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ABSTRACT: We present the most precise value for the Higgs boson cross-section in the
gluon-fusion production mode at the LHC. Our result is based on a perturbative expan-
sion through N3LO in QCD, in an effective theory where the top-quark is assumed to be
infinitely heavy, while all other Standard Model quarks are massless. We combine this
result with QCD corrections to the cross-section where all finite quark-mass effects are in-
cluded exactly through NLO. In addition, electroweak corrections and the first corrections
in the inverse mass of the top-quark are incorporated at three loops. We also investigate
the effects of threshold resummation, both in the traditional QCD framework and follow-
ing a SCET approach, which resums a class of 72 contributions to all orders. We assess
the uncertainty of the cross-section from missing higher-order corrections due to both per-
turbative QCD effects beyond N3LO and unknown mixed QCD-electroweak effects. In
addition, we determine the sensitivity of the cross-section to the choice of parton distribu-
tion function (PDF) sets and to the parametric uncertainty in the strong coupling constant
and quark masses. For a Higgs mass of my = 125 GeV and an LHC center-of-mass energy
of 13 TeV, our best prediction for the gluon fusion cross-section is
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1 Introduction

With the discovery of the Higgs boson [1, 2], the Large Hadron Collider (LHC) has achieved
a major landmark in science. Indeed, we now have conclusive evidence that space is filled
with the Higgs field and that the mass of elementary particles is not an ad-hoc concept,
but an elaborate outcome of the mechanism of spontaneous symmetry breaking. Moreover,
with the Higgs boson the Standard Model is a mathematically self-consistent theory, and it
can be used to formulate physically credible predictions at extremely high energies, many
orders of magnitude higher than what we can probe with man-made experiments. This is
a great triumph of theoretical physics.

Besides the success of the Standard Model as a theory of electroweak interactions, it
is a phenomenologically incomplete theory, and it needs to be extended in order to obtain
a satisfying description of all known physics, including cosmology. It is unclear at what
energy the Standard Model will stop being a good theory and it will require the introduction
of new laws of physics. If open questions, such as for example the origin of dark matter,
are related to the question of the origin of mass of elementary particles, then it is likely
that Higgs phenomena will differ quantitatively from Standard Model expectations. We
should therefore view the Higgs boson discovery as the foundation of a long-term precision
physics program measuring the properties of the Higgs boson. This program may yield
direct or indirect evidence of physics beyond the Standard Model, and it requires the
measurement of the mass, spin/parity, width, branching ratios and production rates of the
Higgs boson. All of the above are predicted or constrained in the Standard Model and
its viable extensions. The success of the program will rely crucially on the combination of
highly precise experimental data with equally accurate theoretical predictions.

The purpose of this article is to supply a key ingredient to upcoming high-precision
studies of the Higgs boson by providing the most accurate determination of the Higgs pro-
duction cross-section in gluon fusion. Higgs production in gluon fusion is mediated mainly
through a top-quark loop [3]. Despite the absence of a tree-level contribution (which makes
gluon fusion a pure quantum process), it is the dominant production mode of the Higgs
boson due to the large gluon luminosity and the size of the top-quark Yukawa coupling.
Reliable predictions of this process require the inclusion of higher-order corrections, both
from the QCD and the electroweak sectors of the Standard Model. The phenomenological
importance of these corrections can be seen from the large size of the next-to-leading order
(NLO) QCD corrections [4-12], which almost double the original leading order (LO) predic-
tion [3]. The large size of the NLO corrections indicate potentially significant contributions
from even higher perturbative orders, thus resulting in a substantial theoretical uncertainty
on the gluon-fusion cross-section. This uncertainty is difficult to quantify conventionally
by varying nuisance parameters in the theoretical prediction such as renormalization and
factorization scales.

The past twenty years have seen substantial theoretical advances in the perturbative
description of Higgs production in gluon fusion, using a multitude of techniques and aim-
ing for various directions of improvement. The theoretical description of gluon fusion is
rendered particularly challenging by the fact that the Born process is already a one-loop
process involving two mass scales (the masses of the top quark and the Higgs boson), such



that higher-order corrections will involve multi-scale multi-loop amplitudes. This challenge
can be overcome by integrating out the top quark at the level of the Standard Model La-
grangian. This procedure results in an effective field theory (EFT) [13-16] containing a
tree-level coupling of the Higgs boson to gluons. This EFT can be matched onto the full
Standard Model in a systematic manner, resulting in corrections from higher orders in
perturbation theory to the Wilson coefficients [17-21] and from subleading terms in the
large mass expansion [22, 23]. In the EFT framework the coefficient function for inclusive
Higgs production in gluon fusion depends only on the ratio of Higgs boson mass mpg to
the partonic center-of-mass energy +/s, usually expressed through the variable z = m%{ /s.
By comparing the full NLO QCD expression for the gluon fusion cross-section with the
EFT result, one observes that a very good approximation of the full NLO prediction can
be obtained by re-weighting the EFT prediction with the ratio of LO predictions in the full
and effective theories. This re-weighting is commonly applied to all predictions obtained
within the EFT framework.

NNLO corrections in the EFT [24-26] turn out to be substantial, albeit smaller than
at NLO. This slow convergence pattern entails the risk that the estimation of the uncer-
tainty at NNLO, obtained by varying the renormalization and factorization scales, may be
misleading. To settle the size of the QCD corrections, additional information about the
behavior of the perturbative expansion beyond NNLO is necessary.

A part of these corrections arises from the region of phase-space where the Higgs boson
is produced at or near to its kinematical threshold, z — 1. In this region, contributions
from soft and collinear gluon emission can be resummed to all orders in the coupling
constant, either using Mellin space methods [27-31] or within soft-collinear effective field
theory (SCET) [32-36]. Always working in the EFT framework, either method enables the
resummation of logarithmically-enhanced threshold corrections to the gluon fusion process
to high logarithmic order [37-40]. Both methods agree to a given formal logarithmic
accuracy, but their results can in principle differ [41, 42] by non-logarithmic terms.

The combination of predictions at fixed order with threshold resummation (together
with electroweak corrections [43-46], bottom and charm quark contributions through NLO
and subleading mass corrections at NNLO [22, 23, 47-49]) provided the default predictions
for the interpretation of Higgs production data in the LHC Run 1 [50-52]. Besides un-
certainties from the parametrization of parton distributions and the values of the strong
coupling and quark masses, these predictions were limited in accuracy by missing terms
at N3LO in the fixed-order expansion. By expanding resummed predictions in powers of
the coupling constant, logarithmic terms in perturbative orders beyond NNLO can be ex-
tracted. These were used (often combined with the knowledge of the high-energy z — 0
behaviour of the coefficient function [47, 53]) to obtain estimates of the fixed-order gluon
fusion cross-section at N3LO and beyond [54-56]. Although individual results for these
estimates typically quoted a very small residual uncertainty, the scatter among different
estimates was quite substantial, thereby putting serious doubts on the reliability of any
such estimation procedure. These ambiguities were resolved by the recent calculation of the
full N3LO QCD corrections to the gluon fusion process [57], which are the key ingredient
to the work presented here.



The gluon-fusion cross-section in N3LO QCD in the EFT approach receives (besides a
network of lower order renormalization and mass-factorization terms [58-62]) contributions
from four types of processes, ranging at fixed sum of loops and external legs from three-loop
virtual corrections to the ggH-vertex to triple real radiation corrections from processes like
g9 — Hggg, and denoted respectively as VVV, (RV)2, RVV, RRV, RRR. While the three-
loop virtual corrections were already known for quite some time [63, 64], new technical
advances were needed in order to evaluate all the contribution from the different real-
radiation subprocesses, either in closed from or as a high-order expansion around the
threshold limit that is sufficient to precisely account for the full z-dependence. Based on
the two-loop matrix elements for Higgs-plus-jet production [65], closed expressions for the
RVV contributions could be obtained by direct integration [66, 67]. In the same way, it
was possible to derive closed expressions for the (RV)? contribution [68, 69]. The major
challenge in the RRV and RRR processes are the very intricate phase space integrals for
double real radiation at one loop and triple real radiation at tree level. These phase-space
integrals can be related to specific cuts of loop integrals using reverse-unitarity [24, 70-72],
allowing the application of modern integral reduction techniques [73-75] that express all
relevant phase-space integrals by a limited set of master integrals, which are functions of z.
With the same integral reduction techniques, differential equations [76-78] can be derived
for the master integrals. By solving these differential equations (either in closed form [79],
or as an expansion in z) for appropriate boundary conditions, the direct integration of the
master integrals can be circumvented. The use of these techniques enabled the computation
of the RRV and RRR [80] contributions at threshold. Combining them with the two-loop
correction to the soft-gluon current [81, 82] enabled first breakthroughs with the N3LO
threshold cross-section [83-85] and the first beyond-threshold term [86]. More recently,
the systematic expansion of the RRV [87] and RRR contributions to very high orders in z
enabled the calculation of the full N3LO gluon fusion cross-section [57].

In this publication, we combine the N3LO cross-section in the EFT with the pre-
viously available state-of-the-art predictions for other types of corrections (electroweak,
mass effects, resummation) to obtain a highly precise theoretical description of the inclu-
sive Higgs production cross-section in gluon fusion. We also assess remaining theoretical
uncertainties on the cross-section. Our results will form a cornerstone to precision studies
of the Higgs boson in the upcoming high-energy and high-luminosity data taking periods
of the CERN LHC.

Our paper is structured as follows: in section 2 we present our setup and summa-
rize the different contributions that we include into our prediction. In section 3 we study
the phenomenological impact of QCD corrections through N3LO in the large my-limit.
We investigate the missing higher-order effects and threshold resummation in the EFT in
section 4. Effects due to quark masses and electroweak corrections are studied in sections 5
and 6, and we assess the uncertainty on the cross-section due to PDFs and the strong
coupling constant in section 7. In section 8 we combine all effects and present our recom-
mendation for the most precise theoretical prediction of the inclusive Higgs cross-section.
In section 9 we draw our conclusions. We include appendices where we present the co-
efficients appearing in the threshold expansion of the N3LO coefficient, as well as tables
summarizing our results for a variety of different Higgs masses and collider energies.



2 Setup

The inclusive hadronic cross-section o for Higgs production in gluon fusion can be calcu-
lated as the convolution integral

=Y (R0 e ™) @), (2.1)

where 6;; are the partonic cross-sections for producing a Higgs boson from a scattering of
partons ¢ and j, and f; and f; are the corresponding parton densities. We have defined

the ratios ) )
miy miy

= —2 and z=—*2 2.2

T S s (2.2)

where my, s and S denote the Higgs mass and the squared partonic and hadronic center-
of-mass energies. The convolution of two functions is defined as

1
(h g)(r) = / A dy h(z) g(y) (v — ). (2.3)

In the Standard Model (SM) the Higgs boson is predominantly produced through the an-
nihilation of virtual top and bottom quarks, as well as W and Z bosons, produced in
gluon fusion. All of these channels are greatly enhanced by QCD corrections, and also
electroweak corrections are important. Hence, having good control over higher-order cor-
rections in perturbation theory, both in the QCD and electroweak sectors, is of paramount
importance to make precision predictions for Higgs production in the framework of the
SM. We note that non-perturbative contributions to the inclusive Higgs boson production
cross-section are suppressed by powers of (A/my), with A being the QCD scale. For the
Drell-Yan process, the linear non-perturbative correction could be shown to vanish [88, 89],
such that the leading power correction term is quadratic and potentially relevant at low in-
variant masses. For the inclusive Higgs production cross-section, no thorough investigation
of the power corrections has been performed up to now, but even the linear term would be
a per-mille-level correction.

The goal of this paper is to provide the most precise predictions for the inclusive
hadronic Higgs production cross-section in the SM. We use state-of-the-art precision com-
putations for electroweak and QCD corrections to inclusive Higgs production and combine
them into the most precise theoretical prediction for the Higgs cross-sections available to
date. The master formula that summarizes all the ingredients entering our prediction for
the (partonic) cross-sections is

A~ ~NNLO A ~LO ~NLO
Gij ~ Rro (64 rT 4 01055 wir + 005EW) + 06 cans e + 00,5 cant e - (2.4)

Equation (2.4) includes QCD corrections to the production cross-section in an effective
theory where the top quark is infinitely heavy and has been integrated out. In this limit,
the Higgs boson couples directly to the gluons via an effective operator of dimension five,

1
Lo = Lsws — ;CH GGl (2.5)



where H is the Higgs boson field, G, is the gluon field strength tensor and Lgpr,5 denotes
the SM Lagrangian with Ny = 5 massless quark flavours. The Wilson coefficient C' is
obtained by matching the effective theory to the full SM in the limit where the top quark
is infinitely heavy. In appendix A we give its analytic expression through N3LO in the
MS and OS schemes [17, 20], in the five-flavour effective theory with the strong coupling
constant decoupled.

QCD corrections to the production cross-section ;; grr in the heavy-top limit have
been computed at NLO [4-6] and NNLO [24-26]. Recently also the N3LO corrections
have become available [57]. One of the main goals of this work is to combine the N3LO
corrections in the large-m; limit with other effects that can provide corrections at a sim-
ilar level of accuracy, in particular quark-mass effects and electroweak corrections. We
also investigate the impact of the resummation of threshold logarithms, both within the
frameworks of exponentiation of large logarithms in Mellin space and using soft-collinear
effective theory (SCET).

While the production cross-section is known to high accuracy in the framework of the
effective theory, reaching a similar level of accuracy when including quark-mass effects (also
from bottom and charm quarks) is currently beyond our technical capabilities. Nonetheless,
various quark-mass effects have been computed, which we consistently include into our
prediction (2.4). First, it was already observed at LO and NLO that the validity of the
effective theory can be greatly enhanced by rescaling the effective theory by the exact LO
result. We therefore rescale the cross-section ¢;; grr in the effective theory by the ratio

O.LOt
_ Zeu;
EFT
where Jljz?t denotes the exact (hadronic) LO cross-section in the SM with a massive top

quark and Ny = 5 massless quarks. Moreover, at LO and NLO we know the exact result
for the production cross-section in the SM, including all mass effects from top, bottom and
charm quarks. We include these corrections into our prediction via the terms (565?25 g be
in eq. (2.4), consistently matched to the contributions from the effective theory to avoid
double counting. As a consequence, eq. (2.4) agrees with the exact SM cross-section (with
massless u, d and s quarks) through NLO in QCD. Beyond NLO, we only know the
value of the cross-section in the heavy-top effective theory. We can, however, include
subleading corrections at NNLO in the effective theory as an expansion in the inverse top
mass [22, 23, 48, 49]. These effects are taken into account through the term (5&57%%% in
eq. (2.4), rescaled by Rpo.

Finally, we also include electroweak corrections to the gluon-fusion cross-section (nor-
malised to the exact LO cross-section) through the term 06;; pw in eq. (2.4). Unlike QCD
corrections, electroweak corrections have only been computed through NLO in the electro-

magnetic coupling constant « [43-45]. Moreover, mixed QCD-electroweak corrections, i.e.,
3

o, are known in an effective theory [46] valid in the limit

corrections proportional to a«
where not only the top quark but also the electroweak bosons are much heavier than the
Higgs boson. In this limit the interaction of the Higgs boson with the W and Z bosons

is described via a point-like vertex coupling the gluons to the Higgs boson. Higher-order
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Table 1. Setup 1.

Table 2. Setup 2.

Table 3. Setup 3.

corrections in this limit can thus be included into the Wilson coefficient in front of the
dimension-five operator in eq. (2.5).

In the remainder of this paper we give a detailed account of all the ingredients that
enter our best prediction for the inclusive gluon-fusion cross-section. Furthermore, we
carefully analyze the residual uncertainty associated with all of these contributions. In this
way we obtain the most precise theoretical prediction for the Higgs production cross-section
available to date.

We conclude this section by summarizing, for later convenience, the default values of
the input parameters and the concrete choices for PDFs and quark-mass schemes used
in our numerical studies. In particular, we investigate three different setups, which are
summarized in table 1-3. Note that we use NNLO PDFs even when we refer to lower
order terms of the cross-section, unless stated otherwise. The values for the quark masses
used are in accordance with the recommendations of the Higgs Cross section Working
Group [90], wherein the top-quark mass was selected to facilitate comparisons with existing
experimental analyses at LHC, Run 1.}

3 The cross-section through N3LO in the infinite top-quark limit

3.1 The partonic cross-section at N3LO in the heavy-top limit

In this section we discuss the contribution ;; grr in eq. (2.4) from the effective theory where
the top quark is infinitely heavy. This contribution can be expanded into a perturbative
series in the strong coupling constant,

6ieFT _ T|CPP o~ (n), \ n
- 8’V ;Z:Omj (2)ay (3.1)

where V = N2 — 1 is the number of adjoint SU(N.) colours, as = as(u?)/m denotes the
strong coupling constant evaluated at a scale p and C' is the Wilson coefficient introduced
in eq. (2.5), which admits itself a perturbative expansion in the strong coupling [17, 20, 21],

C=as;» Cpal. (3.2)
n=0

'Note that the current world average m$> = 173.2 GeV is within the recommended uncertainty of 1 GeV
from the proposed mPS = 172.5 GeV that we use here.



Here both the coefficients C), and the strong coupling are functions of a common scale p.
At LO in a4 only the gluon-gluon initial state contributes, and we have

ny(2) = Big 8 6(1—2). (33)

QCD corrections beyond LO are also known. In particular, the perturbative coefficients "71‘(;'1)

are known at NLO [4-6] and NNLO [24-26] in QCD. Recently, also the N3LO corrections
77@(?) have been computed [57]. As they are the main new addition in our computation,
we briefly review the N3LO corrections to the inclusive gluon fusion cross-section in the
heavy-top limit in this section.

We follow the notation of ref. [86] and we split the partonic cross-sections into a singular

and a regular part,

772(33)( ) = dig 95 77(3) () + ng’”reg(z) : (3.4)

The singular contribution is precisely the cross-section at threshold, also known as the
soft-virtual cross-section. It contains the contributions from purely virtual three-loop cor-
rections as well as from the emission of soft gluons [83-85, 91, 92]. The regular term takes
the form of a polynomial in log(1 — z),

reg Z log™(1 — 2) nz(] m)’reg(z) , (3.5)

where the ngj’m)’reg(z) are holomorphic in a neighbourhood of z = 1. The functions 7, J
for m = 5,4, 3 have been given in closed analytic form in ref. [86]. For m = 2,1,0 no closed

(3,m),reg

analytic expression is available in the literature so far (except for the ¢¢’ channel [79]). In
ref. [57] these coefficients were computed as an expansion around threshold to order 30 in
Z=1—z. In appendix C we present the numerical values for the first 37 coefficients of
the expansion, setting the renormalization and factorization scales equal to the Higgs mass
and substituting Ny = 5 for the number of light quark flavors and N. = 3 for the number
of quark colours. Moreover, it was shown in ref. [57] that a truncation of the series at order
O(z°) yields a good approximation to the hadronic cross-section. The first few terms of the
expansion may be insightful for theoretical studies of perturbative QCD and discovering
universality patterns in subleading terms of the soft expansion. We therefore provide the
analytic results for the coefficients in the threshold expansion up to O(z°) in appendix D.

In the rest of this section we study the numerical impact of the N®LO corrections to
the inclusive gluon fusion cross-section in the heavy-top limit. We start by studying the
validity of approximating the cross-section by its threshold expansion and we quantify the
uncertainty introduced by truncating the expansion after only a finite number of terms.
We then move on and investigate the perturbative stability of 7;; grr by studying the scale
variation of the gluon-fusion cross-section at N3LO in the heavy-top limit.

3.2 Convergence of the threshold expansion at N3LO

As parts of the N3LO coefficient functions M z) have not yet been derived in closed

analytic form and are only known as truncated series expansions in z, it is important to

(3,m),reg( )
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Figure 1. The numerical effect in Setup 1 (see table 1) of the N3LO corrections in the gluon-gluon
channel as a function of the truncation order of the threshold expansion and for various values of
the parameter n in eq. (3.6).

assess how well these truncated power series approximate the exact result. In other words,
we need to establish how well the threshold expansion converges. Indeed, the partonic
cross-sections &;; gpr need to be convoluted with the partonic luminosities, eq. (2.1), and
the convolution integrals receive in principle contributions down to values of z ~ 7 ~ 1074,
Hence, assessing the residual uncertainty due to the truncation of the series is of utmost
importance.

In refs. [86, 93] a method was introduced to study the convergence of the threshold
expansion. We start by casting the hadronic cross-section in the large-m; limit in the form

_ _14n (n) (n) _ 0ijEFT
ORFT =T Z (fi ®f;® = ) (1), (3.6)
ij
where £
n i\Z
fi( \(2) = el (3.7)

For n = 0, we recover precisely the usual QCD factorization formula. For n # 0, however,
eq. (3.6) is a deformed, but equally valid and equivalent, formulation of the usual QCD
factorization formula (2.1). Indeed, it is easy to check that the hadronic cross-section ogpr

47 into a series around

is independent of the arbitrary parameter n. Expanding 6;; grr/ 2
z = 1, however, introduces a dependence on n order by order in the expansion, which only
cancels once infinitely many terms in the series are summed up. Hence, if a truncated series
is used to evaluate 6;;prr/ 2147 the result will in general depend on n, and we can use

the spread of the n-dependence as a quantifier for the convergence of the series. In figure 1
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Figure 2. The numerical effect in Setup 1 (see table 1) of the N®LO corrections as a function of the
truncation order of the threshold expansion and for various values of the parameter n in eq. (3.6).
All channels are included.

we show the N3LO contribution to the hadronic cross-section from the gg—channel. We
observe that the hadronic cross-section is very stable with respect to the choice of the
arbitrary parameter n after the first ~ 5 terms in the threshold expansion. In ref. [57] we
observed a mild growth of the cross-section at high orders of the threshold expansion (see
inlay of figure 1 in ref. [57]). This is attributed to the presence of log z terms [53] (and
for n > —1 also global factors of 1/2z™) which, after threshold expansion and convolution
with the parton distributions, yield a small part of the cross-section. In figure 2 we show
the convergence of the total cross-section, including all partonic channels, for a variety of
different values of n, from the 20th term onwards in the expansion. While we observe
good apparent convergence for n > —1, there remains a relatively large spread between
the different curves for n < —1. The qualitative difference between these two cases can be
understood as follows: for n > —1, we absorb additional factors of 1/z into the partonic
cross-sections and expand them around z = 1. This may result in a slower convergence
of the partonic threshold expansion for small values of z. At the same time, however,
the luminosities are multiplied with powers of z which suppress the contribution from the
region z ~ 0 in the convolution (3.6). The net effect is then a fast apparent convergence
for n > —1. This has to be contrasted with the case n < —1, where the luminosities are
multiplied by factors of 1/z, which enhance the contribution from the region z ~ 0 in
the convolution (3.6). This leads to a slower apparent convergence, at least in the case
where only a few terms are taken into account in the threshold expansion. While the
spread between the different curves gives a measure for the quality of the convergence of
the threshold expansion, we know of no compelling argument why any of this curves should
be preferable over others at this order of the expansion. We observe, however, that the
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Figure 3. The numerical effect in Setup 1 of the N3LO correction in the main partonic channels
and the total cross-section as a function of the truncation order in the threshold expansion, for
n=01in eq. (3.6).

different curves agree among each other within a range of 0.1 pb, thereby corroborating
our claim that the threshold expansion provides reliable results for the N3LO cross-section.

