays constant and for the higher

powering of the octupoles the tune split is again increasing

for the higher kicks.

As a final test we investigated whether it was possible

to create an amplitude dependent �C�� using only skew

octupoles without any skew quadrupolar component. The

normal octupoles in the LHC sequence were rotated with a

few different angles and the particles were tracked. How-

ever, it was not possible to find a condition which caused

the effect observed with skew quadrupoles and normal oc-

tupoles.
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Figure 1: Tunes from particle tracking for different initial tunes and for increasing amplitudes of the
vertical kicks. The color code represents the sum of the horizontal and vertical actions. The black
diagonal line indicates the resonance Qx = Qy.
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Figure 2: Tunes from tracking with linear closest tune approach of 0.015 and nominal octupoles. The
vertical kicks ranged from 0.5 mm to 4.5 mm while the horizontal were kept at 0.5 mm. The light red
area delimits the linear closest tune approach of 0.015.
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Figure 3: Tunes from tracking with linear closest tune approach of 0.015 and h1111=0 by powering MOF
with opposite polarity than MOD. The vertical kicks range from 0.5 mm to 4.5 mm while the horizontal
were kept at 0.5 mm. The light red area delimits the linear coupling stopband of 0.015.

Figure 3 shows the situation where the focusing octupoles (MOF) are powered with the opposite
strength compared to the defocusing octupoles (MOD) but with same absolute value as in the previous
case. This configuration causes the h1111 Hamiltonian term to be very close to zero. In this case we
observe that tunes reach the linear coupling stopband independently of the amplitude. This is consistent
with the fact that the amplitude dependent closest tune approach requires both κ and h1111 to be
different than zero. This configuration with opposite MOF and MOD polarities might be interesting for
the LHC operation to feature Landau damping but with fully suppressed amplitude dependent closest
tune approach even in the presence of linear coupling.

The same tracking procedure is repeated for kicks in the horizontal plane and nominal octupole
powering. The horizontal tunes are changed but the linear coupling and vertical tune are kept the same
and the magnitude of the horizontal kicks were increased. It is a remarkable observation that for some of
the kicks, starting close to the linear closest tune approach, the particles penetrate the stopband. This
means that the tunes can approach each other closer than what is possible in linear coupling theory at
larger amplitudes.

Similar tracking simulations with different non-linear sources have been performed to discard other
possible sources of amplitude dependent closest tune approach. In particular skew octupoles alone do
not feature any amplitude dependent closest tune approach.

7 Conclusion

Motivated by LHC experimental observations and simulations we have found analytically a mechanism
to generate an amplitude dependent closest tune approach based on the interplay between linear coupling
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and the cross term amplitude detuning h1111 given by

∆Qmin = 2|κ̂| = 2

√
κ2 + h1111κa1a2 −

h2
1111

32
(a2a2 − a1a1)2 (43)

This equation predicts that the amplitude dependence of the closest tune approach can be positive or
negative depending on the phase space coordinates a1,2, the linear coupling κ and the octupolar term
h1111. Simulations have confirmed that both linear coupling and h1111 are fundamental to generate a
sizable amplitude dependent closest tune approach, and that this can be both positive and negative de-
pending on the excitation plane. The linear stopband has been penetrated in simulations with octupoles
at large oscillation amplitudes. A particularly interesting case for the LHC consists in canceling the h1111

term while keeping a large Landau damping by using opposite strengths in one of the LHC octupole
families. In this configuration, as expected, there is no amplitude dependent closest tune approach.
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Figure 4: Simulated kicks for different tunes and am-

plitudes. The kicks in the horizontal plane ranged from

0.5 mm to 4.5 mm while the kicks in the vertical plane

were kept at 0.5 mm. The light red area indicates the linear

�C�� stopband which was kept at 0.015 for all cases. The

octupoles were kept at nominal powering. The two black

lines show the resonance Q� �Qy and 3Qy respectively.

Figure 5: The tune split as a function of the action for dif-

ferent powering of the octupoles in relative units of the

nominal powering �1 is equal to nominal powering) and

�C�� = 0.015

CONCLUSION

The observation of the amplitude dependent �C�� can be
reproduced in the model using linear coupling in combina-

tion with octupoles. We have also shown that it is possible

to enter the stopband �C�� given an appropriate size of the

kick together with favorable settings of the octupoles. It has

been observed that neither normal skew quadrupolar fields

nor octupolar fields are sufficient alone to generate the am-

plitude dependent �C�� observed. Instead a combination

of them are needed. These observations are of importance

since this effect may reduce the landau damping which is

important for beam stability. Since amplitude detuning is

needed in the LHC, due to collective effects, it is not pos-

sible to reduce the strength of the octupoles and instead the

way to reduce amplitude dependent coupling is to reduce

the linear coupling. This observation strengthens the moti-

vation for controlling the linear coupling and the foreseen

coupling feedback for the LHC [7].
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Figure 4: Tunes from tracking with linear closest tune approach of 0.015 and nominal octupoles. The
kicks in the horizontal plane ranged from 0.5 mm to 4.5 mm while the kicks in the vertical plane were
kept at 0.5 mm. The light red area indicates the linear stopband of 0.015 for all cases. The two black
lines show the resonances Qx = Qy and Qy = 1/3 respectively.
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