In figure 3 we plot the N®LO corrections for the gg and gg channels,? as well as the total
inclusive cross-section, as a function of the truncation order (for n = 0). The quark-initiated
channels contribute only a small fraction to the inclusive cross-section. The convergence of
the threshold expansion for these channels is less rapid than for the dominant gluon-gluon
channel. This is better demonstrated in figure 4, where we plot the ratio

3 3
_ Jg(,)EFT(N ) — U_(X,)EFT(Nlast)

Ax(N) = 100% . (3.8)

3
UE(?EFT(Nlast)

Here, UQEFT(N ) denotes the contribution of the partonic channel X to the N3LO correction
to the hadronic cross-section when computed through O(zV) in the threshold expansion.
Npast (equal to 37) is the highest truncation order used in our current computation. Al-
though the convergence of the quark-gluon and the quark channels is rather slow, the total
cross-section and the convergence rate of the threshold expansion are dominated by the
gluon-gluon channel. This enables us to obtain a reliable estimate of the cross-section for
Higgs production via gluon fusion, even though we have only included a finite number of
terms in the threshold expansion. We remark, however, that for quark-initiated processes

such as Drell-Yan production a computation in closed form will most likely be necessary.

2We sum of course over all possible quark and anti-quark flavours.
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Figure 4. The ratios of eq. (3.8) for the convergence for the threshold expansion at N*LO for
individual partonic channels, as well as for the full hadronic cross-section. The gq and qq’ channels
are negligible and are not shown in the plot.

Besides studying the n-dependence of the truncated power series, we have another way
to assess the convergence of the expansion. In ref. [86] it was shown that the knowledge
of the single-emission contributions at N3LO [66-69] and the three-loop splitting func-
g”m) in the N3LO cross-section (3.5)
exactly for m = 5,4, 3. Recently, also the double-emission contribution at one-loop has been

tions [61, 62] is sufficient to determine the coefficients 7

computed in closed form [94]. Using a similar analysis as for m = 5, 4,3 in ref. [86], it has
now been possible to determine also the coefficients with m = 2,1 exactly for all par-
tonic subchannels. As a consequence, we know all the logarithmically-enhanced terms in
eq. (3.5) in closed form, and we only need to resort to a truncated threshold expansion for

the constant term, m = 0. We can thus study the convergence of the threshold expansion
(3,m)
]

of a truncated expansion for the logarithmically-enhanced contributions changes the N3LO

for the coefficients of n , m > 1. In particular, the use of the exact expressions instead

correction to the cross-section by

o) =l =0.004pb. (3.9)
expansion full logs
Hence, the difference between exact expressions or truncated power series for the coefficients
with m > 1 in eq. (3.5) is at the sub-per mille level, and thus completely negligible.

To summarize, we have investigated the convergence of the threshold expansion at
N3LO using two different methods. Both methods confirm our expectation that the thresh-
old expansion provides a very good approximation to the exact result. The result of our
analysis can be quantified by assigning a (conservative) uncertainty estimate to the trun-
cation of the threshold expansion. We assign an uncertainty due to the truncation of the
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Figure 5. The dependence of the cross-section on the renormalization scale for a fixed value of the
factorization scale.

threshold expansion which is as large as.?

(3) (3)
_ oppr(37) — oppr(27)
d(trunc) = 10 x 510

ORFT

=0.37%. (3.10)

The factor 10 is a conservative estimator of the progression of the series beyond the first 37
terms. Note that the complete N3LO cross-section appears in the denominator of eq. (3.10),
i.e., the uncertainty applies to the complete N>LO result, not just the coefficient of a?.

3.3 Scale variation at N3LO and the omission of N3LO effects in parton
densities

Having established that the threshold expansion provides a reliable estimate of the N3LO
cross-section, we proceed to study the dependence of the cross-section on the renormaliza-
tion and factorization scales ur and pg.

In figure 5 we fix the factorization scale to ur = mpyg/2 and vary the renormalization
scale. We observe that the perturbative series in the strong coupling converges faster for
small values of the renormalization scale. It is well known that the scale variation is very
large at LO and NLO, and it is still significant at NNLO. To emphasize this point, we
indicate in figure 5 by horizontal lines the range of predictions for the cross-section at
each perturbative order when pp varies in the interval [mg /4, mp]. This interval seems to

3In the estimate of the various components of the theoretical uncertainty that we carry out in these
sections, we always give numerical results for Setup I. When considering different parameters (Higgs mass
or collider energy, for example), we re-assess these uncertainties. For example, §(trunc) increases from
0.11% at 2 TeV to 0.38% at 14 TeV.
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AFRE g (up = mir/2)
LO  (k=0) | £22.0%
NLO  (k=1) | £19.2%
NNLO (k=2)| +9.5%
N3LO  (k=3) | +2.2%

Table 4. Renormalization scale variation of the cross-section as defined in eq. (3.11). The factor-
ization scale is fixed to up = mpy /2.

capture the characteristic physical scales of the process, as indicated by the convergence
pattern of the series. We quantify the renormalization scale variation by looking at the
spread around the average value of the cross-section in this interval, i.e., we define

Ascale JEI?}PJ? B GlrélIITr’II‘,k

EFT,k - max min

100% , (3.11)
ORFT kT OBFT k

with

ol = max  ohprO(ug), (3.12)
’ URE[my /4,my]

and similarly for ag‘ﬁnTk The results are shown in table 4.

Before we move on to study the dependence of the cross-section on the factorization
scale, we note that we evolve the strong coupling as(pgr) at N3LO, and we use NNLO parton
densities at all perturbative orders. The scale variation differs quantitatively from the
above table and the convergence of the perturbative series is faster than what is displayed
in figure 5 if one uses LO or NLO PDFs and « evolution at the corresponding orders.

Let us now turn to the study of the factorization scale dependence of the N3LO cross-
section. In figure 6 we fix the renormalization scale to ur = mpy /2 and we vary the factor-
ization scale. We observe that at all perturbative orders the variation with the factorization
scale is much smaller than with the corresponding variation of the renormalization scale.
At N3LO, the factorization scale dependence is practically constant over a wide range of
values of pp.

A comment is in order concerning the self-consistency of the factorization scale varia-
tion at N3LO. Traditionally, in a LO computation of a hadronic cross-section the parton-
densities are not taken to be constant, but they are evolved with the one-loop Altarelli-
Parisi splitting functions P(®). Similarly, at NLO and NNLO the P() and P®) corrections
to the splitting functions are included. Following this approach, one would be compelled
to include the yet unknown P®) corrections to the splitting functions in the evolution of
the parton densities for our N3LO Higgs cross-section computation, which is of course not
possible at this point. Nevertheless, our N3LO computation with corrections only through
P@ in the DGLAP evolution is consistent in fixed-order perturbation theory, since this
is the highest-order splitting function term appearing in the mass factorization contribu-
tions. Including the P®) corrections would be merely a phenomenological improvement
(which is necessary for LO calculations in order to obtain qualitatively the physical energy
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Figure 6. The dependence of the cross-section on the factorization scale for a fixed value of the
renormalization scale.

dependence of hadronic cross-sections) but it is not formally required. An inconsistency
may only arise due to the extraction of the parton densities from data for which there are
no N3LO predictions. In fact, this problem has already arisen at NNLO where in global
fits of parton distributions jet observables are fitted with NLO coefficient functions. When
additional processes are computed at N3LO, it is expected that the gluon and other parton
densities will be extracted with different values. To our understanding, the uncertainties
assigned to the parton densities do not presently account for missing higher-order correc-
tions, but merely incorporate the experimental uncertainties of the data from which they
were extracted.

To assess this uncertainty we resort to the experience from the previous orders and
present in figure 7 the NNLO gluon-fusion cross-section within Setup 1 using either NNLO
or NLO parton densities as a function of the factorization scale (for a fixed renormalization
scale). We notice that the shape of the two predictions is very similar, indicating that
differences in the evolution kernels of the DGLAP equation beyond NLO have a small
impact. However, in the mass range [my/4, my| the NNLO cross-section decreases by
about 2.2-2.4% when NNLO PDFs are used instead of NLO PDFs. We can attribute this
shift mostly to differences in the extraction of the parameterization of the parton densities
at NLO and NNLO. Similarly, we can expect a shift to occur when the N3LO cross-section
gets evaluated in the future with N3LO parton densities rather than the currently available
NNLO sets. The magnitude of the potential shift will be determined from the magnitude
of the unknown N3LO corrections in standard candle cross-sections used in the extraction
of parton densities. Given that N3LO corrections are expected to be milder in general than
their counterparts at NNLO, we anticipate that they will induce a smaller shift than what

~15 —



48

NNLO with NNLO PDFs
NNLO with NLO PDFs

46

Tent (Pb)

42

IS
S

6ala « 100 %
O N )
o o o o

=)

0 1 2 3 4
Helmy (HR=Myl2')

Figure 7. The effect of using NLO or NNLO PDFs for the NNLO cross-section in the effective
theory as a function of the factorization scale and for a fixed value of the renormalization scale. A
shift is observed which varies little with the factorization scale.

we observe in figure 7. Based on these considerations, we assign a conservative uncertainty
estimate due to missing higher orders in the extraction of the parton densities obtained as®

(2),NNLO (2),NLO

L |ogpT — 9EFT
5(PDF — TH) = - . = 5 2:31% = 1.16%, (3.13)
OEFT
(2),(N)NLO . .
where opip denotes the NNLO cross-section evaluated with (N)NLO PDFs at the

central scale up = pur = mpy/2. In the above, the strong coupling was set to its world-
average at the Z pole and evolved using three-loop renormalisation group running, and
we assumed conservatively that the size of the N3LO corrections is about half of the
corresponding NNLO corrections. This estimate is supported by the magnitude of the
third-order corrections to the coefficient functions for deep inelastic scattering [96] and a
related gluonic scattering process [97], which are the only two coefficient functions that
were computed previously to this level of accuracy.

So far we have only studied the scale variation from varying pr and pgr separately. The
separation into a renormalization and factorization scale is to a certain extent conventional
and somewhat artificial. Indeed, only one regulator and one common scale is required for
the treatment of both infrared and ultraviolet singularities. For a physical process such
as inclusive Higgs production, where one cannot identify very disparate physical scales,
large separations between the renormalization from the factorization scale entail the risk

“An alternative way to estimate this uncertainty, based on the Cacciari-Houdeau (CH) method, was
presented in ref. [95]. The uncertainty obtained form the CH method is sizeably smaller than the un-
certainty in eq. (3.13), and we believe that the CH method may underestimate the size of the missing
higher-order effects.
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Figure 8. The dependence of the cross-section on a common renormalization and factorization
scale p = pup = ug.

AT
LO (k=0) | £14.8%
NLO (k=1) | +16.6%
NNLO (k=2) | +8.8%
NSLO  (k=3) | +1.9%

Table 5. Scale variation of the cross-section as defined in eq. (3.11) for a common renormalization
and factorization scale p = pup = pg.

of introducing unnecessarily large logarithms. In figure 8 we present the dependence of the
cross-section on a common renormalization and factorization scale y = ur = pr. Through
N3LO, the behaviour is very close to the scale-variation pattern observed when varying
only the renormalization scale with the factorization scale held fixed. More precisely, using
the same quantifier as introduced in eq. (3.11) for the variation of the renormalization scale
only, the variation of the cross-section in the range [my /4, my] for the common scale
is shown in table 5. We observe that the scale variation with ur = pr is slightly reduced
compared to varying only the renormalization scale at NLO and NNLO, and this difference
becomes indeed imperceptible at N3LO.

The scale variation is the main tool for estimating the theoretical uncertainty of a
cross-section in perturbative QCD, and it has been successfully applied to a multitude of
processes. However, in Higgs production via gluon fusion it underestimates the uncertainty
both at LO and NLO. It is therefore a critical question to assess whether the scale variation
uncertainty is a reliable estimate of the true uncertainty due to missing higher orders in

17 -



40

30

20

Oett (Pb)

10

-10L. ‘ ‘ ‘ ‘ ‘ -
0.0 0.2 0.4 0.6 0.8 1.0 1.2

pimy (U=pr=4F)

Figure 9. The dependence of the cross-section on a common renormalization and factorization
scale 4 = pup = pp per partonic channel.

perturbative QCD. We believe that this is most likely the case, because, at least for natural
choices of the scales in the interval [m /4, my], the N3LO cross-section takes values within
the corresponding range of cross-section values at NNLO. Therefore, the progression of the
perturbative series from NNLO to N3LO corroborates the uncertainty obtained by the scale
variation. Indeed, for the central scale u = my /2 the N3LO cross-section is only ~ 3.1%
higher than at NNLO, i.e., the shift from NNLO to N3LO is of the same size as the scale
variation uncertainty at N3LO. We will therefore take the scale variation uncertainty as
our uncertainty estimate for missing higher-order QCD corrections at N*LO and beyond.
In section 4, we will also discuss the effect of missing higher orders through resummation
methods. This will give additional support to our claim that the scale variation at N3LO
provides a reliable estimate of missing higher orders beyond N3LO.

So far we have only discussed the scale variation for the total hadronic cross-section.
It is also interesting and instructive to analyze the scale dependence of the cross-section for
individual partonic channels. In figure 9 we present the scale dependence at N3LO of the
gluon-gluon channel, the quark-gluon channel and the total cross-section. The quark-quark
and quark-antiquark channels are very small and are not shown explicitly in the plot. We
see that, while the gluon-gluon channel dominates over the quark-gluon channel, the latter
is important in stabilizing the scale dependence of the total cross-section. Indeed, with the
exception of extremely small values of i, the quark-gluon channel has the opposite slope as
the gluon-gluon channel, and therefore a somewhat larger scale variation of the gluon-gluon
channel is getting cancelled in the total cross-section. This behaviour can be qualitatively
understood from the fact that a change in the factorization scale modifies the resolution on
quark-gluon splitting processes, therefore turning quarks into gluons and vice versa. We
remark that this feature is not captured by approximate predictions of the cross-section
based on the soft-approximations, which only include the gluon-gluon channel.
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To summarize, we have identified in this section two sources of uncertainty for the
N3LO cross-section in the limit of infinite top mass. We observe that the dependence on
the factorization scale is flat over wide ranges of values of pp, and the scale variation is
dominated by the pup variation. Moreover, we see that the inclusion of the quark-gluon
channel plays an important role in stabilizing the scale dependence at N>LO. Our scale vari-
ation estimate of the uncertainty is 1.9% (according to our prescription in eq. (3.11)). We
believe that at this order in perturbation theory this uncertainty gives a reliable estimate
of missing higher-order corrections from N*LO and beyond. In the next section we give
further support to this claim by analyzing the effect of various resummations beyond N3LO.

4 Corrections at N*LO and beyond in the infinite top-quark limit

In the previous section we have argued that the scale variation at N3LO gives a reliable
estimate for the missing higher-order corrections to the hadronic gluon-fusion cross-section.
In this section we corroborate this claim by investigating various other sources of terms
beyond N3LO. We check that, if we restrict the analysis to the natural choice of scales from
the interval [mg /4, mpy], the phenomenological effect of these terms is always captured by
the scale variation at N3LO. We start by investigating higher-order terms generated by
using an alternative prescription to include the Wilson coefficient C' into a perturbative
computation, and we turn to the study of higher-order effects due to resummation in
subsequent sections. We note at this point that the effect of missing higher-order terms
beyond N3LO was already investigated in ref. [56] by analysing the numerical impact of the
leading N*LO threshold logarithms [56, 98, 99]. The conclusions of ref. [56] are consistent
with the findings in this section.

4.1 Factorization of the Wilson coefficient

The (partonic) cross-section in the effective theory is obtained by multiplying (the square
of) the Wilson coefficient by the perturbative expansion of the coefficient functions 7;;,
see eq. (3.1). As the Wilson coefficient itself admits a perturbative expansion, eq. (3.2),
eq. (3.1) takes the following form up to N3LO in perturbation theory,

0ij,EFT 3

L = oL+t al Oy + Ofad)P S+ +adnP () + 0@, (4.1)

.3

where ¢ denotes the Born cross-section. Conventionally in fixed-order perturbation theory
through N3LO, one only includes corrections up to O(a?) from the product in eq. (4.1) and
drops all terms of higher order (the Born cross-section is proportional to a2). This is also
the approach adopted in section 3, where consistently only terms up to O(a2) had been
included. In this section we analyze how the cross-section changes if all the terms shown
in eq. (4.1) are included. In this way, we obviously include terms into our prediction that
are beyond the reach of our fixed-order N3LO computation. We stress that the inclusion of
these terms does not spoil the formal N3LO accuracy. They can lead, however, to sizeable
effects that can be used as a quantifier for missing higher-order terms.
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Figure 10. Scale variation with u = pup = pr at N3LO within Setup 1 (solid line), compared to
the factorized form of the cross-section where the Wilson coefficient and the coefficient functions
are separately truncated to O(a2) (dashed line).

In figure 10 we show the value of the cross-section as a function of a common renor-
malization and factorization scale u, obtained by either truncating the full cross-section
(solid) or by multiplying the truncated Wilson coefficient and truncated coefficient function
(dashed). We stress that the difference between the two curves stems entirely from terms
at N*LO and beyond. However, we observe that if the scale is chosen to lie in our preferred
range p € [mpg/4, my|, then the two curves agree within the scale uncertainty at fixed
order N3LO, and the difference between the two cross-section values is always well below
2%. In particular, the two curves intersect for u ~ my /2. Hence, if we choose the scale
p in the range [mg/4, mg], both approaches give phenomenologically equivalent answers,
and higher-order terms generated by the factorization of the Wilson coefficient only have
a very mild phenomenological impact, which is captured by the fixed-order scale variation.
We stress that this also supports the claim in section 3 that the scale variation at N3LO
gives a reliable estimate of missing higher-order terms in perturbation theory.

4.2 Threshold resummation in Mellin space

Fixed-order computations beyond N3LO are currently beyond our technical capabilities.
Nevertheless, we can get some information on corrections at N4LO and beyond from re-
summation formulae, which allow one to resum certain logarithmically-enhanced terms to
all orders in perturbation theory.

—90 —



In this section we look in particular at higher-order corrections generated by the re-
summation of threshold logarithms in Mellin space. Before studying the phenomenology
of the resummed inclusive Higgs cross-section at N3LO-+N3LL, we give a short review of
the formalism that allows one to resum large threshold logarithms in Mellin space.

The Mellin transform of the hadronic cross-section with respect to 7 = m?,/S is

1

o(N) = / dr 7V-1 o(r) . (4.2)
0 T

In the following, we always work in the effective theory with an infinitely-heavy top quark.

Since the Mellin transform maps a convolution of the type (2.3) to an ordinary product,

the QCD factorization formula (2.1) takes a particularly simple form in Mellin space,

(V) = 3~ Fi(N) (V) 35(N) (4.3)
ij
with the Mellin moments

1
fi(N) = / dz 2N-1 fi(2),
° ) (4.4)
&Z](N) = / dz ZN_lo-L(Z) s
0 z
where we suppressed the dependence of the PDFs and the partonic cross-sections on the
scales. The Mellin transform is invertible, and its inverse is given by

c+i00
om:Z/ AN N (V) 15 (N) 65 (V). (4.5)

. 211
ij —100

where the contour of integration is chosen such that it lies to the right of all possible
singularities of the Mellin moments in the complex N plane.

From the definition of the Mellin transform it is apparent that the limit z — 1 of the
partonic cross-sections corresponds to the limit N — oo of the Mellin moments of ;;(NV).
In the limit N — oo the partonic cross-section in Mellin space can be written as [37]

A A 1
Oij(N) = 5ig 5jg Gres(N) + 0O <N>

= 8y 0402 09 1+Z:1a22306n7m10gm]\7 —i—(’)(N) ,
n= m=

where oy denotes the LO cross-section in the large-m; limit and &yes(N) is related to
the Mellin transform of the soft-virtual cross-section. The constant and logarithmically-
divergent contributions in the limit N — oo can be written in terms of an all-order resum-
mation formula [27, 37, 100, 101],

Ores(N) = ag g0 ng(%) exp [Gr(as,log N)] , (4.7)
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where the function Cy, contains all contributions that are constant for N — oo. The
function Gp exponentiates the large logarithmic contributions to all orders and can be
written as

Gr(as,log N) = logNgg)(/\) + Z a2 ggl)(/\) , A= foas logN , (4.8)
n=2

where 8y denotes the LO coefficient in the QCD ( function. The functions ggl) are known
exactly up to NNLL accuracy [30], i.e., up to gg’), which requires knowledge of the cusp
anomalous dimension up to three loops [37, 91]. In order to perform resummation at N3LL
accuracy [31, 38], the function gg‘) is needed. This function depends on the four-loop cusp
anomalous dimension, which is not yet known in QCD. We employ the Padé approximation
of ref. [30] for the four-loop cusp anomalous dimensions to obtain a numerical estimate for
g%). The numerical impact of this approximation has been studied, e.g., in ref. [30] and
we checked that by varying the Padé approximation up and down by a factor of 10, our
results do not change.’

Let us now turn to the phenomenological implications of resummation at N3LL. We
obtain N3LO + N3LL predictions for the cross-section by matching the resummation for-
mula (4.7) to the fixed-order N3LO cross-section, i.e., by subtracting from eq. (4.7) its
expansion through O(a?). In this way we make sure that the resummation only starts at
O(a®), which is beyond the reach of our fixed-order calculation. We present our numerical
method to perform the inverse Mellin transform (4.5) in appendix B. In figure 11 we show
the scale dependence of the resummed cross-section in comparison to the fixed-order cross-
section. We see that the resummation stabilizes the scale dependence of the cross-section
in comparison to the fixed-order result. At N3LO-+N3LL, the value of the cross-section
is essentially independent of the scale choice, and roughly equal to the value of the fixed-
order cross-section at u = pup = pr = mg/2. In particular, at © = mpg/2 the effect
of the resummation on the N3LO cross-section is completely negligible, and in the range
p € [mm/4,mp|, the effect of the resummation is captured by the scale uncertainty at
fixed order (albeit at the upper end of the uncertainty band). Hence, the fixed-order result
at N3LO for p € [mpy /4, my] contains the value of the cross-section at N3LO+N3LL. This
corroborates our claim made at the end of section 3 that at N3LO the scale uncertainty
provides a reliable estimate of higher-order corrections at N4LO and beyond.

We conclude this section by studying the impact of changing the prescription of which
terms are exponentiated in Mellin space. The resummation formula eq. (4.7) exponentiates
the large-N limit of the fixed-order cross-section eq. (4.6), and as such it is only defined up
to subleading terms in this limit. It is therefore possible to construct different resummation
schemes that formally agree in the limit N — oo, but that differ by terms that are sup-
pressed by 1/N. In particular, we may change the exponent in eq. (4.7) to Gg(as, L(N)),
where L(N) is any function on Mellin space such that L(N) = log N + O(1/N). In the
remainder of this section we study the impact on the Higgs cross-section of different choices
for L(N') that have been considered in the literature (see, e.g., ref. [38]):

5We note, though, that the Padé approximation was obtained under the assumption of Casimir scaling
of the cusp anomalous dimension, an assumption which is likely to break down at four loops.
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Figure 11. Scale variation with ¢ = ur = pr at all perturbative orders through N3LO within
Setup 1, resummed at the corresponding logarithmic accuracy. The fixed-order cross-sections are
shown for comparison.

1. (PSI): L(N) = 9(N), where ¢(N) = & logT'(N) denotes the digamma function.
This choice is motivated by the fact that the threshold logarithms appear as 1 (N)
in the Mellin transform of the soft-virtual partonic cross-section and that the Mellin
transform of the partonic cross-section is supposed to exhibit poles in Mellin space
rather than branch cuts.

2. (AP2): a different resummation scheme can be obtained by exponentiating the
Mellin transform of the Altarelli-Parisi splitting kernel. In particular, the function
L(N) = APsllog N] = 2log N — 3log(N + 1) + 2log(N + 2) allows one to exponen-
tiate the first two subleading terms as z — 1 coming from the Altarelli-Parisi splitting
function Pg(g) (2).

3. (PSI+AP2): combining the two previous variants, we obtain a new variant, corre-
sponding to L(N) = AP2[t)(N)] = 2¢0(N) — 3¢p(N + 1) + 2¢(N + 2).

All these schemes are formally equivalent resummation schemes, because they agree in
the large-N limit. However, the formally subleading corrections can have a significant
numerical impact. In figure 12 we show the cross-section predictions for the four different
resummation schemes discussed in this section. We observe that within our preferred range
of scales, u € [mpg /4, mp], all four schemes considered in this paper give results that agree
within the fixed-order scale variation at N3LO, giving further support to our claim that the
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Figure 12. Scale variation with y = ur = pup of the N3LO+N3LL cross-section within Setup 1 for
different resummation schemes. The fixed-order cross-sections are shown for comparison.

scale variation at N3LO provides a reliable estimate of the remaining missing perturbative
orders. We note, however, that outside this range of scales the different prescriptions may
differ widely, and we know of no compelling argument why any one of these schemes should
be more correct or reliable than the others. Based on these two observations, we are led to
conclude that threshold resummation does not modify our result beyond its nominal theory
error interval over the fixed-order N3LO prediction when the scales are chosen in the range
[mp /4, mg], and we will therefore not include the effects of threshold resummation in
Mellin space into our final cross-section prediction.

4.3 Threshold and 7w2-resummation in Soft-Collinear Effective Theory

In this section we discuss an alternative way to represent the soft-virtual cross-section
in Higgs production, based on ideas from Soft-Collinear Effective Theory (SCET) [32,
33, 102-104]. Just like in the case of threshold resummation in Mellin space, we start
by introducing the necessary terminology and review the main ideas, in particular the
resummation formula of refs. [39, 105, 106]. At the end, we combine the N3LO coefficient
functions with the SCET resummation and study its phenomenological impact. In our
analysis we closely follow ref. [105] (for a pedagogical review see ref. [36]). For a comparison
to Mellin space resummation see for example refs. [41, 42].

Using SCET factorization theorems, the partonic cross-sections at threshold can be
factorized into a product of a hard function H, a soft function S and the effective theory
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Wilson coefficient C', multiplied by the Born cross-section og. SCET provides a field the-
oretical description of these individual functions. They arise when effective field theory is
systematically applied and degrees of freedom corresponding to various energy scales are
integrated out. The individual coefficients are defined at the respective energy scales, but
the total cross-section is independent of these scales. The idea of the SCET formalism is
to exploit the factorization of degrees of freedom to derive and solve an evolution equation
for each coefficient in the cross-section separately. Consequently, one solves the renormal-
ization group equation for the hadronic cross-section, with the explicit aim to cure the
dependence of the cross-section on the various scales. We refer to the scheme outlined
above as SCET resummation.

A formula that achieves the aforementioned goals has been derived in refs. [39, 105].
It reads,

~SCET,th 3 2
6 (2 1) = 22 00 |C(mZ, 1) [P [H(my, 1) |” Ulmiy, 162, 17 i, 122) (4.9)
—£ - 2 (1—2)? —28vE
z m z e
x ———— S (log | "2 ) + 0, 12
1—2)1-% ( < 22 ) ©% | T2 ’
( ) IuS ( 5) fchA’Ycusp(N?wu'g)
with
—Ca/2A cus g’ ? 2 2
Uy, 4, i i) = U0 (mH> A2 e ) <5(M§)Oés(,ut2)2>
’ )t ’ -
Y as(E)?|\ 1 Buf)as (12)?

Here, C'4 = N, is the quadratic Casimir of the adjoint representation of SU(N.). The hard
function was computed through fourth order in refs. [39, 64] (in particular, see ref. [64]
eq. (7.6), (7.7) and (7.9)). The soft function was recently computed through N3LO in
refs. [85, 107]. We recomputed the soft function up to N3LO based on the soft-virtual
Higgs cross-section at N3LO of ref. [83], and we confirm the result of refs. [85, 107]. The
definition of A, and S, are given for example in ref. [39]. Yeusp 18 the cusp anomalous
dimension [30, 108-110]. The anomalous dimension 7y can be extracted from the QCD
form factor [64] and 7, corresponds to the coefficient of (1 — z) of the g — g splitting func-
tion [110]. In the previous expression, the soft scale p5, hard scale uj, and top-quark scale i
are the energy scales of the soft function, the hard function and the Wilson coefficient. The
function U mediates the evolution of the individual coefficient functions to the common
perturbative scale ;. We note that if we choose the scales according to u? = u% =p? =2,
then U(m?%, pu2, u2, up, p2) = 1, and eq. (4.9) corresponds to the fixed-order soft-virtual
cross-section. More precisely, if we expand the product of the soft and hard functions
and the Wilson coefficient through order a7, then we reproduce the fixed-order soft-virtual
cross-section at N"LO up to terms that vanish in the threshold limit.

Next, let us discuss the choice of the values of the scales u:, pup and us. First, it is
natural to choose the top-quark scale p; to be the top-quark mass, because this it is the only
other mass scale in the Wilson coefficient. Similarly, it seems natural to choose the Higgs
mass to be the hard scale entering the hard function H. The cross-section depends on the
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hard function via its modulus squared, a121d the hard function depends on the Higgs boson

mass via logarithms of the type log ( Z;H ) Choosing ,u,% = m%,, we have to analytically
h

continue the logarithms, which then give rise terms proportional to 72,

—m2 — 2 2 2 2
‘log <mH220) ) = ‘log <7Z£{> — iw‘ = log? (ng> + 72 (4.11)

M h h

In ref. [105] it was observed that at NLO the 72 term is responsible for a large part of
the perturbative corrections at this order. It was suggested to analytically continue the
hard function to the space-like region by choosing ,uz = —m%{. In this approach no 7 is
produced by the analytic continuation of the fixed-order hard coefficient, and the analytic
continuation from the space-like to the time-like region is performed in the exponential of
eq. (4.10). In the following we also adopt this procedure, which is sometimes referred to
as m2-resummation, and we choose the hard scale as u% = —m?,.

Finally, we have to make a suitable choice for the soft scale us. In refs. [103, 105] two

specific choices were outlined.

1. pr: the value of pus where the contribution of the second-order coefficient of the soft
function to the hadronic cross-section drops below 15% of the leading order coefficient.

2. prr: the value of ug that minimizes the contribution of the second-order coefficient
of the soft function to the hadronic cross-section.

Both of the above choices depend on mp and p, and following refs. [39, 103] we choose the
average of both scales,

pr(p,mp) + prr(p, mp)

s (p, mopr) = 5 : (4.12)

We have now all the ingredients to study the phenomenological implications of the
SCET resummation. We have implemented the resummation formula, eq. (4.9), into a
C++ code and combined it with fixed-order cross-section through N3LO. We write the full
SCET-resummed cross-section as

&iSJ%DET - &isfggfthr - &fj?ggithr 9 5 o T O EFT. (4.13)
K=y =Hs=Hi
The above formula matches the resummation to our fixed-order cross-section at N3LO
such as not to spoil our fixed-order accuracy, and resummation effects only start
contributing from N*LO. In our implementation we followed closely the public code
RGHiggs [39, 105, 106] and validated our results by comparison.

Unfortunately, not all anomalous dimensions required for the evolution of the N3LO
cross-section are known at this point. We therefore truncate all anomalous dimensions
at the maximally known order. Note that already at NNLO the unknown four-loop cusp
anomalous dimension would be required. We checked that the numerical dependence of
the result on the four-loop cusp anomalous dimension is small and insignificant for phe-
nomenological purposes.
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Figure 13. The Higgs boson production cross-section computed for the LHC using Setup 2 at
LO (green), NLO (orange), NNLO (blue), N3LO (red). Solid lines correspond to fixed-order (FO)
predictions and dashed lines to SCET predictions.

In figure 13 we show the hadronic cross-section as a function of a common scale p =
1R = wr. We observe that at lower orders there are significant differences between fixed-
order and SCET-resummed cross-sections. At N3LO, the scale dependence of the resummed
cross-section is flat over a wide range of scales. The dependence of the SCET-resummed
cross-section on unphysical scales is reduced overall. This can be regarded as a means to find
an optimal central value for our prediction. Comparing fixed-order and SCET-resummed
cross-section predictions at N3LO we find perfect agreement for ;1 = my /2, which supports
our preferred choice for the central scale. The upward bound of the uncertainty interval
obtained by means of scale variation is comparable to the one obtained for the fixed-order
cross-section. The lower bound of SCET-resummed cross-section scale variation interval is
well contained within the fixed-order interval.

To conclude the analysis, we also need to assess the stability of our result under a
variation of the soft, hard and top scales. We do this by varying these scales indepen-
dently. The top-quark scale u; and the hard scale up are varied by a factor of two up
and down around their respective central values, while the soft scale is varied in the inter-
val pis € [ps(mm/4, mu), ps(mm, mp)]. The effect of the variation of the hard, soft and
top-quark scales is of the order of £0.1% as noted already in ref. [39]. As the derived
uncertainty intervals and the central values of the SCET-resummed and fixed-order cross-
sections are in very good agreement, we will not consider the SCET-resummed cross-section
in subsequent chapters.

Let us conclude this section by commenting on the validity of using the 72-resummation
to predict constant terms at higher orders. Indeed, the exponentiation of the 72 terms
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makes a prediction for terms proportional to powers of 72, and it is of course interesting to
see if these terms capture the bulk of the hard corrections not only at NLO, but also beyond.
In particular, we can compare the numerical size of the constant term at N3LO predicted
by the exponentiation of 72 to the exact soft-virtual cross-section at N3LO of ref. [83].
Since we are interested in fixed-order predictions, we start from eq. (4.9) and we choose
the scales according to pu = py = ps = mpy and ,u% = —m?,. Note that choosing ,u,zl <0
amounts to exponentiating 72 terms to all orders. Next, let us assume that we know the
hard and soft functions to some order in perturbation theory, say through O(a?), and all
anomalous dimensions governing the evolution equations to one order higher than required
to obtain a result that is correct through order n. If we expand the SCET-resummed cross-
section in perturbation theory, then we will reproduce the exact soft-virtual cross-section
through O(a?). By expanding the SCET-resummed cross-section to one order higher we
obtain a prediction of terms proportional to powers of 72. We want to assess the quality
of this prediction by comparing it to the known values of soft-virtual cross-section at low
orders. For example, before the coefficient of (1 — z) at N3LO was computed, all plus-
distribution terms of the soft-virtual cross-section at N3LO were already known [91, 92].
We could thus have made a prediction for the coefficient of (1 — 2z) at N3LO based on
72 resummation. If we denote by C(gn) the coefficient of the distribution §(1 — z) in the
partonic soft-virtual cross-section accurate through O(a?), and where the term proportional
to a?*! was obtained from the exponentiation of 72, we obtain the following sequence of

predictions:

C¥ = 1414800, + 0 (a?)

M =1+4987a,+45.3502+ O (a?) |

C§2) =1+ 9.87as + 13.61a2 — 554.79 a2 + O (a}) ,
C®) =14 987a,+13.61a% +1124.31a3 + O (a?) ,

(4.14)

with as = as(m%). In the previous expressions the Wilson coefficient was set to unity
and the number of colours and light flavours are N, = 3 and Ny = 5 respectively, and we
truncated all numerical results after two digits. We observe that, in the scenario where
only the LO cross-section is known, we are able to predict the order of magnitude of the
NLO correction, and this prediction would indeed suggest large corrections at NLO. At
higher orders, however, the quality of the predictions deteriorates, and in C’(gm even the
prediction of the sign of the N3LO correction is wrong. Even if we include the coefficients
of the other distributions contributing to the soft-virtual cross-sections, we observe a sim-
ilar unsatisfactory pattern. We conclude that 72 terms originating from the systematic
exponentiation of the analytic continuation of the hard function constitute only one source
of large perturbative corrections to the Higgs boson cross-section, and hence on its own
this procedure of predicting higher orders does not provide reliable estimates of the missing
dominant corrections.
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okOr  15.05pb | oK 34.66 pb
Riook9r 16.00 pb | RLoohEY  36.84 pb
o0 16.00 pb |  oNLO 36.60 pb

ex;t ex;t
ol 14.94pb | olHO,  34.96 pb

o NLO
ng;t—i-b—kc 14.83 pb Uex%t+b+c 34.77 pb

Table 6. Quark-mass effects for the parameters of Setup 1.

5 Quark-mass effects

So far we have only considered QCD corrections to the effective theory where the top quark
is infinitely heavy. In this section we discuss effects that are not captured by the effective
theory, but that can still give rise to sizeable contributions. In particular, we discuss the
inclusion of quark-mass effects from top, bottom and charm quarks, to the extent that these
corrections are available in the literature. We start by discussing the effect of quark masses
at LO and NLO, where it is possible to obtain exact results including all quark-mass effects.
In order to stress the importance of including these effects, we remind that the cross-section
changes by +6.3% already at LO if the exact top-mass dependence is taken into account.
The exact mass dependence of the cross-section is also known at NLO [5-12, 43|, and we
can thus include all effects from top, bottom and charm quarks up to that order. The
value of the cross-section through NLO as we add quark-mass effects for the parameters of
Setup 1 (cf. table 1) is summarized in table 6. Beyond NLO finite quark-mass effects are
in general unknown, and they can at best be included in an approximate fashion.

Let us start by analyzing finite top-mass effects. The exact NLO cross-section is
approximated well by rescaling the EFT cross-section at NLO by the leading-order ratio
R0 defined in eq. (2.6). For example, within Setup 1 we have Rpo = 1.063, and we see from

table 6 that the rescaled NLO cross-section in the effective theory, Rro Ugl{:%, reproduces
NLO
ex;t

it has become standard to multiply the EF'T cross-section at NNLO by Ry, and we follow

the NLO cross-section o with full top-mass dependence within 0.65%. Because of this,
this prescription also for the N3LO coefficient.

In addition to this rescaling, in refs. [22, 23, 48, 49] top-mass corrections at NNLO
were computed as an expansion in mp/my, after factorizing the exact LO cross-section.
We include these corrections into our prediction via the term (515&%\;%%% in eq. (2.4). In
particular, we include the contribution from the subleading 1/m; terms for the numerically
significant gg and gg channels [49]. The gg channel increases the rescaled EFT cross-
section at NNLO by roughly +0.8%, while the ¢g channel leads to a negative contribution
of —0.1%, so that the total net effect is of the order of +0.7%. Note that the small size
of these effects corroborates the hypothesis that the cross-section in the effective theory
rescaled by Rpo gives a very good approximation of the exact result.

Despite the fact that the approximation is good, these contributions come with an
uncertainty of their own: the 1/m; expansion is in fact an expansion in s/m?, and con-
sequently it needs to be matched to the high-energy limit of the cross-section, known to
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leading logarithmic accuracy from k;-factorization. The high-energy limit corresponds to
the contribution from small values of z to the convolution integral in eq. (2.1). Since this
region is suppressed by the luminosity, a lack of knowledge of the precise matching term is
not disastrous and induces an uncertainty of roughly 1%, which is of the order of magnitude
of the net contribution. In conclusion, following the analysis of ref. [49], whose conclusions
were confirmed by ref. [23], we assign an overall uncertainty of 1% due to the unknown
top-quark effects at NNLO.

So far we have only discussed the effect of including top mass effects at NNLO. Despite
their suppressed Yukawa couplings, the bottom and charm quarks also contribute to the
Higgs cross-section, mainly through interference with the top quark. Indeed, we can easily
see from table 6 that the inclusion of bottom-quark effects at LO and NLO leads to sizeable
negative contributions to the cross-section, and hence it is not unreasonable to expect this
trend to continue at NNLO. Unlike the case of the top quark, however, the contributions of
the bottom and charm quarks at NNLO are entirely unknown. We estimate the uncertainty
of the missing interference between the top and light quarks within the MS as:

—= SoNLO 50NL£H)+
M €T er; c NNL ~ NNL
5(t,b, )M =+ SNLO (RLOOTRRTC + 81650 gpy) = £0.31pb,  (5.1)
ex;t
where
5U§LO = agI(LO - a}(O and 6U§NLO = U)N(NLO — U)N(LO . (5.2)

With respect to the NNLO cross-section with the exact top effects described in the previous
paragraph, this uncertainty is at the level of 0.6%, but it becomes slightly larger at lower
energies. For example, at a 2 TeV proton-proton collider it increases to 1.1%.

So far, we have assumed that all quark masses are given in the MS-scheme. We now
analyze how our predictions are affected if we use the on-shell (OS) scheme. In table 7 we
summarize the values of the NLO cross-sections with the quark masses of Setup 1 (MS)
and Setup 2 (OS) for a common scale choice urp = pur = mg /2. Moreover, the ratio Rro
as well as the Wilson coefficient multiplying the cross-section are functions of the top mass,
and so they are affected by the choice of the renormalization scheme.

First, let us comment on the use of the OS-scheme for the top-quark mass on the
Wilson coefficient. The analytic expression for the Wilson coefficient in the two schemes is
the same through NNLO but differs at N3LO (see appendix A). However, this difference
is compensated by the different values of the top-quark mass in the two schemes and the
numerical value of the Wilson coefficient in the two schemes at N3LO agrees to better than
a per mille (see penultimate line of table 7). Next, let us turn to the scheme-dependence
of Rpo. For the top mass of Setup 1 (MS), the value of this ratio is Rpo = 1.063, while
for the top mass of Setup 2 (OS), we find Rro = 1.066, i.e., the scheme dependence of the
rescaled EFT prediction is at the level of 0.3%.

Since the top mass runs in the MS-scheme, the LO cross-section acquires its own scale
dependence through the dependence of the top mass on the renormalization scale. In
figure 14 we compare the two approximations as a function of the renormalization schale u
in the MS—scheme. We observe that the scale variation of the rescaled-EFT cross-section
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MS 0s dosc

oo, 16.00 pb | 16.04 pb | 0.25%
old.,  14.94pb | 1424 pb | —4.8%
oL bre  14.83pb | 13.81 pb | —6.9%
ok 36.60 pb | 36.63 pb | 0.08%
ohey  34.96 pb | 34.49 pb | —1.3%
oM. 34.77pb | 34.04 pb | —2.1%

oNNEO 43.65 pb | 43.66 pb | 0.02%
R0 oNNEO 46.39 pb | 46.53 pb | 0.3%

oNpEO 45.06 pb | 45.06 pb | 0%
Rpo oppt©  47.88 pb | 48.03 pb | 0.3%

Table 7. Dependence on the renormalization scheme for the quark masses of Setup 1 and Setup 2.
The relative scheme dependence is defined as do*¢ = (695 /cMS — 1) x 100%.
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Figure 14. The dependence of the cross-section on a common renormalization and factorization
scale 4 = pp = pr in the EFT vs the EFT rescaled with the exact LO contribution in the
MS-scheme.

is slightly smaller. The variation of the rescaled N3LO cross-section in the scale range
p € [, mpg] is £1.3% (compared to £1.9% in the pure EFT, cf. section 3.3). Note
that in the OS-scheme the scale uncertainty is the same for the rescaled and pure EFT
cross-sections, because the ratio Ryo is a constant in this scheme.

The largest scheme dependence appears at LO and NLO due to the non-negligible
interference between top and light quarks (see table 7). At LO, the results for the cross-
section in the two schemes are in excellent agreement. However, including bottom and
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Kiis | Kos | Rifeme | Pichome
o1 2.288 | 2.284 | 0.998 | 0.999
o 239 | 158 | 0.22 | 0.33
o0 258 | 1.38 | 0.05 | 0.09
Oerd 234 | 242 | 105 | 101
Tre 229 | 232 | 1.02 | 101
e 241 | 155 | 018 | 0.28
oribie | 235 | 247 | 107 | 1.0
Griie—or | 156 | 116 | 053 | 0.71

Table 8. NLO K-factors (K = ¢ /¢™©) in the MS and OS schemes and the ratio of the cross-
sections (Rscheme = o™ /09%) at LO and NLO, for various quark flavor combinations in the loops.

charm quark loops gives rise to substantial differences, which at LO are as large as —6.9%.
While the difference between the two schemes is reduced to —2.1% at NLO, it still remains
larger than the uncertainty estimate of eq. (5.1).

From table 8 it becomes evident that the difference between the results in the two
schemes originates from the light-quark contributions. The first line of table 8 shows that,
if we only include mass effects from the top quark through NLO, then the results in both
schemes are in perfect agreement. Fortunately, light-quark contributions are suppressed in
the Standard Model in comparison to the pure top-quark contributions. Indeed, if we set
the top-quark Yukawa coupling to zero and only include contributions from bottom and
charm quarks (see third line from the bottom of table 8), we observe that the NLO cross-
section in the MS scheme is only about a third compared to its value in the OS-scheme.
Similarly, the value of the cross-section changes by an order of magnitude between the two
renormalization schemes if only the charm-quark loop is included and both bottom and
top-quark Yukawa couplings are set to zero. The very large size of the differences between
the two schemes shed some doubt on how well we control the perturbative corrections
due to light-quark masses even at NLO. Nonetheless, it is at least encouraging that the
scheme dependence of the contributions from bottom and charm quarks alone is signifi-
cantly smaller at NLO than at LO. Moreover, since the cross-section is dominated by the
top quark, the overall scheme dependence due to the light quarks is significantly reduced
when the top-quark Yukawa coupling is set to its physical coupling.

For our purposes, the most interesting contribution is oyypy. — 0y in the last line of
table 8, which is the difference between the exact cross-section and the cross-section when
all Yukawa couplings, except for the Yukawa coupling of the top quark, are set to zero.
This part of the cross-section is only known through NLO and is not captured (at least
not in any direct or trustworthy way) by existing NNLO computations. We observe that
the NLO K-factor of this contribution is smaller than the NLO K-factor of pure top-

SFor first steps towards computing this contribution at NNLO we refer the reader to ref. [111].
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Top quark Bottom quark Charm quark

dmy =1GeV | o0E0, . 34.7T | 6my = 0.03GeV | oJL0, - 34.77 | dme = 0.026GeV | 000, 34.77
me + dmy USLI;&HC 34.74 my + dmy ng%gb+c 34.76 me + Ome J}i&gbﬂ 34.76
mg — omy JELI;&HC 34.80 my — omy Uel:\ch;Serrc 34.79 me — OMe O-flz\lcl;ng+c 34.78

Table 9. Parametric uncertainties on quark masses.

quark contributions in the cross-section. Therefore, we anticipate that the estimate of the
magnitude of the o,y — oy correction at NNLO, based on the size of the top-only NNLO
K-factor in eq. (5.1), is a conservative estimate within the MS-scheme. However, as we

notice from the value of RSNC%Sme, there is a scheme dependence of ~ 30% at NLO. Our

preferred scheme is the MS-scheme due to the bad convergence of the perturbative series for
the conversion from an MS mass to a pole mass for the bottom and charm quarks [112, 113].
To account for the difference with the OS scheme, we enlarge the uncertainty on oy pq.—0y,
as estimated via eq. (5.1) within the MS scheme, by multiplying it with a factor of 1.3,

5(t,b,c) = 1.365(,b,c)MS . (5.3)

Let us conclude this section by commenting on the amount by which the cross-section
changes when the values of the quark masses used as input vary from those of Setup 1.
As argued in the previous section, the dependence on the rescaled EFT cross-section on
the top-quark mass is extremely mild. We will therefore focus in this section on the exact
QCD corrections (including the light quarks) through NLO, and we study the variation
of the cross-section when the quark masses are varied following the internal note of the
HXSWG [90], which either conforms to the PDG recommendation or is more conservative
(see table 9). We see that the parametric uncertainties are entirely negligible, at the level of
0.1% or below. Finally, the parametric uncertainty on the ration Ry,o does not exceed 0.1%.
For this reason, we will not consider parametric uncertainties on quark masses any further.

6 Electroweak corrections

So far we have only considered higher-order QCD corrections to the gluon fusion cross-
section. However, in order to obtain precise predictions for the Higgs cross-section also
electroweak (EW) corrections need to be taken into account. The EW corrections to the
LO gluon fusion cross-section have been computed in refs. [43-45]. For a Higgs mass of
mpy = 125 GeV, they increase the LO cross-section by 5.2%, and we take these corrections
into account in our cross-section prediction.

Given the large size of the NLO QCD corrections to the Higgs cross-section, we may
expect that also the EW corrections to the NLO QCD cross-section cannot be neglected.
Unfortunately, these so-called mixed QCD-EW corrections are at present unknown. The
contribution from light quarks, which at O(agwa?) is the dominant one accounting for
~ 95% of the total EW corrections at that order, was computed in ref. [46] within an
effective field theory approach where the W and Z bosons are assumed heavier than the
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Higgs boson and have been integrated out. This has the effect of introducing EW correc-
tions to the Wilson coefficient describing the effective coupling of the Higgs boson to the
gluons in eq. (2.5),

CECQCD—i-)\EW (1+Clwa5+02wa§+...), (6.1)

where Cqcp encodes the pure QCD corrections to the Wilson coefficient, Agw denotes
the EW corrections to the LO cross-section of ref. [44] and C4,, are the mixed QCD-EW
corrections in the EFT approach of ref. [46]. The value of the coefficient C1,, is [46]
7

Cry = 6 (6.2)
Adopting the modification of the Wilson coefficient also for higher orders in a4 leads to a
total correction of 5.0%. We stress that the numerical effect of this correction is very similar
to that of the ‘complete factorization’ approach to include EW corrections of ref. [44], which
lead to an increase of the NLO cross-section by 5.1%.

The effective theory method for the mixed QCD-EW corrections is of course not en-
tirely satisfactory, because the computation of the EW Wilson coefficient assumes the
validity of the mpg/my expansion, V' = W, Z while clearly mpg > my. We thus need to
carefully assess the uncertainty on the mixed QCD-EW corrections due to the EFT ap-
proximation. In the region mpy > my, we expect threshold effects to be important and
one should not expect that a naive application of the EFT can give a reliable value for the
cross-section. However, in eq. (6.1) the EFT is only used to predict the relative size of QCD
radiative corrections with respect to the leading order electroweak corrections. This can
only vary mildly above and below threshold. For phenomenological purposes, we expect
that the rescaling with the exact Agw in eq. (6.1) captures the bulk of threshold effects at
all perturbative orders. To quantify the remaining uncertainty in this approach, we allow
the coefficient C1,, to vary by a factor of 3 around its central value in eq. (6.2). We do this
by introducing a rescaling factor y, by

)\Ew(l—i—Clwas—l—...)—>/\EW(1+y,\Clwas—|—...). (6.3)

Varying y) in the range [1/3,3], we see that the cross-section varies by —0.2% to +0.4%.
We summarize the dependence of the cross-section on y, in figure 15. Note that the result
obtained by assuming complete factorization of EW and QCD corrections (marked by ‘CF’
in figure 15) lies in the middle of the variation range, slightly higher than the y), = 1
prediction. Finally, we stress that the choice of the range is largely arbitrary of course. It
is worth noting, however, that in order to reach uncertainties of the order of 1%, one needs
to enlarge the range to yy € [—3,6].

An alternative way to assess the uncertainty on the mixed QCD-EW corrections is to
note that the factorization of the EW corrections is exact in the soft and collinear limits
of the NLO phase space. The hard contribution, however, might be badly captured. At
NLO in QCD, the hard contribution amounts to ~ 40% of the O(a?) contribution to the
cross-section, where we define the hard contribution as the NLO cross-section minus its
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Figure 15. Relative EW corrections as a function of the parameter y, defined in eq. (6.3). Within
the range yy € [1/3,3] the EW corrections are modified by —0.2% to 40.4%. The EW correction
under the assumption of complete factorization (CF) lies in the middle of the variation range.

soft-virtual contribution, i.e., the NLO contribution that does not arise from the universal
exponentiation of soft gluon radiation (see section 4). In the notation of section 3 the hard
contribution is defined as the convolution of the parton-level quantity

~(1),hard 9
05 T|Col® 3 (1)reg
= ) 4
z 8‘7 a’S 77@] (Z) (6 )

with the PDFs, which receive contributions from the gg, gg and ¢q initial state channels.
The mixed QCD-EW corrections are 3.2% of the total cross-section. Even if the uncertainty
of the factorization ansatz is taken to be as large as the entire hard contribution, we will
obtain an estimate of the uncertainty equal to 0.4 x 3.2% = 1.3% with respect to the total
cross-section.

An alternative way to define the hard contribution is to look at the real emission
cross-section regulated by a subtraction term in the FKS scheme [114]. We could then
exclude the contribution of the integrated subtraction term, which is proportional to the
Born matrix element, and hence of soft-collinear nature. We would then estimate the hard
contribution as ~ 10% of the O(a?) contribution to the cross-section, which would lead to
an uncertainty equal to 0.1 x 3.2% = 0.32%.

We note that the different estimates of the uncertainty range from 0.2% to 1.3%. We
therefore assign, conservatively, an uncertainty of 1% due to mixed QCD-EW corrections
for LHC energies. This uncertainty decreases for smaller collider energies as the soft con-
tributions become more important and the factorization ansatz becomes more accurate.
For example, at a 2 TeV proton-proton collider the most conservative estimate of the un-
certainty is 0.8%.
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Figure 16. Higgs production cross-section and the relative PDF+a, uncertainty at 68% C.L.
using the CT14, MMHT2014 and NNPDF3.0 sets, normalized by the central value obtained with
the PDFALHC15 combination.

7 PDF comparison

So far we have only discussed perturbative higher-order corrections to the partonic cross-
sections. The full hadronic cross-section is then obtained by convoluting the partonic
coefficient functions by the parton distribution functions. In the last few years signifi-
cant progress has been made towards the improvement of the PDF fits, also through the
inclusion of new data from collider and fixed-target experiments. We refer to the anal-
ysis in the latest PDFALHC working group paper [115] for a review of the updated sets
ABM12 [116], CT14 [117], JR14 [118], MMHT2014 [119], NNPDF3.0 [120] and HERA-
PDF2.0 [121], which are available through NNLO, as well as the NLO set CJ12 [122]. In
this section, we will compare the predictions from various pdf sets using Setup 1 and the
partonic cross-sections derived in the rescaled EFT through N3LO for a factorisation and
renormalisation scale p = myg /2.

The three sets that enter the PDFALHC fit (CT14, MMHT14 and NNPDF3.0) and
HERAPDEF2.0, are provided at the same value of the strong coupling constant as the global
PDF4LHC15 combination [115],

as(m%) = 0.118. (7.1)

This value is consistent with the PDG average [123].
In figure 16 we compare the 68% C.L. predictions from CT14, MMHT2014 and
NNPDF3.0 with those from the PDF4ALHC15 combination. For comparison purposes, in
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Figure 17. Higgs production cross-section and 68% C.L. PDF+a, uncertainty from the HERA-
PDF2.0 fit, normalized by the central value obtained with the PDF4LHC combination.

this section we combine (potentially asymmetric) PDF and o, uncertainties in quadrature,”

6+ (PDF + ;) = \/0+(PDF)2 + 64 (a,)2. (7.2)

From figure 16, we observe that the predictions obtained from the three sets that enter
the PDF4LHC15 combination lie well within 1% of each other over the whole range of
center-of-mass energies from 2 to 15 TeV. In particular, MMHT2014 and NNPDF3.0 agree
at the per mille level. The combined PDF+a, uncertainty is at the level of 3-4% for
LHC energies, and it captures very well the small differences in the predictions among the
different sets.

Good agreement with the PDF4LHC15 predictions is also obtained for LHC energies
using the HERAPDF2.0 set (figure 17). HERAPDF2.0 does not enter the PDF4LHC fit,
but is given at the same central value of as. However, these PDFs give a cross-section that
is about 6% lower at a pp-collider at Tevatron energies, and increase above the PDF4LHC15
predictions at higher center-of-mass energies.

The situation is very different for the ABM12 set, which uses a lower central value of
the strong coupling constant

oABM — (.1132 4 0.0011. (7.3)

"We note that the probabilistic interpretation of such an uncertainty combination in terms of confidence
level intervals is not straightforward, when the individual uncertainties are not symmetric [124]. For a
detailed discussion of the (PDF+as) uncertainty entering our final recommendation for the value of the
cross-section, see section 8.

— 37 —



1.05-

1.00

0.95F

0.90r

0101 HAPDF 0

abm12lhcSnnlo
0.85¢ —— PDF4LHC

CT14nnloas0113

0.80

0.75f

2 4 6 8 10 12 14
E(TeV)

Figure 18. Higgs production cross-section and 68% C.L. PDF+a; uncertainty from the ABM12
fit and from the CT14 set computed at a, = o2BM normalized by the central value obtained with
the PDFALHC combination.

This value is the result of the ABM fit. As one can see from figure 18, the ABM12 set
gives a prediction that is about 23% lower than the one from PDF4LHC15 at a pp-collider
at Tevatron energies, and 9-7% lower at LHC energies. The PDF+ay error is 1.2%, which
does not account for this discrepancy. We note here that the variation range for «a, used
for the PDF+a; variation in the ABM12 set is determined by the fitting procedure and is
slightly smaller than the range suggested by the PDFALHC recommendation [115].

To understand how much of this difference comes from the choice of a different value
of the strong coupling constant, we plot in figure 18 the prediction from CT14 at the same
value of o as the one obtained by ABM12. At o = 0.118 the predictions from CT14 are
in very good agreement with those from PDFALHC15 (figure 16). At a lower value of as,
CT14 gives a cross-section that is about 10% smaller than the result at ag = 0.118 (12% at
a pp-collider at Tevatron energies). The dependence on the center-of-mass energy appears
to be much milder than the one exhibited by ABM12. However, the PDF+a; uncertainty
might improve the agreement between the two sets. Unfortunately, only one error set for
CT14 at s = 0.113 is available, and we cannot assess this uncertainty.

8 Recommendation for the LHC

In previous sections we have considered various effects that contribute to the gluon-fusion
Higgs production cross-section at higher orders. In this section we combine all these effects,
and as a result we are able to present the most precise prediction for the gluon-fusion cross-
section available to date. In particular (for the Setup 1 of table 1) for a Higgs boson with a
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mass my = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13 TeV is

o = 48.58pb 52 PP (L2 (theory) & 1.56 pb (3.20%) (PDF+as) . (8.1)
Equation (8.1) is one of the main results of our work. In the following, we will analyze it
in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)
is the combination of all the effects considered in previous sections, it is interesting to see
how the final prediction is built up from the different contributions. The breakdown of the
different effects is:

4858pb = 16.00pb  (+32.9%)  (LO, rEFT)
+20.84pb  (+42.9%)  (NLO, rEFT)
— 2.05pb  (—4.2%) ((¢,b,¢), exact NLO)
+ 956pb  (+19.7%)  (NNLO, rEFT) (8.2)
+ 0.34pb  (+0.7%) (NNLO, 1/my)
+ 240pb  (+4.9%)  (EW, QCD-EW)
+ 149pb  (+3.1%)  (N3LO, tEFT)

where we denote by rEFT the contributions in the large-m; limit, rescaled by the ratio
Ry1,0 of the exact LO cross-section by the cross-section in the EFT (see section 5). All the
numbers in eq. (8.2) have been obtained by setting the renormalization and factorization
scales equal to myr/2 and using the same set of parton densities at all perturbative orders.
Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only
the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-
section in the rescaled EFT, and the third line, ((¢, b, ¢), exact NLO), is the correction
that needs to be added to the first two lines in order to obtain the exact QCD cross-section
through NLO, including the full dependence on top, bottom and charm quark masses.
The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section
in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled
by Rpro, and (NNLO, 1/m;) contains subleading corrections in the top mass at NNLO
computed as an expansion in 1/m;. The sixth line, (EW, QCD-EW), contains the two-
loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak
corrections, computed in an effective theory approach. The last line, (N3LO, rEFT), is
the main addition of our work and contains the N3LO corrections to the NNLO rEFT
cross-section, rescaled by Rpo. Resummation effects, within the resummation frameworks
studied in section 4, contribute at the per mille level for our choice of the central scale,
= mpg/2, and are therefore neglected.

Next, let us analyze the uncertainties quoted in our cross-section prediction. We
present our result in eq. (8.1) with two uncertainties which we describe in the following. The
first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the
perturbative description of the cross-section. Just like for the central value, it is interesting
to look at the breakdown of how the different effects build up the final number. Collecting
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all the uncertainties described in previous sections, we find the following components:

d(scale) (trunc) O(PDF-TH) S(EW) d(t,b,c) 5(1/my)
19 Ph 018 pb +0.56 pb  +0.49 pb  +0.40 pb  =£0.49 pb

B soan  ma e soes

In the previous table, d(scale) and d(trunc) denote the scale and truncation uncertainties
on the rEFT cross-section, and §(PDF-TH) denotes the uncertainty on the cross-section
prediction due to our ignorance of N3LO parton densities, cf. section 3. §(EW), 6(¢,b, ¢) and
0(1/my) denote the uncertainties on the cross-section due to missing quark-mass effects at
NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then obtained
by adding linearly all these effects. The parametric uncertainty due to the mass values
of the top, bottom and charm quarks is at the per mille level, and hence completely
negligible. We note that including into our prediction resummation effects in the schemes
that we have studied in section 4 would lead to a very small scale variation, which we
believe unrealistic and which we do not expect to capture the uncertainty due to missing
higher-order corrections at N*LO and beyond. Based on this observation, as well as on the
fact that the definition of the resummation scheme may suffer from large ambiguities, we
prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as
an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+a; uncertainty due to the determina-
tion of the parton distribution functions and the strong coupling constant, following the
PDF4LHC recommendation. When studying the correlations with other uncertainties in
Monte-Carlo simulations, it is often necessary to separate the PDF and «; uncertainties:

S(PDF)  §(ay)
+£0.90 pb  }3IPD

+2.61%
+1.86% 2%

Since the d(as) error is asymmetric, in the combination presented in eq. (8.1) we conser-
vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in section 7, the PDFALHC uncertainty estimate quoted above does not
cover the cross-section value as predicted by the ABM12 set of parton distribution func-
tions. For comparison we quote here the corresponding cross-section value and PDF+ay
uncertainty with the ABM12 set:®

oaBMI2 = 45.07pb 5 5P ) (theory) & 0.52pb (1.17%) (PDF-+as). (8.3)

The significantly lower central value is mostly due to the smaller value of ay, which
however is also smaller than the world average.

8We use the abm11_5_as nlo and abmil_5_as nnlo set to estimate the §(PDF-TH): these sets are fits
with a fixed value of as which allows us to compare NLO and NNLO grids for the same «; value. Using
this prescription §(PDF-TH)= 1.1% very similar to the corresponding uncertainty for the set.
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Ecym o d(theory) 0(PDF) d(as)

-+0.04pb /+4.06% +0.04pb (+3.36%
2TeV 1.10 pb " 0.000n (7 8507 + 0.03 pb (+ 3.17% o0ap (3 60%

) ) )

TTeV  1685pb  TITPP(FEakd) £ 0.32pb (£ 1.89%)  Foib(Rer)
8TeV ~ 2142pb TIPSR 1040 pb (£ 1.87%)  Fo2RR (o)
13TeV 4858 pb TIaL(Test)  £0.90 pb (£ 1.86%)  FiaPR (RS
14TV 5467 pb  FROLPD (HASSE) iy gpph (£ 1.86%)  IASRD(200%)

Table 10. Gluon-fusion Higgs cross-section at a proton-proton collider for various values of the
collision energy.

It is also interesting to compare our prediction (8.1) to the value one would have
obtained without the knowledge of the N3LO corrections in the rEFT. We find

NNLO _ +5.13 pb (10.9%) +1.48 pb (3.14%)
=47.02 pb T 700 (11 0g (theory) T g BY 516y (PDF+ay). (8.4)

The central value in eq. (8.4) is obtained by summing all terms in eq. (8.2) except for
the term in the last line (and acounting or the difference in the scale evolution). More-
over, we do not include the uncertainties §(PDF-TH) and ¢(trunc) from missing higher
orders in the extraction of the parton densities and from the truncation of the threshold
expansion (because the NNLO cross-sections are known in a closed analytic form). The
scale variation uncertainty d(scale) at NNLO is approximately five times larger than at
N3LO. This explains the reduction by a factor of two in the total &(theory) uncertainty
by including the N3LO corrections presented in this publication. We stress at this point
that uncertainties on the NNLO cross-section have been investigated by different groups
in the past, yielding a variety of uncertainty estimates at NNLO [50, 55, 56, 106, 125-128|.
Here we adopt exactly the same prescription to estimate the uncertainty at NNLO and at
N3LO, and we do not only rely on scale variation for the NNLO uncertainty estimate, as
was often done in the past.

Finally, we have also studied how our predictions change as we vary the center-of-mass
energy and the value of the Higgs mass. Our predictions for different values of the proton-
proton collision energy and a Higgs mass of my = 125 GeV are summarized in table 10.
In comparison to the official recommendation of the LHC Higgs Cross-section Working
Group earlier than our work [52], which we report in table 11, our results have a larger
central value by about 11%. The difference can be attributed to the choice of optimal
renormalization and factorization scale, the effect of the N3LO corrections, the different
sets of parton distribution functions and value of a; as well as smaller differences due to
the treatment of finite quark-mass effects. In comparison to the earlier recommendation
from some of the authors in ref. [126], table 12, our result has a central value which is
higher by 3.5%. The difference can be attributed to the effect of the N>LO corrections, the
different sets of parton distribution functions and value of a; as well as smaller differences
due to the treatment of finite quark-mass effects.

Additional cross-section predictions for a variety of collider energies and Higgs boson
masses can be found in tables 13-17 of appendix E.
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Eoum o d(theory) S(PDF + ay)
+7.1% +7.6%

7TeV 15.13 pb —7.8% —-71%
+7.2% +7.5%

8 TeV 19.27 pb —7.8% —6.9%

Table 11. Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton
collider by the Higgs Cross-Section Working Group [52].

Ecu o d(theory) §(PDF + ay)
+8.37% +7.79%
8 TeV 20.69 pb —9.26% —7.53%

Table 12. Earlier recommendation for the gluon-fusion Higgs cross-section at a proton-proton
collider by some of the authors in ref. [126].

9 Conclusion

In this paper we have presented the most precise prediction for the Higgs boson gluon-
fusion cross-section at the LHC. In order to achieve this task, we have combined all known
higher-order effects from QCD, EW and quark-mass corrections. The main component
that made our computation possible was the recent computation of the N3LO correction
to the cross-section in an effective field theory where the top quark was integrated out.
In an appendix we present analytic expressions for the partonic subchannels of the N3LO
partonic cross-sections which have not been presented elsewhere in the literature, in the
form of a series expansion around the threshold limit.

The N3LO corrections moderately increase (~ 3%) the cross-section for renormaliza-
tion and factorization scales equal to my /2. In addition, they notably stabilize the scale
variation, reducing it almost by a factor of five compared to NNLO. The N?LO scale-
variation band is included entirely within the NNLO scale-variation band for scales in the
interval [mg /4, my]. Moreover, we have found good evidence that the N3LO scale variation
captures the effects of missing higher perturbative orders in the EFT. We base this conclu-
sion on the following observations: first, we observed that expanding in «a, separately the
Wilson coefficient and matrix-element factors in the cross-section gives results consistent
with expanding directly their product through N3LO. Second, a traditional threshold re-
summation in Mellin space up to N3LL did not contribute significantly to the cross-section
beyond N®LO in the range of scales y € [my/4,my]. Although the effects of threshold
resummation are in general sensitive to ambiguities due to subleading terms beyond the
soft limit, we found that within our preferred range of scales, several variants of the expo-
nentiation formula gave very similar phenomenological results, which are always consistent
with fixed-order perturbation theory. Finally, a soft-gluon and 72-resummation using the
SCET formalism also gave consistent results with fixed-order perturbation theory at N3LO.
While ambiguities in subleading soft terms limit the use of soft-gluon resummation as an
estimator of higher-order effects, and while it is of course possible that some variant of
resummation may yield larger corrections, it is encouraging that this does not happen for
the mainstream prescriptions studied here.
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Besides studying the effect of QCD corrections in the EFT at high orders, we also inves-
tigated the cross-section in the EFT after inclusion of exact LO and NLO QCD corrections
in the full Standard Model theory (with finite top, bottom and charm quark masses) and
1/my corrections at NNLO. We also included known two-loop electroweak corrections and
an estimate of three-loop mixed QCD-EW corrections into our final prediction.

No prediction for the cross-section would be complete without estimating the residual
uncertainties that may affect our result. We have identified several sources of theoretical
uncertainties, namely, the truncation of the threshold expansion, the QCD scale variation,
missing higher-order corrections in the extraction of parton densities, missing finite quark-
mass effects beyond NLO and missing mixed QCD-EW corrections. After adding all these
uncertainties linearly, we obtain a residual theoretical uncertainty of about 5-6%. We
have also studied the sensitivity of the cross-section on the choice of parton distribution
functions. The CT14, MSTW and NNPDF sets are in good agreement among themselves,
and have been combined together according to the PDFALHC recommendation. They yield
a combined uncertainty due to both a, and parton densitites of the order of ~ 3.5%. The
PDF4LHC sets give cross-section values that are in good agreement with the cross-section
as computed with HERAPDF sets. However, the ABM12 set of parton densities yields
results which are significantly lower and outside the quoted range of uncertainty.

We expect that further progress can be made in order to improve even more the
precision of our computation. A forthcoming computation of the N3LO cross-section in the
EFT in a closed analytic form will remove the truncation uncertainty. Future computations
of the NNLO QCD cross-section in the full Standard Model (including finite top, bottom
and charm masses) and a complete computation of three-loop mixed QCD-EW corrections
will remove further significant sources of uncertainties. Progress in the determination
of parton densities, with more precise LHC data and more precise computations of cross-
sections used in the extraction of parton densities, will be crucial to corroborate the PDF +
a, uncertainty and to resolve discrepancies due to systematic effects.

To conclude, we have presented the predictions for the Higgs boson cross-section in
gluon fusion, based on very high orders in perturbation theory. In this way, we have
obtained the most precise prediction of the Higgs boson production cross-section at the LHC
to date. We are looking forward to comparisons of our results with precise measurements
of the Higgs boson cross-section at the LHC in the future.
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A Analytic expression for the Wilson coefficient

In the effective theory (i.e., for Ny light flavors), with the top quark decoupled from the
running of the strong coupling constant, the MS-scheme Wilson coefficient reads [17, 20]

VS Gs 11 2777 19 m? 67 1 m?
- 1+ ag— S g (M)~ N =
¢ 31){ sy +a5[288 16 &\ 2 f\gs T308 2
6865 77 m? 1 m?
3
(222 L 1 N2 Al
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The analogous result in the on-shell scheme can be derived combining the OS decoupling

1472 T oz16 T gr 8\ 2 288

constant (, and the OS Wilson coefficient with a,, running in the full theory, that one can
find in the literature (see, for example, refs. [17, 20]). The result is
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In this section we describe our numerical implementation of the inverse Mellin transform,
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B Numerical implementation of the Mellin inversion

c+i00
Ugg(T):/c v - Nf2( ) Ggg(N), (B.1)

oo 2m

where fy(N) are the Mellin moments of the gluon density and 644(/N) the (resummed)
partonic cross-section. The integration contour is the straight vertical line Re(N) = ¢,
chosen according to the minimal prescription [29], i.e., all the poles in G44(N) lie to the
left of the contour, except for the Landau pole in Mellin space, which lies to the right of
the contour. The position of the Landau pole in Mellin space is given by

1
Np=exp———5—. (B.2)
28y as (H2R)
We parametrize the integration contour as N = ¢ + it, and we obtain
_ dt _ N .
Ogg(T) =T /0 - — Re [ it f;(c—i- it) Ggg(c+ zt)] . (B.3)
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In order to evaluate the integral, we need to know the Mellin moments of the gluon density
for complex values of the Mellin variable N. To our knowledge, the public PDF sets do not
provide grids which allow one to immediately obtain the Mellin moments of the PDFs, and
so we need to use our own method to perform the inverse Mellin transform in eq. (B.3).
This method is described in the remainder of this appendix.

We start by truncating the integral (B.3) at some large value t,ax, and we approximate
the integral over the range [0, tymax] by a Gauss-Legendre quadrature of order [,

T4g(T) = T_Timax Zl: wj Re [T’“(k” 12 (e+itd") oo (c+it)] (B.4)
k=1

where t,(j) = trﬂ% (1 + u,(j)>, and ug) are the zeroes of the [-th Legendre polynomial P;(x).
The Gauss-Legendre weights are given by

1
= o R () ;_I(U;D) | o) - 1P, (u,?’)QPz_l(ué”) -

where a; denotes the coefficient of 2! in Pj(x). The advantage of eq. (B.4) is that we
only need to know the Mellin moments of the gluon density on the finite set of points
N ,gl) =c+ ZtmT“ (1 =+ u,&”). We can evaluate these Mellin moments numerically once and

for all (for a given PDF set and factorization scale) and store them in a grid,
1
l () _
£, (N; >) - /0 dea™e 1, (2) . (B.6)

Note that the integral (B.6) is numerically convergent for Re (N ,g”) > 0.

Equation (B.4) is our master formula for the computation of inverse Mellin transforms.
We have generated grids f, (N ,gl)) for various choices of PDF sets and factorization scales,
making it straightforward to compute eq. (B.4) for any of these choices. Let us make
some comments about the master formula (B.4). First, we see that the right-hand side of
eq. (B.4) depends on three free parameters: the real part ¢ of the integration contour, the
truncation ¢y, and the order [ of the Gauss-Legendre quadrature. While the inverse Mellin
transform must obviously be independent of these parameters, they may introduce some
systematic uncertainties. In our implementation we choose ¢ = 2.5, and we checked that
the value of the integral remains unchanged under small deformations of this value. Next,
it is easy to check that the Mellin moments are highly suppressed for Im(N) > 1. In our
implementation we choose . = 125, and we checked that the contribution to the integral
from the range [100, 125] is completely negligible. Note that this implies that the bulk of the
value of the integral comes from the region where Im(N) is small. We therefore partition the
range [0, tmax| into subregions of increasing length, and in every subregion we approximate
the integral by a Gauss-Legendre quadrature of order [ = 20. In this way we make sure
that the sum in eq. (B.4) receives mostly contributions from points where Im(N) is small.

Finally, let us briefly comment on the choice of the straight-line contour in the inverse
Mellin transform. Indeed, we could deform the contour such as to maximize the convergence
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of the numerical integration. In particular, in ref. [129] it was argued that the inverse Mellin
transform converges faster if the contour is chosen as N = ¢ + t exp(i¢), 7/2 < ¢ < .
In this case, however, we have Re(N) = ¢ + t cos ¢, and so Re(IN) < 0 for large enough
t, which contradicts the convergence criterion for the integral (B.6). Hence, as we need to
perform the integral (B.6) numerically in our approach, we cannot choose the optimized
integration contour of ref. [129]. We note, however, that since it is sufficient to generate
the grids f, <N ,gl)> for a sufficiently large number of points once and for all, speed is not

an issue and we do not loose anything by choosing ¢ = 7/2.

C Numerical values for the coefficients of the threshold expansion

C.1 The gg channel

ni32res — —11089.328 + 1520.0814% + 8805.7669z% — 12506.9322°
— 440.32959z* + 1232.08732° 4 1646.42497° + 1781.8637z"
+ 1835.65552° + 1861.36122Y 4 1876.64282'% + 1888.2649z"
+1899.17497'% 4+ 1910.7995z3 + 1923.8791z'* + 1938.8053z1°
+ 1955.77427'6 4 1974.86432'7 + 1996.0810z'® + 2019.38362"°
+2044.7025z%° 4 2071.951022" + 2101.03312%% + 2131.8486z°
+ 2164.29687%* 4 2198.27857%° + 2233.69762%° + 2270.46217%"
+ 2308.48452%8 4 2347.681922° 4 2387.9764730 4 2429.294673"
+ 2471.56787%% 4 2514.73172% + 2558.72612% + 2603.49472%
+ 2648.985023¢ 4 2695.1477737

(C.1)

niS1res — 15738.441 — 13580.184% + 1757.56462% + 16078.8842°
+ 82.9470702* + 222.786972° + 947.713192° 4 1490.0998z"
+ 1869.96582° + 2145.30182% + 2354.6608%'° + 2520.8158% !
+2657.143721% 4+ 2771733123 + 2869.69912' + 2954.4505z1°
+ 3028.383421¢ 4 3093.26547'7 + 3150.45547'8 + 3201.0314z"7
+ 3245.87022%° 4 3285.69787%! + 3321.12372%% + 3352.66497%3
+ 3380.76392%* 4 3405.801922° 4 3428.109172¢ + 3447.97347%7
+ 3465.64667%° 4 3481.34997%% 4 3495.2787z% + 3507.6057z%
+ 3518.484473% 4 3528.0516233 + 3536.429423* + 3543.72722%
+ 3550.043423¢ 4 3555.4664237
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n{y0)TeE = —5872.5889 + 13334.4407 — 8488.6090z” — 4281.15682°

+ 2157.5052z* + 907.63249z° + 234.32211%°% — 49.1794287"

— 157.428722% — 187.57931z° — 182.18174z° — 160.17000z!!
— 130.14932z'2 — 96.114987z'% — 59.980602z'* — 22.710016z"°
+ 15.1722277'% + 53.3506622'7 + 91.615033z'% + 129.81315z"7
+ 167.828932%0 4 205.5715472" 4 242.96939z%% + 279.966317%3
+ 316.518762%* + 352.593612%° + 388.166302%° + 423.21933z%"
+ 4577409828 4 491.724187%° 4 525.16567z%0 4 558.0652473
+ 590.4251023% 4 622.24942733 + 653.5439123* + 684.315462°
+ 714.5719023¢ 4 744.32176237

C.2 The gg channel

n§

S2)re8 — 513.56298 — 754.78793% — 280.974947% — 2.0101406>

+ 503.52967z* + 627.899912° + 691.455522° + 733.607532"

+ 765.147882° + 790.663082” + 812.575477z'% 4+ 832.30620z "'
+ 850.734812'% 4 868.421842'3 + 885.73010z'* + 902.89588%1°
+920.072622'% 4 937.358662'7 + 954.815287'® + 972.478672"°
+990.367947%0 4+ 1008.490622" + 1026.84647%% + 1045.4298%
+ 1064.2318z%* + 1083.24142%° + 1102.44642%5 + 1121.8338z%"
+1141.39042% 4 1161.103422° 4 1180.96002°C + 1200.9479z3
+ 1221.055523% 4 1241.2716233 4 1261.585623* + 1281.98752%°
+ 1302.468023¢ + 1323.0182z%7

niShres — —313.98523 + 807.28021% + 673.016322% + 424.924372

— 94.523260z* — 16.1976672° + 53.689920z° + 107.82115%7

+ 152.201912% + 190.112272% + 223.24799z'° + 252.59416z
+ 278.805172'% 4 302.363202'3 + 323.647952" + 342.97017z"
+ 360.5896021¢ 4 376.72599z'7 4 391.566672'% + 405.27209z°
+ 417.980232%0 + 429.8101472" + 440.86488%7%% + 451.233897
+ 460.995062%* 4 470.21638%2° 4 478.957377%° 4 487.270302°7
+495.201152%8 4 502.790507%% 4+ 510.074232%° + 517.08417z%
+ 523.84857z%% 4 530.39259z%3 + 536.738682%! + 542.906927%
+ 548.9152523¢ 4 554.77980237
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(3,0),reg _
Tgg =

204.62079 4 94.711709z — 336.521272% + 51.214999z>

+ 240.58379z* + 132.453532° + 96.8325302° + 88.263488%"
+90.4757162° + 97.7018452% + 107.59956z'% + 119.06337z!
+ 131.49609z'2 + 144.536627'3 + 157.94768z'* + 171.564327'°
+ 185.26783%'6 4 198.97100z'7 + 212.60919z'® + 226.134302*°
+239.510722%0 4 252.7122972! + 265.720117%% + 278.52088%
+ 291.105637%* 4 303.468737%° + 315.607162%° + 327.51992z%"
+ 339.207532%% 4 350.671742%° 4 361.91520230 + 372.9412273!
+ 383.753662%% 4 394.356732%3 + 404.7549023 + 414.952842%
+ 424.9552973¢ 4 434.76706237

C.3 The gqq channel

(3,2),reg __
Nqq =

77(3,1),reg _

52.4898977 + 121.142252% + 546.261862>

+ 430.10665z" + 395.20262z° + 377.032447° + 365.05682z"

+ 356.305392° + 349.648322% 4 344.544227'° 4 340.68027z
+ 337.848487'% 4 335.896552'% + 334.70587z' + 334.180362'°
+ 334.240252'° 4 334.818152'7 4 335.85649z'8 4 337.30562z°
+ 339.12245720 4 341.269352z2" + 343.713302%% + 346.425202%
+ 349.379312%* 4 352.552772%° + 355.925227%0 4+ 359.47847z%7
+ 363.196202%% + 367.06378z%% + 371.06801z%° + 375.19698z%!
+379.4399123% 4- 383.787032% 4 388.229452%* 4 392.759102%°
+ 397.3686123¢ 4 402.05123237

—13.561787Z — 122.8388722 — 747.631227°

— 396.29959z* — 305.889342° — 259.427072° — 228.03650%"

— 204.06989z% — 184.61437z° — 168.25305z'° — 154.17060z*!
— 141.84193z'2 — 130.902587"% — 121.08653z'* — 112.19267z'°
— 104.065042%6 — 96.5803032'7 — 89.639462z'® — 83.162027z"°
— 77.0818762%0 — 71.344195z%! — 65.9031872%% — 60.7203152
— 55.7629512%* — 51.003310z% — 46.417609z%¢ — 41.985393z27
— 37.6889952% — 33.513090z%° — 29.444339z%0 — 25.471089z3!
— 21.5831272%2 — 17.7714787%3 — 14.028228734 — 10.346383%%°
— 6.71974862%0 — 3.14282137%7
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SO — 377075162 + 64.8368672% + 370.642512°

+99.620940z" + 86.612810%2° 4 95.4258372° + 108.12237z"
+121.731227% + 135.505712% + 149.18659z'° + 162.65901z
+ 175.86438712 4 188.77159z'% + 201.365227'* + 213.63958%'°
+ 225.595302'6 4 237.237132'7 4 248.572492'8 + 259.61045z"7
+ 270.36110z%° 4 280.8350022! + 291.042932%% + 300.99558%2
+ 310.703472%" 4 320.176812%° + 329.425457%° + 338.458847%7
4 347.286012%% 4 355.915552%% + 364.355642%° + 372.61407z%!
+ 380.69820232 + 388.6150323 + 396.37117z3* + 403.972917°
+ 411.42620z%5 + 418.73668z%"

(C.9)

C.4 The gqq channel

niS2res = 52 4898977 + 115.8829922 + 206.89141%
+237.16727z* + 253.853122° + 264.506902° + 271.88762%"
4 277.477247° + 282.110362” 4 286.265942'% 4 290.22209z'
+ 294.14093712 4 298.11608z'% + 302.20004z'* + 306.42029z'°
+ 310.789047'¢ + 315.309142'7 + 319.97778%'8 + 324.78884z"7
4 329.734347%° 4 334.805402" 4 339.9928072% + 345.28737%%3
4 350.680232%* 4 356.162872%° + 361.727297%° + 367.365987%"
+ 373.07194228 4 378.8386972% + 384.660212° + 390.53096z3
4 396.445822% 4 402.4000823% 4 408.3893823* + 414.4097223°
+ 420.4574273¢ 4 426.52908%37

(C.10)

n{Eree = —13.5617877 — 100.443812% — 197.028972°
— 201.495052* — 196.70233z° — 189.72948%5 — 181.90181%7
—174.013052% — 166.44104z° — 159.32993z10 — 152.70888z!!
— 146.55489z'2 — 140.824087% — 135.46673z'* — 130.43420z"°
—125.68188z%0 — 121.170162'7 — 116.864512'% — 112.73513z"7
—108.75638z%° — 104.90636z%! — 101.166282%% — 97.520078%2
—93.9540092%* — 90.4562742% — 87.01674922° — 83.626728%27
—80.2787162% — 76.9662512%° — 73.683754230 — 70.426402z3
— 67.1900212%2 — 63.97099623% — 60.766195z3* — 57.5729012
— 54.3887562%0 — 51.2117162%7

(C.11)
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n{F00res = —39.014783% + 16.2149792% + 49.5249602
4 45.647897z% + 49.1926487° + 56.5344302° + 65.488703z"
+ 75.3084042° + 85.593580z% 4 96.0890422'° 4 106.625512"'
+ 117.09068%12 4 127.410952"% + 137.539257'* + 147.44661%'°
+ 157.1165221% 4 166.540942'7 + 175.717672'% + 184.64838z"7
+193.337427%0 4 201.79079z2" + 210.01561%2% + 218.01959z2
4 225.810762%* 4 233.397272%° 4 240.787187%° + 247.988417%7
+ 255.008672%% 4 261.8553872% 4 268.535687%° + 275.05640z3
4 281.4240723% 4 287.6449023% 4 293.7248223* + 299.669447°
+ 305.4841273¢ 4 311.17392z37

(C.12)

C.5 The qq’ channel

n321e8 = 59.4808077 + 115.957072% 4 207.097172°

+ 237.470762* + 254.231927° + 264.94538%° + 272.37440%7
+ 278.003887° + 282.670452% + 286.854497'0 + 290.83519z!*
4 294.775422'% 4 298.769382'% 4- 302.87003z'* 4 307.10519z"°
+ 311.487362¢ 4 316.01959z'7 + 320.69926z'% + 325.52041%"7
+ 330.475162%0 4 335.5547472% + 340.750022%% + 346.05189z
+ 351.451547%* 4 356.940522%° + 362.51087z%5 + 368.155112%7
4 373.866292%% 4 379.637952%% + 385.464112%° + 391.33924z3!
+ 397.2582573% 4 403.216432% 4 409.2094623* + 415.233352°
+ 421.2844373¢ 4 427.35932737

(C.13)

nf];”’reg = —13.561787z — 101.23393%2 — 199.2731423

— 204.58988%% — 200.32378z% — 193.676832° — 186.04539z"
—178.267352% — 170.74845z° — 163.6508421° — 157.01563z"*
— 150.82793712 — 145.04949z1% — 139.63457z'" — 134.53740z"°
—129.715452%0 — 125.130662'7 — 120.749642'® — 116.543447"7
—112.48710z%° — 108.559187%! — 104.74128%%% — 101.01763z2
—97.3746842%* — 93.8008092%° — 90.28600322¢ — 86.821649727
— 83.400317z% — 80.015589z%° — 76.66191320 — 73.334486z3"
— 70.029139232 — 66.74226123% — 63.470710z%* — 60.2117612
— 56.963043z%0 — 53.7224957%7

(C.14)
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n(3 00T — 38124370z + 21.9256962% + 62.5037452°

+ 62.740689z" + 68.7794152° + 77.6925712° + 87.6396742"
4 98.0793832° + 108.737382% 4 119.437532'° 4 130.06186z"*
+ 140.5323172 4 150.798752"% + 160.83049z'* + 170.61028%"°
4 180.130072"% 4- 189.388062'7 4 198.386642'% + 207.13098z"7
+ 215.62804220 4 223.8858472! + 231.9130022% + 239.71843%23
4 247.311082%" 4 254.699772%° + 261.893102%° + 268.899427%7
+ 275.726742%8 + 282.382717%% + 288.87465z%" + 295.20952z°!
+ 301.39392732 4 307.434147% + 313.3361123* + 319.10548%3°
+ 324.74760z%° 4 330.267512%7

(C.15)

D Color and flavor number dependence for the first coefficients of the
threshold expansion

In this appendix we present analytic result for the first few coefficients in the threshold
expansion for each partonic channel. We use the notation

0o 3 2
s 5§ $YNeNE e, [, a, by, (D.1)

n=0a=—3 b=0
The non-zero coefficients C;;[m, a, b, n] for m = 0,1,2 and n < 5 are given in the remainder
of this appendix.

D.1 The gg channel

Cyql2,3,0,1] = 22(235@ | 3626, — 362383855
Cyyl2,3,0,2] = 20205691259 - 30172242
Cunl2,3,0,4) = T2 41816, — e
Cyel2,2,1,0] = 54;58@ B %

Cool2,2,1,1] = %Zf’ _ 62294@

Cyl2,2,1,3] = 222;;15 - 10334“2

Cool2,2,1,4] = 12122339 - 105342
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174604379 2155C,

C99[27 27 ]., 5} =

5184000 144
C49[2,1,2,0] = %
Cygl2,1,2,1] = _%741
Cql2,1,2,2] = ;;;‘2
Cyg[2,1,2,3] = _%
Cyql2,1,2,4] = _%
Cygl2,1,2,5] = _%
Cygl2,0,1,0] = i
Cgg[2,0,1,1] = 1129462 B %
C49(2,0,1,2] = %
Cyol2,0,1,3] = 17336C2 B %
Cyg(2,0,1,4] = 17?)?%{2 B %
Cq[2,0,1,5] = 35792@ B 3591786460709
Cygl2,—1,2,1] = %
Cygl2,-1,2,2] = f%
Cygl2,-1,2,3] = %
Cogl2,—1,2,4] = (1;71
Cygl2,—1,2,5] = %
Cy9l2,—-2,1,1] = % _ %
099[2, -2,1,2] = _%
Coql2,~2,1,3] = %g _ %
Cogl2,—2,1,4] = % _ %
Cogl2,—2,1,5] = % B %
Corll:3,0.00 = 2317§<2 +362Cs + 77C4 — %487
Cyol1,3,0,1] = — 142;55(2 B 1101923C3 i s 1012;25
Coql1,3,0,2] = 265’;1874“2 . 1613165§3 - 644531299
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C4(1,3,0,3] =
C4q(1,3,0,4] =
C4q(1,3,0,5] =
Cggl1,2,1,0] =
Cggl1,2,1,1] =
Cygl1,2,1,2] =
Cggl1,2,1,3] =
Cggl1,2,1,4] =
Cggl1,2,1,5] =
Cggl1,1,2,0] =
Cgl1,1,2,1] =
Cygl1,1,2,2] =
Cggl1,1,2,3] =
Cggl1,1,2,4] =
Cggl1,1,2,5] =
Cgg[1,0,1,0] =
Cgg[1,0,1,1] =
Cgg[1,0,1,2] =
Cy4g[1,0,1,3] =
Cgg[1,0,1,4] =
Cgg[1,0,1,5] =

Cyoll,—1,2,1] =
Cyll,—1,2,2] =
Cygll,—1,2,3] =
Cygll,—1,2,4] =

Cogll, —1,2,5] =

66785C2  3613(s 25909463
96 9 776+ 0368
| 513361C,  20779Cs I 5210522741
1440 90 * 7 75184000
| 5660203C; 27031 — 115009800821
21600 180 * T 7155520000
1813C;  223¢s 8071
72 12 324
673¢ | 349¢s 608693
9 ) 2592
L 1601C; 3 692437
48 6 ' 5184
4127¢, | 599¢; 741821
108 24 3456
101351, | 599¢; 263548441
4320 24 2592000
36493¢, | 18137¢; 515585813
2160 720 6480000
46 163
9 324
2195 11(
648 12
4109
1728
1619 17¢
576 36
720019 17¢
518400 36
130223 511¢,
129600 1080
Co 17
51 7367
| 239C;  365¢; | 142381
18 24 2592
147¢ 20647
16 432
5221¢;  889C; | 102361
432 72 1728
| 5120¢,  889C; | 14772497
864 72 829440
| 5363, 9137¢; | 313545373
1440 720 20736000
G 181
36 162
1187
864
G 725
36 648
G 599
36 2304
31¢, 136769

1080 1296000
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716 23¢; 245

CoollL 2 LU= v ~ )
47 109G
Cogll, ~2,1,2] = = — —2
1129¢;  14¢; 117785
1,-2,1,3 = -
Cogll: =2,1,3] = — o= + —5 10368
1313¢;  14¢; 655181
1,-2,1,4] = -
Cogll, =2,1,4] 864 9 165888
25019¢,  19¢; 1041496027
1,-2,1,5 = -
Cogl1, =21, 5] 21600 T 12 311040000
725C3Cs  11183¢C,  32849(;  821(4 834419
= — - - -1
Cg9[0,3,0,0] 6 162 216 12 86Cs + 23328
725 2578495(C,  54373(;  9287(4 112071959
1 = —— 2 e
Cgo[0,3,0,1] 3 ©%2+ 55 51 T s 0% 46656
¢..[0,3.0 2}____1587065§Q__ 12167¢;  14905Cs | 136933337
ggl™h & 2l = 2592 2 144 93312
725 17524253¢,  315079(s  22799(4 7695352049
= — —-( 9 1 —_— —
Cos[0,3,0,3] 6 %2 0736 432 558 T 180% ~ —Sogsosa
725 225231577¢,  173857(; 58783(, 4501027226621
4 = -, 1 ittt el
Cos[0,3,0,4] 6 32T 618000 432 1240 8%~ 665600000
725 22725557Cs  378617¢C;  6739(, 6555187542491
= — ———— 1 —_—
Cos[0, 3,0, 5] 5 2 56000 1200 588 1 1906 ~ 5331300000
4579¢,  1789¢;  19¢, 527831
2.1,0] = _
Cgl0,2,1,0] 324 72 8 46656
60211¢,  670(;  569Cs 9673753
2.1,1] = — - -
Cogl0,2,1,1] 648 9 96 46656
111257¢,  1333¢Cs  17¢C; 26275573
2.1,2] = -
Cogl0,2,1,2] 9502 T 48 ' 36 186624
¢ 0.2.1 3}____42613(2__ 16411¢;  955C; _ 57063737
9915 % 5Pl = R4S 432 288 248832
¢ 0.2.1 4}____488026149__ 28189¢;  955(s | 9425777309
9915 = 5 T 99600 1080 288 ' 103680000
¢ 0.2.1 5}____1879457<g__ 907349¢s  9799¢; | 32259119399
9915 % 5 21T 64800 43200 2880 466560000
19 5C; 49
Cy0l0,1,2,0) = — 122 _ 36 | 29

36 27 729

677¢,  10Cs 59731
Cagl0:1,2,1] = —0= + 57" — 5333
36443 109G,

0,1,2,2] =
Col0,1,2,2] 15552 216
137¢;  5(3 79931
Cagl0:1,2,3] = == + 57 — 3308
1043¢s 53 66874081
0,1,2,4] = L ki
Cogl0,1,2,4] 1620 ' 27 46656000
35627¢s  5(3 6687083
C.o0,1,2,5] = o3
99[0:1,2,5] 64300 | 27 6220800
5,  149¢3 (4 5065
Cg[0,0,1, 0] 24 72 4 1728
3689¢,  2273(; 5Cy 401911
C0l0,0,1,1] = o1
99[0,0,1,1] 516 T 144 ' 3 7776
3859¢,  1199¢; 578489
Coul0,0,1,2] = — -
9910,0,1,2] 288 96 10368
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Cogl0,0,1,3) = 20002 | 20956 1Tt 23859
C,0[0,0,1,4] = 190991C;  36403Gs | 179, 705541369
20736 8640 96 49766400
C,0[0,0,1,5] = 2B19151C, | 318176, | 1801¢s 244316987519
9592000 | 21600 | 960 18662400000

Cygl0, —1,2,1] = % _ 727572

Cyyl0, —1,2,2] = %2 _ %

Cygl0, —1,2,3] = % _ 2197582

Cagl0, =1, 2,4} = 25438;9372 - 2?42

Con0:1:2:5 = 5 005~ 1500

Col0, —2,1,1] = _4;?2 _ 4323 2354 %

Cygl0,—2,1,2] = 11372C2 6553 B 4766783

ng[oa—27173]——%_%_% %

Conld: 2141 =~ 5~ o~ 15 Taooese

Coof0,—2,1,5) = 23700586 16916, 13G, 54978128417

1296000 2880 240 ' 18662400000
D.2 The gqg channel

Caol2,3.,0,0] = 17527%42 1632(3 - 14210407723

Cool2,3.0,1] = 452753;<2 1632(3 - 3111112;27

C,0[2.3,0,2] = 7224898<2 161:43 B 2;(1)%21

Cool2,3,0,3] = 16;2@ 161;43 - 1;13%25

Cool2,3.,0,4] = 9?;252 16;;43 - 2222;7);7

Cun2 80,5 = o + e oo

Cygl2,2,1,0] = % _ 1;5;;2

Cool2,2,1,1] = % _ 1;3;;2

Cpol2,2,1,2] = 12106763767 B lfiﬁz

Cogl2,2,1,3] = % _ 1?222

Cpol2,2,1,4] = 18127934743 B 1?222

Cogl2,2,1,5] = 2806703465030 - 1?222

Cool2,1,2,0] = ,%
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Cel2,1,2,1] =
Cel2,1,2,2] =
Cqel2,1,2,3] =
Cel2,1,2,4] =
Cegl2,1,2,5] =
C44[2,1,0,0] =
Cql2,1,0,1] =
C4l2,1,0,2] =
C4gl2,1,0,3] =
Cyl2,1,0,4] =
C4[2,1,0,5] =
C4[2,0,1,0] =
C4l2,0,1,1] =
C4[2,0,1,2] =
C4[2,0,1,3] =
Cyg[2,0,1,4] =
C4[2,0,1,5] =
Cyl2,—1,2,0] =
Cyel2,—1,2,1] =
Cygl2,—1,2,2] =
Cql2,—1,2,3] =
Cql2,—1,2,4] =
Cqgl2,—1,2,5] =
Cqgl2,—1,0,0] =
Cel2,-1,0,1] =

Cel2,—1,0,2] =

5

432
25

432
13
432
25
1728
29
8640
_ 1589C

42415

46025

288
~ 11845¢,

192
42415

13824
1439677

192
42415

576
_ 2665C

13824
1986127

72
_7019¢,

96
42415

13824
4076855

288
1903,

96
42415

41472
35022785

144
~ 15013¢

96
42415

663552
302835701

2830 96

596, _ 215
72 288
59¢, 6229

72 1728
59¢; 329

36 48

48
59¢, 21001
36

5184
59(2
36

69071
41472
59(; 516223
36
11
432

1036800
5

432
2
432
13
432
25
1728
29
8640

541G, 485Cs

9216000

14087

192
979(,  485(s

96

41472
966503

192 96

41472
237743

2697¢, 4853
192 48

5184
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4883 485 7263
Copl2,—1,0,3] = 12832 | 485C;

576 48 256

Corle 1,041 = TP+ T oy

Cunle 1,05 = 6t + S0~ STt

Coyl2,—2,1,0] = % _ %

Cagl2,~2,1,1] = %4678 _ %

Cogl2.—2,1,2] = % _ %

Cagl2,—2,1,3] = ”6‘% _ %

Cgl2.—2,1,4] = % _ %‘2

Coal2,—2,1,5] = 65971323010 _ %2

C%A27__3’0’0]::__2352'_ 1?353'_ 1556

L -

cunsan- o e 40

.

Cunlt 3,04 = =25 = T+ e

Cygl2,—3,0,5] = —12282 _ 1%?%4“3 183219243219090007
Cyyll,3,0,0] = f’ﬁ;g? _ 287?;<s - 8791644 1264481803123
Cool1,3,0,1] = 00599 _ 9739Gs _ 8TIC, | 45245365

1152 288 06 | 248832
Cqol1,3,0,2] = —791221;2 - 30;32’43 B 874184“4 25;2333
Cqol1,3,0,3] = —16§j;g<2 _ 20(?2(3 _ 81123(4 2?;5&:;29
Cyol1,3,0,4] = _398975C;  7661¢s  871¢y | 341816329
13824 576 48 ' 3981312

Cooll,3,0,5] = — D072, | 1087C; 871G, | 143432872057

345600 2880 48 2488320000
155¢s  125¢3 157411
1,0] = -
ng[1a27 0] 288 T 144 62208
361¢>  125(3 592291
1,2,1,1] = -
ng[ ,2,1,1] 288 T 144 62208

205¢2 . 125¢z 1036031

Coul1.2.1.2] = B

qg[ )&y 1y ] 9% + 5 63903
1073¢; | 125¢; 687467

Coul1.2.1.3] = B

qg[ )4y ] 364 + ™ 62908
551 125 3241357

Coll 2, 1,4] = 22062 | 125Gs

1728 72 497664
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Cql1,2,1,5] =
Cel1,1,2,0] =
Cyll,1,2,1] =
Cyll,1,2,2] =
Cygl1,1,2,3] =
Cygl1,1,2,4] =
Cyql1,1,2,5] =
Cy4g[1,1,0,0] =
Cgl1,1,0,1] =
Cqgl1,1,0,2] =
Cyggl1,1,0,3] =
Cyql1,1,0,4] =
Cqgl1,1,0,5] =
Cy4g[1,0,1,0] =
Cgl1,0,1,1] =
C4gl1,0,1,2] =
C4g[1,0,1,3] =
Cqgl1,0,1,4] =
Cy4g[1,0,1,5] =
Cqgll,—1,2,0] =

Cygll,—1,2,1]
Cell,—1,2,2] =
Cqll,—1,2,3] =
Cyll,—1,2,4] =
Cyll,—1,2,5] =

Cqgll,—1,0,0] =

__3101C2 125§3__ 12023201
8640 72 2488320
29
432
11
432
59
288
61
864
47
1728
13
1728
20545¢; | 2297C3 | 3787Cs 46859
3456 288 384 9216
241543 11645(3 378744__ 2069755
3456 288 384
330233 20977Cs 378744__ 489517
3456 288 192
241585 12959(5 378744__ 27336073
3456 288 192
202327¢ 6185(3 3787C44_ 491187695
4608 288 192 3981312
2218337(> 139C3+ 3787§44_ 24426241103
69120 30 192 276480000
473¢;  55(3 | 9859
432 36 3456
695¢;  55(3 39623
432 36 3456
689¢;  55(3 5873
216 18 288
137¢;  55C3 | 209369
72 18 15552
1015¢;  55¢3 | 977155
1728 18 124416
1103<2__ 55(3 22420963
2880 18 3888000
_ 29
432
1
432
_ 59
288
_ 61
864
_ 4T
1728
13
1728
T039C  85(s 53¢y 340909
3456 18 96 248832
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€l —1.0.1] =  65383C,  2071¢s 53¢y 11607347
ot AT 3456 288 96 248832
Cooll—1,0,2) = 130325¢;  12637¢s 53¢y | 11806439
it e 3456 576 48 124416
83435(,  7969(s  53(s 7098125
1,—1 =— — -
Cal1, =1, 0,3] 3456 576 48 124416
Cooll—1,0,4] = 235115¢;  1267¢s  53¢s 163055503
agity S 13824 144 48 3981312
CoolL—1,0,5] = | 4762843¢;  191¢s 53¢y | 27832701149
ol T 345600 36 48 829440000
481¢,  95(3 20051
1,-2.1,0] = —
Cagl1,=2,1,0] 864 + 144 62208
307C,  95(s 120923
1,-2.1,1] = -
Cogl1, =2, 1,1] 864 + 144 62208
911¢,  95(3 232537
1,-2.1,2] = —
Cogll, =2,1,2] 864 72 62208
571C,  95¢s 50003
1,-2.1,3] = —
Coll, =2,1,3] 864 72 20736
29¢,  95(3 222421
1,-2.1,4] = —
Cogll, =2,1,4] 108 72 165888
13¢;  95(s 58155383
Cooll,—2,1,5] = — —
sl ] 540 72 62208000
83, 65Cs 91¢s 431
1. — = — _ _
Cag[1,=3,0,0] 128 96 384 3072
613Ca 553 91Cs 3989
1,-3.0,1] = _ _
Cagl1,=3,0,1] 384 96 384 1024
517C,  49(s  91¢4 11945
1,-3.0,2] = _ _
Cagl1,=3,0,2] 128 24 192 1536
8327C»  53C3  91¢s 56939
1,— = — -
Cag[1,=3,0,3] 3456 48 192 13824
27109¢,  359(3  91¢s 4561379
1,-3.0,4] = — —
Cogl1,—3,0,4] 13824 576 192 1327104
CooL—3.0.5] = 125689¢, | 283¢s  91(y 7094805577
it T 69120 960 192 2488320000
505 3691¢,  34117¢C;  649(,  1687(s 1457441
0,3,0,0] = ——— - -
Cag[0,3,0,0] . 2t 1306 3456 2304 96 995328
505 624575(»  54085C3  17939¢,  1687¢s 59565061
0,3,0,1] = ——— -
Cag[0,3,0,1] 18 2 T 0363 864 2304 96 331776
505 168217¢,  143947¢5  2927(,  1687(s 118254245
0,3,0,2] = ——(: -
Cagl0,3,0,2] 51 3 T 5509 1728 288 48 497664
505 128537¢C,  76855(Cs  1285¢s  1687¢s 26723083
0,3,0,3] = ——(: -
Cagl0, 3,0, 3] 51 3 T 5502 1152 288 48 165888
505 1711207¢;  167051¢C3  261¢,  1687¢s 1182915463
0,3,0,4] = ——¢: - -
Cagl0,3,0,4] 51 2 T —goom 3456 256 48 15925248
C.0[0.3.0.5] = 505 ot 27596011¢, | 7045877Cs  57137¢s  1687¢; 737446993121
29152 T BT T a2 3456000 172800 11520 48 16588800000
139, 47¢; 193¢, 82171
C,.00,2,1,0] = — -
ag[0,2, 1,0} 324 27 576 = 248832
7163C,  1585C3 193¢, 2073437
C.o00,21.1] = — -
ag[0,2,1,1] 2592 864 576 248832
C.o0.2,1,2) = 529, 3401¢s | 193¢y | 1035035
WL =T 162 864 288 62208
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Cql0,2,1,3] =
Cql0,2,1,4] =
Cql0,2,1,5] =
Cq46l0,1,2,0] =
Cql0,1,2,1] =
Cel0,1,2,2] =
Cqel0,1,2,3] =
Cql0,1,2,4] =
Cql0,1,2,5] =
Cq610,1,0,0] =
Cql0,1,0,1] =
Cql0,1,0,2] =
Cq400,1,0,3] =
Cq00,1,0,4] =
Cq10,1,0,5] =
Cq4410,0,1,0] =
Cql0,0,1,1] =
Cq410,0,1,2] =
Cq4610,0,1,3] =
Cq10,0,1,4] =
Cq4410,0,1,5] =
Cql0,—1,2,0] =
Cqel0,—1,2,1] =
Cql0,—1,2,2] =
Cqel0,—1,2,3] =

Cqgl0,—1,2,4]

| 3133¢;  2801¢3 | 193¢y | 795053
1296 864 288 ' 93312
C1151¢  2039Cs | 193¢y | 18979949
1152 1152 ' 288 ' 5971968
24941, 35309¢s | 193¢y | 4717058237
86400 17280 ' 288 ' 3732480000
G 125
72 3888
59 (s
1944 72
(s 4573
36 15552
G 1051
36 15552
G 179
36 7776
G 139
36 15552
2807C3¢>  5833Cy  4001¢s T3¢  1447¢s | 53237
192 1296 432 64 64 995328
2807C3¢>  822677¢; 2592253  2081¢,  1447¢s 223748699
192 10368 3456 256 64 995328
2807C3¢>  2146133¢,  188917¢s  5365¢;  1447¢s | 162487697
96 20736 1728 384 32 497664
2807C3¢>  1519481¢;  2093Cs  371¢;  1447¢s | 106728905
96 20736 36 48 32 497664
2807C3¢>  6084335¢;  832939¢s  21791¢;  1447¢; | 1784995513
96 165888 13824 9216 32 15925248
2807C3C2  431450027¢,  17502863¢s | 1493Cs  1447¢s | 11203424776447
96 20736000 345600 1024 32 149299200000
229¢, | 1723¢s  5Cs 17219
324 864 32 124416
8471C,  1789¢;  5C 1205837
2592 864 32 124416
395C, | 4109¢s  5Cs 617845
81 864 16 31104
4427C; _ 3001¢s  5C: 945307
1296 864 16 93312
15587C; | 2015¢;  5Cs 2590181
10368 864 16 746496
153551¢, | 1291¢3  5(s 386889707
259200 864 16 373248000
G, 125
72 ' 3888
G 59
72 1944
C3 | 4573
36 ' 15552
G, 1051
36 ' 15552
G 179
36 T 7776
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G 139
195 =8 4 00
Cagl0, =1, 2,5] 36+15552
55 95C, 463Cs 2245, B545(s 422195
1 - _
Cagl0,=1,0,00 = =5Gso+ =% = e+ 5300 + 796+ 331776

bt G 2 S

ng [0, -1,0, 2] = _%CBQ + 48161(;52@ + 5117843 + 411224 + 5%255 — 13;2123

Culd: =108 = e+ S+ e+ S+~ T

Cool0, —1,0,4] = — % CaCa + 142;;22@ N 22167621843 N 63;324 N 5%15;(5 1960413023

ol =10.8) =~ i+ S i+~ i

5Ca  T3¢;  103¢, 15911

—-2,1,0] = — =2 — - -
Cqg[0,—2,1,0] 18 288 576 82944
109¢;  17¢;  103¢, . 518237
-2,1,1] = — - -
Cqql0, —2,1,1] 216 72 576 | 248832
29C;  59¢  103¢y 22295
-2,1,2) = - =22 — -
ng[07 P ] 18 72 288 6912
647C,  25¢;  103Cs 75127
~2,1,3] = — - -
ng[ov ,1,3] 648 108 288 46656
1307¢,  757C;  103¢, 1741499
~2,1,4] = — =
Cqgl0,-2,1,4] 2502 ' 3456 288 5971968
€0 —2.1.5] = | 9841¢; | 3163(3  103¢s 282720389
agl® =% 5 32400 ' 5760 288 1244160000
_ 31¢3¢2 |, G2 B5Cz | 43Cs  41¢s | 1699
Cagl0,=3,0,0] = ===+ 5 — - + 3¢ 64 = 12288
31¢3¢2  T5T¢  93¢s . 275(s  41¢s 40525
0,-3,0,1] = - - -
Cagl0, =30, 1] = = 381 128 | 768 64 | 12288
31C3Cy 2759¢,  259¢3  281¢y  41¢s 45607
0,-3,0,2] = — - -
Cag[0, =3,0,2] = —3 768 06 | 334 32 | 6144
31¢s¢>  14107¢  319¢3 . 71¢s 415 5829529
0,-3,0,3] = — - -
Cal0,=3,0,3] = =2 6912 216 | 144 32 | 1492002
€. [0.-3,0.4] = B1GsGy  266297¢,  16553Cs  383Cs  41¢s 154172873
agtH =T T 165888 13824 1024 32 = AT775744
31 29915669¢> 750613 | 4493¢,  41¢s | 381731617669
ng[07_37075] = 56 - 2 - o + & N .

32 20736000 69120 15360 32 149299200000

D.3 The gqq channel

Cy702,4,0,2] = %
Cqyql2,4,0,3] = % -~ %
Cy702,4,0,4] = % _ %22
Coal?,4,0,5] = 48267460007 - %
Ceal2,3,1,3] = 7%
Cyql2,3,1,4] = ,%
Cyql2,3,1,5] = _%
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Cqal2,3,0,1] =
Cqal2,3,0,2] =
Cqal2,3,0,3] =
Cqal2,3,0,4] =
Cqal2,3,0,5] =
Cqal2,2,2,3] =
Coal2,2,2,4] =
Cqal2,2,2,5] =
Cual2,2,1,1] =
Cual2,2,1,2] =
Cual2,2,1,3] =
Cual2,2,1,4] =
Cual2,2,1,5] =
Cqal2,2,0,2] =
Cqal2,2,0,3] =
Cqal2,2,0,4] =
Cqal2,2,0,5] =
Chal2,1,1,3] =
Coal2,1,1,4] =
Coal2,1,1,5] =
Cqal2,1,0,1] =
Coal2,1,0,2] =
Cqal2,1,0,3] =
Cqal2,1,0,4] =
Cqal2,1,0,5] =

Cy512,0,2,3] =

1985  43(s

384 32
2403 129¢,
256 64
37931 215(,
2304 64
182303  559(»
9216 128

1911623~ 10019¢,
86400 1920

L

o4

1

54

1

o4
29

96
23
64
121

192
595

768
50621

57600
1

8
37¢, 21199

12 864
37¢2 100649

12 6912
37Ca 972487

12 86400
7

32

409

288
3017

2880
115¢, 4525

32 384
345(, 5463

64 256
575C2 88283

64 2304
1495¢, 424709
128 9216
5359¢, 89227561
384 1728000
1

27
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1

Caql2,0,2,4] = —

Cyal2,0,2,5] = _%

Ceq[2,0,1,1] = %

Coal2,0,1,2] = %

Coal2,0,1,3] = %

Coal2,0,1,4] = %

Coal2,0,1,5] = %

C,al2,0,0,2] = _%

C4ql2,0,0,3] = % ~ %

C43(2,0,0,4] = % _ %

Caal2,0,05) = 11273298601 N %
Cogl2,—1,1,3] = 7%
Cogl2,—1,1,4] = ,%
Coql2,—1,1,5] = _%
Ceal2,—1,0,1] = % ~ 1031242
Ceal2,—1,0,2] = % ~ 3%?;42
Cqal2,—1,0,3] = %7013 N 5065;42
B
v e S
Cqql2,—2,2,3] = 314
Coal2,—2,2,4] = 5i4
Cy512,-2,2,5] = 5714
Cogl2,—2,1,1] = _%
Cal2,—2,1,2] = _%Z
Cqal2,—2,1,3] = _%
Cy32,-2,1,4] = _%
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50621

Cyql2,-2,1,5] = — s
Cy12,-2,0,2] = é
Cqql2,—2,0,3] = _% B %
Cy512,-2,0,4] = _% -~ %
Cqal2, —2,0,5] = _% B %
Cy512,-3,1,3] = %
Cal2,—3,1,4] = %
Cy312,-3,1,5] = %
Cy312,-3,0,1] = 2;);2 _ %
Cy12,-3,0,2] = 8;% _ %
Cql2,—3,0,3] = 1242 _ %
Cqq[2,—-3,0,4] = 317;? _ %
Cyal2,—3,0,5] = 61732752 B 112772682060401
Cy312,—4,0,2] = _6%
Cql2,—4,0,3] = 4222 %
Cy312,—4,0,4] = 42’22 _ %
Cyql2,—4,0,5] = 42’22 - %33
Cy3(1,4,0,2] = _g
Caqll,4,0,3] = 162‘;3842 15843 - 93';545
Caqll,4,0,4] = 122681842 15843 - 211553261
Cqql1,4,0,5] = 10288087()C2 15843 B 2231066080307
Cyqll,3,1,2] = %
Cy3/1,3,1,3] = % _ %
Cq3/1,3,1,4] = g _ %
Coqll,3,1,5] = % B 71%2
Caqll,3,0,1] = 27976C2 278<3 - 117732287

- 64 -



Cqall,3,0,2] =
Cqall,3,0,3] =
Coall,3,0,4] =
Cqall,3,0,5] =
Coall,2,2,3] =
Coall,2,2,4] =
Coall,2,2,5) =
1] =

Cy5l1,2,1,2] =

Cyl1,2,1,

Cuall,2,1,3] =
Coall,2,1,4] =
Cyall,2,1,5] =
Cqall,2,0,2] =
Cqal1,2,0,3] =
Cqall,2,0,4] =
Cqall,2,0,5] =
Cuall,1,1,2] =
Cuall,1,1,3] =
Coall,1,1,4] =
Coall,1,1,5] =
Cqall,1,0,1] =
Cqall,1,0,2] =
Cqql1,1,0,3] =
Cyall,1,0,4] =
Cqal1,1,0,5] =

Cy43/1,0,2,3]

149¢,  81¢; 44593

32 16 2304

773C,  135(; 239897
96 16 6912
7331¢;  351¢3 83303
768 32 2048
66187¢C,  2097¢; 115335101
6400 160 2592000
5

54

1

27

11

1080

233 (G

432 24

3719 G

576 16

2359 5(»

1728 48

2447 13(,

1536 96

9034181  233(,

5184000 1440

35

64

493¢,  125¢; 171829
36 24 2592
695(s  125(3; 1315813
T2 24 41472
22697¢,  125¢; 14886211
© 2880 0 24 648000
1

32

23¢; 2507

36 324

23¢, 2185

36 648

23¢, 531247

36 259200

755C;  125¢; 39757
96 16 1728
97¢;  375¢; 103001
8 32 2304
1027¢,  625(3 187739
48 32 2304
19579¢,  1625¢; 5296159
768 64 55296
320311¢,  5825(C; 1819688119
11520 192 17280000
27
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Cy43]1,0,0,4] =

Cy43]1,0,0,5] =
Cy5ll,—1,1,2] =
Cy5ll,-1,1,3] =
Cygll,—1,1,4] =
Cy3ll,—1,1,5] =
Cy3ll,-1,0,1] =
Cyll,—1,0,2] =
Cyll,-1,0,3] =
Cyll,—1,0,4] =
Cy3ll,—-1,0,5] =
Cy3ll,—2,2,3] =
Cy3ll,—2,2,4] =
Cq3ll,—-2,2,5] =
Cy3ll,—2,1,1] =
Cy3ll,—2,1,2] =

Cy3ll,—-2,1,3] =

T8

Y

27
11
540
G 233
12 216
e 319
288
5¢; 2359
864
13¢, 2447
48 768
233C; 9034181
720 2592000
13
64
117¢, | 113¢s 207883
16 24 5184
217¢; _113¢; 840017
48 24 41472
1057¢; | 113¢; 6645283
320 24 518400
1
32
1765 G
324 9
2359 G
1296 9
226493 (o
259200 9
679C,  11¢; 27533
96 2 1728
329(,  33(s 72223
32 4 2304
1789¢; | 55(3 135581
96 4 2304
17165¢; | 143C; 3844775
768 8 55296
1416061, | 2563s 666337109
57600 120 8640000
5
54
1
27
_ 1
1080
233 G
432~ 24
379 G
576 16
2359  5C
1728 48
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Coall, —2,1,4] =
Coall,—2,1,5] =
Coqll,—2,0,2] =
Cqqll,—2,0,3] =
Coqll, —2,0,4] =
Cyqll,—2,0,5] =

Cyqll,—3,1,2]
Cyll,-3,1,3] =
Cygll,—3,1,4] =
Cyll,-3,1,5] =
Cyl1,-3,0,1] =
Cygl1,-3,0,2] =
Cy3l1,-3,0,3] =
Cygll,-3,0,4] =
Cygl1,-3,0,5] =
Cygll,—4,0,2] =
Cygl1,—4,0,3] =
Cygll,—4,0,4] =
Cygll,—4,0,5] =

Cy4300,4,0,1] =

Cy4300,4,0,2] =

Cy4300,4,0,3] =

Cy4300,4,0,4] =

C4300,4,0,5) = —

C4300,3,1,2] =

C4300,3,1,3] =

2447  13Co

1536 96

9034181  233(,

5184000 1440

35

64

121¢;  31¢; 45781

36 24 | 2592

173¢;  31¢3 56863

72 24 41472

5837¢,  31¢;3 726763

2880 24 1296000

1

32

5C, 341

36 324

5C, 29

36 324

26087  5(s

259200 36

67¢; 17¢3 189

32 16 ' 64

45¢;  51¢; 1535

16 32 256

127¢,  85¢C; 83423

24 32 6912

1639Cs  221¢3 797797

256 64 55296
410189¢,  3961C; 845660317

~B7600 960 51840000

11

64

793¢, (3 3763

© 288 12 3456

4T5¢, (3 2017

© 288 12 1728

173¢; (3 939047

C 144 12 " 864000

1

128

2131 3G

2304 64

3161¢,  709¢;  215¢, 1379425

288 144 192 41472
629Cs  589(3  215(s 54485

96 144 192 3456
284243(,  2681(C; 215(¢, 299614483
57600 720 192 " 25920000
73

" 576

149¢,  11¢; 13891

108 72 2592
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Cq4500,3,1,4] =
Cq4300,3,1,5] =
C4500,3,0,1] =
Cq4ql0,3,0,2] =
C4ql0,3,0,3] =
Cqql0,3,0,4] =
Cqql0,3,0,5] =

qu[07 2, 2, 3] =

Cqal0,2,0,5] =
Cal0,1,1,2] =
Cqql0,1,1,3] =
Cyql0,1,1,4] =
Cqql0,1,1,5] =
Cqql0,1,0,1] =
Cqql0,1,0,2] =

C4500,1,0,3] =

199C; | 11¢ 1189
216 ' 72 648
613¢; | 11¢s 5066843
864 | 72 5184000
197¢;  131¢s 101¢ | 33977
48 48 64 | 3456
453C;  279Cs  303¢s | 31879
64 64 128 ' 1536
2351¢;  495¢s 505, _ 779173
192 64 128 ' 20736
133561, 433Cs 1313, 29306059
9216 48 256 663552
| 18335807C2  276937C; 23533 _ 60602991071
1152000 28800 3840 1244160000
A7 56
108 108
_ 5 11
108 648
_5C 563
108~ 10800
7, G 55
24 24 108
_ 16 6 313
32 16 384
173¢; _5¢; 5783
288 ' 48 3456
95¢»  13¢; 108079
128 " 96 55296
T3111¢, | 233C; 676881547
86400 ' 1440 311040000
3¢ 1145
32 1152
5855,  3737C; 35¢s 5154815
288 288 32 62208
12005(; _ 1435¢s 35 16620643
1152 144 32 497664
AT617¢, | 12439¢; 35, 1854331939
6400 1440 32 77760000
e
576
869C;  5Cs | 94471
432 8 7776
605¢; 53 57785
432 8 ' 15552
2461C,  5C3 | 30477989
2160 8 ' 15552000
041C, | 647¢Cs _ 11¢s 78403
96 96 4 3456
B45C; | 167Cs  33Cs 73127
32 16 8 1536
17477, | 449G | 55Cs 3625007
576 24 ) 41472
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Cq4500,1,0,4] =
Cq4500,1,0,5] =
C4500,0,2,3] =
Cqql0,0,2,4]

Cyql0,0,2,5] =
C,al0,0,1,2] =
Cyql0,0,1,3] =
Cyql0,0,1,4] =
Cyql0,0,1,5] =
Cyql0,0,0,1] =
C,ql0,0,0,2] =
Cyql0,0,0,3] =
Cyql0,0,0,4] =
Cyql0,0,0,5] =

Cqql0,—1,1,2]

Cy500,-1,1,3] =

Cy5l0,—1,1,4]
Cy5l0,-1,1,5] =
Cy500,-1,0,1] =
Cy300,-1,0,2] =
C4300,-1,0,3] =
Cy300,-1,0,4] =
Cy300,-1,0,5] =
Cy300,-2,2,3] =

Cy300,-2,2,4] =

331541¢5 5627(3 143(4__ 68306477
9216 256 16 663552
27415817, 18151@3_+>2563(4__ 118149584303
691200 768 240 1036800000
56 17
54 54
5 11
54 324
§§g 563
54 5400
e G 5
12 12 54
G G 313
16 8 192
173G 5G| 5783
144 24 1728
_95¢;  13¢s | 108079
64 48 27648
__73111@2__ 233(3 676881547
43200 720 155520000
6
36 _ 487
16 576
2269C2__ 3329§3__ 614 1045447
432 288 48 15552
¢ 1123¢s  61¢s | 9209057
27 144 48 497664
137969Cg__ 1763(3__ 614 382859723
172800 288 48 31104000
61
576
25¢ | 19¢s 63923
216 24 7776
G 19C 14981
27 24 7776
649¢; | 19¢; 15354391
4320 24 15552000
175¢;  127¢s  49¢, | 54875
24 24 64 3456
821C,  499(s  147¢; 50617
64 64 128 1536
13795¢,  2729¢3  245¢, | 20117
576 192 128 324
262399§2__ 216343__ 637C4 48694777
9216 128 256 663552
109135907¢, 2947343__ 11417¢, 169583381857
3456000 1600 3840 2073600000
1756
108 108
5611
108 648
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Cq500,-2,2,5] =
Cq50,-2,1,1] =
Cq50,-2,1,2] =
Cqql0,—2,1,3] =
Cqql0,—2,1,4] =
Cqql0,—2,1,5] =
Cqql0,—2,0,2] =
Cqql0,—2,0,3] =
Cqql0,—2,0,4] =
Cqql0,—2,0,5] =
Cyl0,-3,1,2] =
Cy00,-3,1,3] =
Cy5l0,-3,1,4] =
Cy10,-3,1,5] =
Cy00,-3,0,1] =
Cy4510,-3,0,2] =
Cy4300,-3,0,3] =
Cy300,-3,0,4] =
Cy4310,-3,0,5] =

Cy00,—-4,0,1] =

Cy4300,—4,0,3] =
Cy500,—4,0,4] =

Cy310,—4,0,5] =

5, 563
108 10800
6, G5

24 24 108
116, ¢35 313

32 ' 16 384
173¢;  5¢3; 5783

288 ' 48 3456
95¢;  13¢3 108079

128 ' 96 55296
73111¢,  233¢3 676881547
86400 ' 1440 311040000
3¢, 1121
32 1152

5687C>  373¢C; 43¢, 1175681
864 96 32 62208
17213¢,  33¢s  43¢s 60455
"~ 3456 16 32 497664
721999¢s  587(s  43(s 26661703
© 172800 480 32 ' 38880000
67
576
323¢,  23¢; 11125

432 72 7776
191G, 23¢; 713

432 72 ' 15552
151¢,  23G3 76931

540 72 ' 15552000
51, 41¢s  13¢, 387

32 32 32 128
23, 55C;  39¢, 3123

8 32 64 512
3371¢,  311¢3  65Cs 508315
576 96 64 41472
21473¢,  3025(s  169¢s, 1077151
3072 768 128 73728
27064243C,  253577C;  3029(s 25716898777
3456000 57600 1920 1555200000
1
128

9 15
64 256
2143¢,  109¢3  19¢s 53047

864 288 192 ' 41472
1985¢>  5C3 19¢s 164903

1728 36 192 165888
1511¢,  23¢3  19¢, 36656149
1728 1440 192 51840000
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D.4 The qq channel

Cqq(2,3,0,1] =
Cqql2,3,0,2] =
Cqql2,3,0,3] =
Cqql2,3,0,4] =
Cqql2,3,0,5] =
Cqql2,2,1,1] =
Cqql2,2,1,2] =
Cqql2,2,1,3] =
Cqql2,2,1,4] =
Cqql2,2,1,5] =
Cqql2,2,0,2] =
Cqql2,2,0,3] =
Cqq(2,2,0,4] =
Cqql2,2,0,5] =
Cqql2,1,0,1] =
Cqq(2,1,0,2] =
Cqq(2,1,0,3] =
Cqq(2,1,0,4] =
Cqq(2,1,0,5] =
Cqq(2,0,1,1] =
Cqq(2,0,1,2] =
Cqq[2,0,1,3] =

Cqq[2,0,1,4] =

1985 43¢
384 32
2403 129
256 64
37955  215(s
2304 64
182495  559(y
9216 128
14956 10019¢»
675 1920

29

96

23

64

121

192
59

768

50621

57600

1

64

3

64
107

1536
671

7630
115(; 4525

32 384
345¢; 5463

64 256
BT5C; 88427

64 2304
1495¢, 425861

128 9216

5359C2 89556961

384 1728000
29

48
@
32
121
96
595
384

71—



Caql2,0,1,5] =

Caql2,0,0,2] =

Caql2,0,0,3] =

Caq[2,0,0,4] =

Caq[2,0,0,5] =
Caql2,—1,0,1] =
Caql2.—1,0,2] =
Cqal2,—1,0,3] =
Coql2,—1,0,4] =
Caql2,—1,0,5] =
Coal2,—2,1,1] =
Coql2,—2,1,2] =
Coal2,—2,1,3] =
Coal2,—2,1,4] =
Coal2,—2,1,5] =
Coal2,—2,0,2] =
Coal2,—2,0,3] =
Caql2,—2,0,4] =
Coal2,—2,0,5] =
Coql2,—3,0,1] =
Coal2,—3,0,2] =
Coal2,—3,0,3] =
Caql2,—3,0,4] =

Cqql2,—-3,0,5] =

50621

28800
5
64
)
192
587

1536
1233

2560
3095
384
3717 303
256 64
62989  505(;
2304 64
304237  1313(

9216 128
32125921 23533¢2

101
32

864000 1920
29

96
23

64
121

192
595

768
50621

57600
7

64
71

192
853

1536
359

512
29C2
32

185

128
876, 657

64 256
145§2__ 12517

64 2304
377C2__ 60871

128 9216
6757C, 12982241

1920 1728000
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Cqql2,—4,0,2] =
Cqql2,—4,0,3] =
Cqql2,—4,0,4] =
Cqql2,—4,0,5] =
Cqql1,3,0,1] =
Cqql1,3,0,2] =
Cqq[1,3,0,3] =
Cqql1,3,0,4] =
Cqql1,3,0,5] =
Cqqll,2,1,1] =
Cqqll,2,1,2] =
Cqqll,2,1,3] =
Cqql1,2,1,4] =
Cqqll,2,1,5] =
Cqql1,2,0,2] =
Cqql1,2,0,3] =
Cqql1,2,0,4] =
Cqyql1,2,0,5] =
Cqqll,1,1,2] =
Cqqll,1,1,3] =
Cqqll,1,1,4] =
Cqqll,1,1,5] =
Cqql(1,1,0,1] =

Cqq(1,1,0,2] =

3

64
31

192
373

1536
2357

7630
277¢s

27¢; 17327

96
149¢»

8 1728

81¢; 44593

32
T73Cs

135¢;

16 2304

240269

96
7331(o

16 6912
351¢s 751631

768
66187¢5

32 18432
2097¢3 14463727

6400
233 (o

432 24
379 G

576 16
2359

160 324000

5C2

1728
2447

48
13Go

1536

96
9034181

233(s

5184000
31

192
91

192
2029

3072
60109

76800
1

48
1

16
107

1152
671

5760
755Co

1440

125¢3 39757

96
97C

375(;

16 1728

103001

8

32 2304
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Cqq(1,1,0,3] =
Cqq[1,1,0,4] =

Cqql1,1,0,5] =

Cqq[1,0,1,1]
Cqql1,0,1,2] =
Cqq[1,0,1,3] =
Cqql(1,0,1,4] =
Cqql1,0,1,5] =
Cqq[1,0,0,2] =
Cqq[1,0,0,3] =
Cqq[1,0,0,4] =
Cqq(1,0,0,5] =
Cqqll,—1,1,2] =
Cqqll,—1,1,3] =
Cqqll,—1,1,4] =
Cqqll,—1,1,5] =
Cqqll,—1,0,1] =
Cqqll,—1,0,2] =
Cqqll,—1,0,3] =
Cqqll,—1,0,4] =
Cqqll,—1,0,5] =
Cqqll,—2,1,1] =
Cqqll,—2,1,2] =

Cqqll,—2,1,3] =

188483

2304
5330431

55296
1834676719

17280000

1027¢,  625C3

48 32
19579¢,  1625(s

768 64
| 320311¢;  5825(

11520 192
G2 233

12 216
379

8 288
5C2 2359

24 864
13¢, 2447

48 768
233¢2 9034181

720 2592000
89

192
827

576
18019

9216
524983

230400

2880
679Cs

96
329¢,

32
1789C»

96
17165¢s

768
1416061¢,

57600
233 G

432 24
379 G

576 16
2359 5

1728 48

11¢; 27533

2 1728
33¢; 72223

4 2304

55¢3 136697

4 2304
143¢3 3896183

8 55296
2563¢3 677578559

120 8640000
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2447 13(

Cqqll,—2,1,4] = T3 oo
cut 219 25 "
Cqqll,—2,0,2] = %
Caall, —2,0,3] = %
Caall, —2,0,4] = %
Caall, 2,051 = 14061078907
Coall, —3,1,2) = _é
Cqqll,—3,1,3] = _%6
Cqqll,—3,1,4] = —%
Cqqll,—3,1,5] = —%
Coqll,—3,0,1] = _% B %st N 16%9
Caall, =5,0.2] = _4%2 - 5;53 + 1255365
Caqll, —3,0,4] = _1g1%<2 _ 22614@ 8525026;%5
Canll,=5,0,5) =~ ~ 65" * Srs0000
Cqqll,—4,0,2] = _%
Cqqll,—4,0,3] = _%
Cqqll,—4,0,4] = _3274112
RN
C4ql0,3,0,1] = _1%17842 B 1?;1843 - 2152‘4 33?2)5767
Ceql0,3,0,2] = 7456?:1@ - 22(3 - 7;54 311583565
Caal0.3,0,4] = = 1333:2@ N 4?21?253 N 32654C4 + 9272818118849
Coo[0,3,0,5] =  18610607C,  276937¢; 1165, | 3796028021
1152000 28800 192 77760000
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Caql0,2,1,1] = 72% % _ %

Caql0,2,1,2] = %Jr % _ %

Cql0,2,1,3] = 1;252 % _ %

Caal0:2. 1,4 = 915/)24;32 1353 B 15058209239

G025 = SG6* + Thag ~ 3ttoan000

Cqq[0,2,0,1] = _%

Cqql0,2,0,2] = _2152%2 _ 115;; ~ 1419532

Cqql0,2,0,3] = —% _ % _ %

v " T

carnon- i e

Cql0,1,1,2] = %

Cql0,1,1,3] = %

Coal0,1,1,4] = %

Coal0,1,1,5) = %

Cqql0,1,0,2] = 54252@ 161753 256521@ B 712593863

Cqql0,1,0,3] = 1757§2C2 4‘;i<3 42(;@“4 B 32:1324;;7

Coo[0,1,0,4] = 210037C> | 5627Cs 105G, 68657525
9216 256 | 128 663552

Conl0-1:0,5) = G505 s st 355300000

Caql0,0,1,1] = _% _ % N %Z

Caql0,0,1,2] = _% _ % N %

C4ql0,0,1,3] = fﬁf _ 52% %

Canl®, 01,4 = _965522 - 1;3;3 12078604789

Cal0-0.151 =~ 350" = 36"+ T5asaong
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Cqq[0,0,0,1] =
Cqq[0,0,0,2] =
Cqq[0,0,0,3] =
Cqql0,0,0,4] =
Cqql0,0,0,5] =

Cqql0,—1,1,2] =

Cqql0,—1,1,3] =

Cqql0,—1,1,4] =

Cqql0,—1,1,5] =

Ceql0,—1,0,2] =
Ceql0,—1,0,3] =
Ceql0, —1,0,4] =
Ceql0, —1,0,5] =
Coql0,—2,1,1] =
Coql0,—2,1,2] =
Caql0,—2,1,3] =
Coql0, —2,1,4] =
Caql0,—2,1,5] =
Ceql0,—2,0,1] =
Ceql0,—2,0,2] =
Ceql0, —2,0,3] =
Coql0, —2,0,4] =

Cqql0,—2,0,5] =

3C3

32
37¢;  15¢; 1103
128 " 128 ' 1152
203¢,  49(3 4985
384 ' 384 ' 1728
6613C,  205(; 403535
9216 ' 1536 ' 110592
13187¢,  5309¢; 55230241
15360 ' 38400 ' 13824000
_ 19
144
_ 53
144
1049
2304
3101
6400
175C;  127¢s  5Cs _ 54875
24 24 8 ' 3456
821¢;  499Cs  15(s 50401
64 64 16 ' 1536
14173¢C,  2729¢;  25Cs 2592121
576 192 16 | 41472
| 275143(,  2163¢s 65, | 49221349
9216 128 32 663552
_116555507¢;  29473Cs  233¢s | 670254847
3456000 1600 96 8100000
T, G 55
24 24 108
16 | ¢ 313
32 16 384
173¢2  5C3 5783
288 ' 48 3456
95C; 13¢3 108079
128 ' 96 55296
T3111¢; | 233Cs 676881547
86400 ' 1440 311040000
363
32
G 156G 72T
128 128 1152
107¢;  49(3 3625
384 | 384 1728
4153¢; | 205¢s 297373
9216 ' 1536 110592
1819¢; | 5309¢s 1667483
3072 ' 38400 552960
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Caal0,=3.1,2] = oo

Caql0,—3,1,3] = %

Caal0, —3,1,4] = %

Caal0: 3,1, 51 = 132180010

Canl0.3.0.1) = *g5t g5t = Tt e

Conl, =3,0,2] = 22@ * 5:?;3 B 4224 B 3501921

Conl0: 3,04 = Hot o+ S0t = o

Coaf0,—3,0,5] = 20361843G, | 268577C; 283G, _ 13192092551
3456000 | 57600 128 777600000

quﬁh<—4,0,1]::__%§;

Coql0, —4,0,2] = _%i‘? B %483 N %

Caall, =4,0,4] = _435%2 N 210553% * 16130753972

Coal0, —4,0,5) — 104592 _ 5309G; | 1042367

15360 38400 1536000

D.5 The qq’ channel

Cyq'[2,3,0,1] ::%225,_»é§§g
Coy[2,3,0,2] = % _ 1265142
Coq'[2,3,0,3] = 3273% _ 2165?
Corl2:3.0.4] = g7 =
Corl2:3.0.5] = " S
Cq¢[2,2,1,1]::4,§%
Cq¢[272,1,2]::__%2
Cq¢[272,1,3]::__%§%
Cq¢[272,1,4]::__g§§
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Cor[2,2,1,5] =
Co[2,1,0,1] =
Co[2,1,0,2] =
Co[2,1,0,3] =
Co[2,1,0,4] =
Co[2,1,0,5] =
Co[2,0,1,1] =
Co[2,0,1,2] =
Co[2,0,1,3] =
Co[2,0,1,4] =
Cy[2,0,1,5] =
Coy[2,—1,0,1] =
Coy[2,—1,0,2] =
Coy[2,—1,0,3] =
Coy[2,—1,0,4] =
Coy[2,—1,0,5] =
Co[2,-2,1,1] =
Co[2,-2,1,2] =
Coy[2,—2,1,3] =

Cor[2,—-2,1,4] =

Coq2,-2,1,5] = —

Coy[2,—3,0,1] =
Coy[2,—3,0,2] =

Corr[2,-3,0,3] =

50621

57600
115¢; 4525
32 384
345¢; 5463
64 256
BT5(; 88427
64 2304
1495¢; 425861
128 9216
5359(; 89556961
384 1728000
29
48
23
32
121
96
595
384
50621
28300
3095 101¢
384 32
3717 303(
256 64
62989  505¢
2304 64

304237  1313¢2

9216 128
32125921 23533

864000 1920
29
96
23
64
121

192
995

768
50621

57600
29C2
32
87¢2
64
145¢;

64

185

128
657

256
12517

2304
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Coy[2,-3,0,4] =
Coy2,—3,0,5] =
Coy[1,3,0,1] =
Co[1,3,0,2] =
Cor[1,3,0,3] =
Coy[1,3,0,4] =
Cor[1,3,0,5] =
Cor[1,2,1,1] =
Cor[1,2,1,2] =
Cor[1,2,1,3] =
Cog[1,2,1,4] =
Cog[1,2,1,5] =
Coy[1,1,0,1] =
Co[1,1,0,2] =
Coy[1,1,0,3] =
Cog[1,1,0,4] =
Coy[1,1,0,5] =
Coy[1,0,1,1] =
Coy[1,0,1,2] =
Coy[1,0,1,3] =
Coy[1,0,1,4] =
Coy[1,0,1,5] =
Coyr[1,—1,0,1] =

Coy[1,—1,0,2] =

377¢2 60871

128 9216
6757Cy 12982241

1920 1728000
277@_+ 27¢3 17327

96 8 1728
149¢ | 8¢ 44593

32 16 2304
T73C | 135G, 240269

96 16 6912
7331('2_+ 351¢s 751631

768 32 18432
66187¢C;  2097¢; 14463727

6400 160 324000
233 G

432 24
379 G

576 16
2359 5(

1728 48
2447 13(s

1536 96
9034181  233¢2

5184000 1440
755 1254'3_+ 39757

96 16 1728
97¢  375¢3 | 103001

8 32 2304
1027¢ 625(3_+ 188483

48 32 2304
19579¢2 1625(3_+ 5330431

768 64 55296
320311¢;  5825¢3 | 1834676719

11520 192 17280000
G 233

12 216
G 379

8 288
5C, 2359

24 864
13¢, 2447

48 768
233¢, 9034181

720 2592000
6@@_+1M3_2ﬂ33

96 2 1728
8200 | 33¢s 72223
32 4 2304
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Cyq[1,-3,0,4] =
Cyq[1,-3,0,5] =
Cyq[0,3,0,1] =
Cyq[0,3,0,2] =
Cqq[0,3,0,3] =
Cqq'10,3,0,4] =
Cqq'10,3,0,5] =
Ceq10,2,1,1] =
Cyq10,2,1,2] =
Cyq10,2,1,3] =
Cyq[0,2,1,4] =
Cyq10,2,1,5] =

Cor[0,1,0,1] =

1789¢2 ~ Hd¢3 136697

96 4 2304
17165¢; | 143¢s 3896183

768 8 55296
1416061@2_+ 2563¢3 677578559

57600 120 8640000
233 G

432 24
379 G

~ 576 16

2359 5(s

1728 48
2447 13

1536 96
9034181  233¢2

T 5184000 1440

67¢C, 17¢C; 189

32 16 ' 64

45 o1 1535
_ 45 G

16 32 256

24 32 6912
_1639¢, 221G, 820645

127¢,  85Cs 84911

256 64 ' 55296
_410189G,  3961¢; | 875637517
57600 960 ' 51840000
197G 131¢s 254 | 33977
48 48 16 ' 3456
453Gy 279Gs TG, 31855
64 64 32 1536
2365 495 125¢ | 1560251
192 64 32 41472
134977¢;  433Cs  325(; 9788189
9216 48 64 | 221184
 18610607¢;  276937¢;  1165¢; 3796028021
1152000 28300 192 77760000
T G 55
24 24 108
16 6 313
32 16 384

173¢,  5C3 5783

288 ' 48 3456
95<2<+_13g3__ 108079

128 ' 96 55296
7311142_+ 233(3 676881547
86400 = 1440 311040000
gn@_%&wg 85Cs 78403

96 96 32 3456
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qu/ [O, 1,0, 2] =
Coq' [0,1,0,3] =
Coq' [0,1,0,4] =

Cyqr[0,1,0,5] =

Coy[0,0,1,2] =
Cyr[0,0,1,3] =
Cog[0,0,1,4] =

qu/ [07 0’ 17 5] =

Coy[0,—1,0,2] =
Coy[0,—1,0,3] =
Co[0,—1,0,4] =
Cyqr[0,—1,0,5] =
Coy[0,—2,1,1] =
Coy[0,—2,1,2] =
Coy[0,—2,1,3] =
Cog[0,—2,1,4] =
Coy[0,—2,1,5] =
Coy[0,—3,0,1] =
Coy'[0,—3,0,2] =
Coy'[0,—3,0,3] =
Coq'[0,—3,0,4] =

Cyqr[0,-3,0,5] =

p45C; | 167Cs _ 255(; 72983
32 16 64 1536
17729C; | 449Cs | 425¢; 3636437
576 24 64 41472
340037¢, | 5627¢s | 1105¢s 68657525
9216 256 128 663552
28405097¢, | 18151¢s | 3961¢, 29704217657
691200 768 384 259200000
T G 55
12 12 ' 54
e G, 313
16 8 ' 192
173¢;  5(s | 5783
144 24 1728
95(;  13¢s , 108079
64 48 ' 27648
| T3111¢;  233(s | 676881547
43200 720 ' 155520000
175G 127¢s  5(i | H48T5
24 24 8 ' 3456
821¢  499¢s  15¢; | 50401
64 64 16 ' 1536
14173¢;  2729Cs 254 | 2592121
576 192 16 ' 41472
| 275143¢,  2163Cs  65( | 49221349
9216 128 32 ' 663552
116555507¢,  29473Cs  233¢s | 670254847
3456000 1600 96 8100000
T G 55
24 24 108
¢ ¢ 313
32 16 384
173C,  5C3 5783
288 ' 48 3456
95(; _13¢3 108079
128 ' 96 55296
T3111¢ | 233¢s 676881547
86400 ' 1440 311040000
51, | 41Gs 15¢ 387
32 32 32 128
23(y | 55¢s 45(s 3091
8 32 64 512
3539C;  311¢s  75(s 515935
576 96 64 41472
TT87C; | 3025¢; 195y 9928391
1024 768 128 663552
30361843C; _ 253577Cs  233¢s 13192092551
3456000 57600 128 777600000
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E Cross sections in the HXSWG recommended mass range

We present here the gluon-fusion Higgs production cross-section at a proton-proton collider
for center-of-mass energies of 2, 7, 8, 13 and 14 TeV and for a Higgs boson of mass from
120 GeV to 130 GeV. The choice of these parameters follows the indications of the Higgs
Cross section Working Group [90].

The components that enter (linearly) the theory uncertainty have been discussed in
the text. To summarize the main points of that discussion, the scale variation uncertainty
is assessed at each energy and Higgs mass through a scan over u € [mg/4,mg]. The
uncertainties due to truncation, unknown N3LO PDFs and unknown finite-mass effects are
also evaluated every time, following the procedure described in the text. For the missing
QCD-EW effects, we find that a reasonable estimate yields a 1% uncertainty. At 2TeV,
however, we adopt 6(EW) = 0.8%, which is the most conservative estimate we obtain over
the mass range analyzed. Finally, we assign a 1% uncertainty to missing finite-top mass
effects at NNLO [23, 49]. We use the PDF set PDFALHCI5.

Vs = 2TeV

mpg o d(theory) J(PDF) d(as)

120.0 1.24 pb o (aonrty + 0.04 pb (£ 3.06%) oo ean)
120.5 123pb 09I £ 0.04 pb (& 3.07%) o ()
1210 120pb  POUREAISE 4004 ph (4 3.08%) QWb+
1215 120pb  POUER(EAI) 4004 pb (+3.00%) QWb+
1220  LI8pb  OURb(+AIE +0.04pb (+£31%) 0PN (SR
1225 117pb  Toob(tii2h + 0.04 pb (+ 3.12%) o ()
1230 Lispb OSBRI 4 g0qph (+3.03%)  FQQWwb(raa)
1235 Lldpb  Towp(+10%%) + 0.04 pb (+ 3.14%) o ()
1240 L13pb  POUERHAOSL 4 g0qph (+3.05%)  FQQWb(+Ea)
1241 Li2pb  POUSR(HAOSA) 4004 ph (+3.05%)  FQQWb(raa
1242 Li2pb  POUSRHAOSL) 4 g0qph (+3.05%)  TQQWb(+Ea)
1243 Li2pb  POURCHAOTA 4004 ph (4 3.06%) Q0w
1244 Li2pb  POUSRHAOTA 4004 ph (+3.06%) Q0w
1245 Lllpb  POURHAOTA 4004 ph (+3.06%)  QQWb(+E0%)
1246 Lllpb  POUERHAOTA 4004 ph (+3.06%)  QQWb(+30%)
1247 Lilpb  POUPHAOSN) g0 ph (4 3.07%) QWb+
1248 L10pb  POUR(HAOSN) 4 g0qph (4 3.07%) QWb+
1249 L10pb  POUR(HAOSN) 4003 ph (4 3.07%) QWb+
1250 L10pb  POUR(HAOSN) 4003 ph (4 3.07%) QWb+
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.. continue

me o d(theory) 0(PDF) d(as)

125.1 1.10 pb Tooann (e + 0.03 pb (+ 3.18%) o (5 o0n)
125.2 1.09 pb O oah (05%) + 0.03 pb (£ 3.18%) ooanCaaen)
125.3 109 pb 00D L0 + 0.03 pb (£ 3.18%) B i)
1254 1.09pb  FOURbEHLON 403 ph (4 3.18%)  TO0b(+ase
125.5 1.09 pb Tooonn (oaty + 0.03 pb (+ 3.18%) ooan(adere)
1256 L0Spb  OQWD(HIONL 03 pb (£ 3.00%)  O0Ib(+80%)
1257 1.08pb  fOSwb(HAou) +0.03 pb (£ 3.19%) o o0n)
125.8 1.08 pb oo (et + 0.03 pb (+ 3.19%) oan (T dore)
1259 L0Spb  TQUED(HION) 1003 pb (£3.10%)  ToUiRR(+330n)
126.0 1.07 pb AR G +0.03 pb (+ 3.20%) o (5 o0n)
126.5 1.06 pb  T00ebb (02 +0.03 pb (£ 3.21%) o (5 30%)
127.0 1.05 pb oo (ot + 0.03 pb (£ 3.22%) ooan(Taa000)
127.5 1.04 pb oAb (399 +0.03 pb (& 3.23%) o (300
128.0 1.02pb  T00eb(+E8%) +0.03 pb (+ 3.24%) o (5%
1285 10Lpb  FOOEP(BOTE) 1 0.03pb (+3.26%)  TORR(HI3
1200 100pb  COSWb(HO) 003 pb (£ 327%)  O0Ib(+8IT
129.5 0.99 pb oo (3o + 0.03 pb (£ 3.28%) o (5355
130.0 0.98 pb oo (3 + 0.03 pb (£ 3.29%) o (5355

Table 13. Gluon-fusion Higgs production cross-section at a proton-proton collider for /s = 2 TeV.
Details on the calculation of the theory error are given at the beginning of this appendix and in the

main text.
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Vs = 7TeV

mp o 0 (theory) 0(PDF) d(as)

1200 18.31pb  PUPP(TAALE) £ 035 pb (£ 1L89%) TR (Tre)
120.5 1816 pb  FIONPL(TI0%) £ 034 pb (£ 1.89%) o (Freo)
121.0 1800 pb  FSPR(HRA) 034 pb (£ 1.80%)  FOSRR(+208%)
1215 17.85pb 19 (FRASE) £ 034 pb (£ 1L.89%) Ty (T2
122.0  17.71pb  FOID(HIATEY L 033 pb (£ 1.80%)  TOirPL(TROS)
1225 1756pb  OIRCEAE) £ 033 pb (+ 189%) ORI
123.0  17.41pb  TPTPR(TRAE) £ 033 pb (£ 1L89%)  Foien(Fe
123.5  17.27pb  PIPR(FRAT) £ 033 pb (£ 1.89%) Ty (T2
1240 17.13pb  FOIPR(HIE%) 4032 pb (£ 1.80%) O 4wb(r268%)
1241 17.10pb  FPIPP(TEASE) £ 0.32pb (£ L89%)  Foobp (T
1242 17.07pb  TOTRRCANG 4032 pb (4 1.89%)  TOiORn(T2O)
1243 17.04pb  FOTERRCHLG) 4039 ph (£ 1.89%)  TOA0RR(+26T%)
1244 17.02pb  TPTPR(TEAZE) £ 032 pb (£ 1L89%) Ty (PR
1245 16.99pb PP (TE®) £ 0.32pb (£ 1L89%) Tyt (T
124.6 1696 pb  TITPR(TE) £0.32pb (£ 1.89%) o (TRen
1247 16.93pb  FPTPR(TEA%) £0.32pb (£ 1.89%)  TouPL(fron
1248 169pb  TOTRRCAME) 39 ph (£ 1.89%)  0iID(+267)
1249 1688 pb  TOTPb(HAAEY £ 032 pb (£ 1.80%)  FOaRL(tROTE)
1250 16.85pb  TUTIDCHLANG 39 ph (4 1.89%)  TO4b(267%)

—1.17pb

—0.45pb
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.. continue

mp o 0 (theory) 0(PDF) d(as)

1251 16.82pb  PUPP(Te®) £0.32pb (£ 1.89%) Tt (frer)
1252 16.79pb  TIPD(ERAOY) £ 0.32pb (£ 1.89%) i (F29T
1253 16.77pb  TPTPP(Tead®) £ 0.32pb (£ 1L89%)  Foithp(Fror
1254 1674 pb  FRTPR(TE0%) £0.32pb (£ 1.89%) oL (Fren
1255 16.71pb  FRTPR(TEa%) £0.32pb (£ 1.89%) oL (fert)
1256 16.68pb  TUTED(AAN) (39 ph (£ 1.89%)  O1SD(+267)
1257 16.66 pb  IPP(Teal®) £ 0.31pb (£ 1.89%) TP (o)
1258 16.63pb  TITIPR(TEN%) £0.31pb (£1.80%) ot (Tent)
125.9 1660 pb  TTPP(TEE) £ 0.31pb (£ 1L89%) Ty (Crer
1260 1658 pb  OTER(FAIV) 1031 pb (= 189%) b (t2OT)
126.5 1644 pb  FOTERHLISE) 4031 ph (£ 1.80%)  FOLER(FROT
127.0 1631 pb  TOTIPD(FANE) £ 0.31pb (£ 1.80%)  Foib (RO
127.5 1618 pb  FUTORR(HESE) 4031 pb (£ 1.89%)  FOARRR(F2OTE)
128.0  16.05pb  FPTPP(TES) £ 030 pb (£ 1.89%) o (Frer)
1285 15.92pb  COSPR(HAME) 4 030 pb (£ 1.80%) T 4p(F20%)
1200 158pb  TUSSELHASN (30 ph (+ 1.89%)  TO42RD(+206%)
1205 15.67pb  TUSSD(HARMA (30 ph (£ 1.89%)  O12RD(+206%)
130.0 1555 pb  FROPR(TER%) £0.29pb (£ 1.89%)  TouPL(Taes)

Table 14. Gluon-fusion Higgs production cross-section at a proton-proton collider for /s = 7 TeV.
Details on the calculation of the theory error are given at the beginning of this appendix and in the
main text.
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Vs = 8TeV

mp o 0 (theory) 0(PDF) d(as)

1200 23.22pb  TIEPP(TRSIE) £ 044 pb (£ 1.88%)  Foerb(Cre
1205 23.03pb  TIHPP(TASE) £ 043 pb (£ 1.88%) TR (Tre)
121.0  2285pb  TIUPR(HIE) 4043 pb (£ 1.87%)  OSIRR(F2NS%)
1215 22.66pb  T1UPP(TEISE) £ 042pb (£ 1L87%)  Foeobn (T
122.0 2248 pb  FIUPP(TEO%) £ 042 pb (£ 1.87%)  ToSop(FRee)
122.5 2230 pb  FIPDL TRy £042pb (£ 1.87%)  Toon(Troet)
123.0  2212pb  TPEPP(TEASE) £ 041 pb (£ 187%)  Folibp(Tre
1235 21.94pb  FPURP(ESTE) £ 041pb (£ 1.87%)  FOTPR(TRe)
124.0  21.77pb  FPIPR(TE%) £0.41pb (£ 1.87%)  ToTRp(Fre)
1241 2073 pb  AOYRRCHANE) 041 ph (£ 187T%)  TOISRR(F20%)
1242 2170 pb  TOUPD(EAST) 4041 pb (£ 1.87%) 0o (TR0
1243 21.66 pb  TOUPD(TEAS) 4041 pb (£ 1.87T%) 02T (TR0
1244 2163pb  OSPDCHLIE) 40 ph (£ 1.87%)  TOSTRR(H265%)
1245 2159 pb  TPUPP(TEMT) £ 040 pb (£ 1L87%)  FoIIPp(Fe
124.6 2156 pb  FRUPD(TEA) £0.40 pb (£ 1.87%) Lot (TRe)
1247 2153 pb  FRUPR(TEd%) £0.40 pb (£ 1.87%)  ToTPR(Fe)
1248 2149 pb  FOSER(HLAE) 4040 pb (£ 187%)  TOIRR(F200%)
124.9 2146 pb  FPRPP(TEA) £0.40 pb (£ 1.87%) Lo (TRe)
1250 2142 pb  FOURbHLAG) 40 ph (+ 1.87%) TR (2657

—1.48pb

—0.56pb
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... continue

mp o 0 (theory) 0(PDF) d(as)

1251 21.39pb  TPPPP(TEE) £ 040 pb (£ 1.87%)  TooRR(Tren)
1252 2136 pb  COUPR(HEI) £ 040 pb (£ 1.87%)  THID(F295%)
1253 2132pb TR 4040 pb (£ 187%)  TOID(FR95%)
1254 2129pb  FHPP(REE) £ 040 pb (£ 1.87%)  FORPR(FR o)
1255 2126 pb  FPUPP(TEa) £040 pb (£ 1.87%) oo (T
125.6  21.22pb  PUPP(TEE) £ 040 pb (£ 1L87%) Tl (Fe)
1257 20L19pb  TUURD(EAAZE g4 ph (£ 1.87%)  TO30RD(+265%)
125.8 2116 pb  TUURR(HLE) 4040 pb (£ 1.87%) 0300 (+265%)
1259 2L12pb  TUSSB(HLAZE) 4039 ph (£ 187%)  To30b(+265%)
1260 21.09pb  TYVERPCERE) £ 039 pb (£ 1.87%)  HoPR(Yo o)
1265 20.92pb  FRUPP(TEA%) £039pb (£ 1.87%)  Tosn(Tres)
127.0 2076 pb  FOUPR(HIE) £ 039 pb (£ 1.87%)  TOIER(F260%)
127.5  20.60pb  FUPR(TEEE) £ 038 pb (£ 1L87%) Tyl (T
128.0 2044 pb  FPEPP(TES) £ 038 pb (£ 1.87%) Lot (Trean)
1285 2028 pb  TUUPP(FASCN) £ 0.38 pb (£ 1.87T%) 02 (F20)
1200 2013pb  TOSPOCAI) 38 ph (£ 1.87%)  (ORD(204%)
1205 10.98pb  TUSTRD(RASY 037 b (4 187Y%)  TORb(H2640)
130.0  19.82pb  FREPP(TEE%) £ 037pb (£ 1.87%) oo (Tel)

Table 15. Gluon-fusion Higgs production cross-section at a proton-proton collider for /s = 8 TeV.
Details on the calculation of the theory error are given at the beginning of this appendix and in the
main text.
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Vs = 13TeV

mp o 0 (theory) 0(PDF) d(as)

1200 52.22pb  IIPP(TESTE) £ 098 pb (£ L87%)  FIRERL(TeN
1205 51.84pb  FIIPP(TES) £0.97 pb (£ 1.87%)  Tiaer (TR
1210 5146 pb  FRERRCHLONG 4096 pb (£ 1.87%)  TLIRR(t26%)
1215 5L.08pb  IUPP(TES) £ 095 pb (£ 1L86%)  Fyibp (T
1220 50.71pb  FIYPD(TECYA) £0.94pb (£ 1.86%)  Tiaarn(Trea)
1225 5035 pb  TIUPD(TES®) £0.94pb (£ 1.86%) TPt
1230 49.98pb  TZIED(FACU%) 1 0.93 pb (£ 186%)  Thaen(t262%)
1235 49.63pb  2EED(FASE) 1 0.92 pb (= 186%) 1 aoen(t262%)
1240 49.27pb  TREPD(HLI 4092 pb (£ 1.86%)  12Rn(t201%)
1241 49.20pb  TIRPP(TEEEE) £ 091 pb (£ 1L86%) Tt (FRE
1242 49.13pb  REER(FASE) 4091 pb (= 1.86%) T e (t26%)
124.3  49.06 pb  FIIPD(TEN) £0.91pb (£ 1.86%)  TiaPp(TEE)
1244 4899 pb  TIIPP(TEATE) £ 091 pb (£ 1.86%)  Fatp(FRE
1245 48.92pb  TIIPP(MEITA) £ 091 pb (£ 1.86%)  Ta(fRO)
124.6 4885 pb  TIOPD(TETA) £0.91pb (£ 1.86%)  Tiaern (T2
1247 4878 pb  FIOPD(TETIA) £0.91pb (£ 1.86%) o (T
1248 48.71pb  TIPM(FEISE) £ 0.90 pb (£ 1.86%)  Tiai(TROh)
124.9 4864 pb  FIPD(TENA) £0.90 pb (£ 1.86%)  Tiaen (TR
1250 4858 pb  TREPD(HLIONN (g0 ph (£ 1.86%)  L2TPD(H261%)

—3.27pb

—1.25pb
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.. continue

mp o 0 (theory) 0(PDF) d(as)

1251 4851 pb  FIRPP(TERN%) £0.90 pb (£ 1.86%)  Tiai(TEih)
1252 4844 pb  TIUPR(HLIU) 090 pb (£ 1.86%)  laen(t20L%)
125.3  48.37pb  TIOPP(TEE) £0.90 pb (£ 1L86%)  FaoPp(FE
1254 4830pb  PRERD(HSE) 4090 ph (£ 1.86%)  TL20PP(H261%)
1255 4823 pb  FIOPD(TET%) £ 089 pb (£ 1.85%)  Tiaib(FREih)
125.6 4816 pb  TIPP(TeEE) £ 0.89 pb (£ 1.85%)  Faib(TE
1257 4810 pb  TIOPP(FEINE) £ 0.89 pb (£ 1.85%)  TaPp(fRS)
125.8  48.03pb  FIPD(TE) £0.89pb (£ 1.85%)  Tiap(Taiih)
1259 47.96pb  TZIPD(FASAY 4089 ph (£ 185%)  TLZRb(H261%)
126.0  47.89pb  TIIPP(TeR) £ 0.89 pb (£ 1.85%)  FIIPR(TIe
126.5  47.56 pb  TIPR(TESIA) £ 0.88 pb (£ 1.85%) 1o (TS
127.0 4723 pb  C2IPR(RASYE) 4087 pb (£ 1.85%) 1 Znb(r200%)
1275 46.9pb  TRDPP(TASI) £0.87 pb (£ 1.85%)  L1aiep(T290%)
128.0  46.58 pb IR (Tet0%) £0.86 pb (£ 1.85%)  Tyan (TS0
1285  46.25pb  TLoPb(*Re9%) £ 085 pb (£ 1.85%) T ToR(tRO0%)
120.0  45.94pb  TIOPP(TAASE) £ 0.85 pb (£ 1.85%) Ty (T
129.5  45.62pb  TIOPP(TEAT) £ 0.84pb (£ 1.85%) Ty (TRc)
130.0  4531pb  FROPR(TEA) £ 0.84pb (£ 1.84%) (TR

Table 16. Gluon-fusion Higgs production cross-section at a proton-proton collider for /s = 13 TeV.
Details on the calculation of the theory error are given at the beginning of this appendix and in the
main text.
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Vs = 14 TeV

mp o 0 (theory) 0(PDF) d(as)

1200 58.71pb  TREPP(RAE) £ 110 pb (£ 1.87%)  FIERR (RO
120.5 5829 pb  IIPD(TESA) £ 1.09 pb (£ 1.87%) Ty (Trea
121.0  57.87pb  FROPP(TEUT®) £ 1.08pb (£ 1.87%)  Tiob(free)
1215 5745pb  TLob(ESy £ 107 pb (£ 1.87%)  FIP(TRe
122.0  57.04pb  FIRPP(TES) £ 1.07pb (£ 1.87%)  Tabn(frea)
122.5  56.64pb  TIEPD(TESI%) £ 1.06 pb (£ 1.87%)  TiPb(frea)
123.0 5624 pb  FZORDCHISHL) 05 ph (£ 1.87%)  TIATRR(H262%)
1235 55.84pb  REPD(FAOYG 4104 ph (£ 186%) T on(t260%)
124.0 5545 pb  TIEPP(TECI%) £ 1.03pb (£ 1.86%) (TS
1241 5537pb  TIUPD(TECH) £ 1.03pb (£1.86%) i (FaS)
124.2  55.29pb  IUPP(TES%) £ 1.03pb (£ 186%) T (T
1243 5521 pb  FIZPP(REONE) £ 1.03pb (£ 1.86%)  FPh(foe)
1244 55.04pb  TRERRCHAGN) 4 103 pb (£ 186%) LD (+200%)
1245 5506 pb  T33oPb(YAOO%) £ 1.02pb (£ 1.86%)  Tliahn(F28%)
124.6 5498 pb  TIEPD(TENA) £ 1.02pb (£ 1.86%) b (TR
1247 54.9pb  FIEPP(TEINA) £ 1.02pb (£1.86%) b (T
124.8  54.83pb  TLOD(HEIO%) £ 102pb (£ 1.86%)  TIP(fRO)
124.9  5475pb  TIEPD(TERV%) £ 1.02pb (£ 1.86%) i (TR
1250 54.67pb  TRIIPD(HLSTY g 0o ph (£ 1.86%)  LAIRD(H261%)

—3.67pb

—1.41pb
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.. continue

mp o 0 (theory) 0(PDF) d(as)

1251 5460 pb  FIUPP(TEN) £ 1.02pb (£1.86%) (TR
1252 5452pb  PZIRD(HLSSE) 01 ph (£ 1.86%)  TLA2R(+260%)
1253 5445pb  TLPP(FEINE) £ 101 pb (£ 1.86%)  FUi(fROh)
1254 54.37pb  TIPH(HAIE) L 101 pb (£ 1.86%) TR (fRO
1255 5420 pb  C2EPR(HASSE) 4101 pb (£ 1.86%)  fiRP(FR0%)
125.6  54.22pb  LEPP(TeSTE) £ 1.01pb (£ 1L86%)  FyPP(Tre
125.7 5414 pb  FREPP(TESTA) £ 1.01pb (£ 1.86%)  TyPP(FRL)
1258 54.07pb  T2EPR(RASTE) 4100 pb (£ 1.86%)  1iEP(F20%)
1259 5399 pb  TZARD(HASTA) 1100 pb (£ 1.86%)  CIiRP(201%)
1260 53.92pb  ZEPR(FAESTA) 4 1.00 pb (= 1.86%)  Tpann (F26%)
1265 53.55pb  TIIPD(TEt%) £0.99 pb (£ 1.86%)  Tiaen(Te)
127.0 5318 pb  TIIPP(TEE) £0.99 pb (£ 1L86%)  Fyai (TR0
127.5  52.82pb I (Fet) £ 098 pb (£ 1.85%)  FyatRp(TEo)
128.0 5246 pb  TIEPD(TASSA) 4097 pb (£ 1.85%)  Tiaorp (TR0
1285 5210 pb  FIAPR(HLE) 4096 pb (£ 1.85%)  1aRn(t2O0%)
1290 51.75pb  TIAPP(TAS £0.96 pb (£ 1.85%) Ty (F290%)
1205 5140pb  TZUD(HANLY 095 ph (4 185%)  ThaRb(t239%)
130.0  51.05pb  FREPR(HLAY%) 004 ph (£ 1.85%)  TlERR(r280%)

Table 17. Gluon-fusion Higgs production cross-section at a proton-proton collider for /s = 14 TeV.
Details on the calculation of the theory error are given at the beginning of this appendix and in the
main text.
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