
The Control and Configuration Software of the ATLAS Data
Acquisition System: Upgrades for LHC Run 2

G LEHMANN MIOTTO
a
, I ALEKSANDROV

b
, G ANDERS

a
, G AVOLIO

a
, M CAPRINI

c
, A CORSO RADU

d
, M D’ASCANIO

a
, J DE CeSTRO VARGAS FERNANDES

e
, A KAZAROV

f
, B KOLOBARA

a,g
, A LANKFORD

d
,

F LAURENT
a,h

, L MAGNONI
a
, L PAPAEVGENIOU

a
, Y RYABOV

f
, A SANTOS

i
, J SEIXAS

e
, I SOLOVIEV

d
, G UNEL

d
, Y YASU

j

a: CERN (CH), b: Joint Inst. for Nuclear Research – JINR (RU), c: IFIN-HH Bucharest (RO), d: University of California Irvine (US), e: Univ. Federal do Rio de Janeiro (BR), f: B.P. Konstantinov Petersburg Nuclear Physics Institute – PNPI (RU),
g: Ministere des Affaires Etrangeres et Europeennes (FR), h: École Polytechnique Fédérale de Lausanne (CH), i: Universidad Nacional de La Plata (AR), j: High Energy Accelerator Research Organization (JP)

The ATLAS experiment at the Large Hadron Collider (LHC) operated very successfully in the years 2008 to 2013, identified as
Run 1. It achieved an overall data taking efficiency of 94%, largely constrained by the irreducible dead-time introduced to accommodate the

limitations of the detector read-out electronics. Out of the 6% dead-time only about 15% could be attributed to the central trigger and DAQ system, and
out of these, a negligible fraction was due to the control and configuration sub-system. Despite these achievements, the first long LHC shutdown (2013-2014)

was used to carry out a complete revision of the control and configuration software. The goals were three-fold: properly accommodate additional
requirements that could not be seamlessly included during steady operation of the system; re-factor software that had been repeatedly modified to include

new features, thus becoming less maintainable; seize the opportunity of modernizing software written at the beginning of the years 2000, thus profiting from
the rapid evolution in IT technologies. This upgrade was carried out retaining the important constraint of minimally impacting the mode of operation of the

system and public APIs, in order to maximize the acceptance of the changes by the large user community.
This poster illustrates, using a few selected examples, how the work was approached and which new technologies were introduced

into the ATLAS DAQ system. Despite these being specific to this system, many solutions can be considered
and adapted to different distributed DAQ systems.

In a large, heterogeneous system such as the ATLAS TDAQ, it is essential to be able to verify the correct functioning of hardware and
software components. Therefore, a TDAQ functional testing framework existed and was used already throughout Run 1. Additional
requirements were identified with the experience gained during data taking:
• “Experts shall be able to define the order in which tests should be executed for a component; the sequence may dynamically change

based on the result of completed tests”
• “Experts shall be able to define the order with which inter-related components shall be tested; the test sequence may change

depending on the result obtained for the components.”
• “Experts shall be able to define what should be done upon failure of a test or a component to further diagnose the issue or recover.”

The control and configuration software has contributed to the physics results obtained by the ATLAS experiment during Run 1 by ensuring smooth and efficient data taking.
It was completely revised during 2013-2014 in order to accommodate additional requirements, improve maintainability and profit from advances in IT technologies: all this
was done applying minimal changes to APIs, such that the large amount of client code would not need significant adaptations. The control and configuration software has

already proved to be stable and well performing since the start of LHC Run 2 (2015 - 2018) and is prepared to face the new challenges that will arise during Run 2 operations.
This experience has also demonstrated that the overall architecture of the control and configuration system is flexible and supports partial upgrades, as well as step-wise
modernization of its components: this is fundamental for a system that is foreseen to run for the next 20 to 30 years and that will undergo several more upgrade iterations.

The Run Control (RC) system steers the data
acquisition by starting and stopping processes and
by carrying all data-taking elements through well-
defined states in a coherent way. Given the size and
complexity of the TDAQ system (2000+ PCs, 30000+
applications, 9000+ network ports,…), errors and
failures are bound to happen and must be dealt
with: in ATLAS this task is carried out by an expert
system.
The RC and expert system components were tightly
coupled in the first implementation of the software,
with the consequence that their separation of duties
became increasingly unclear with the additions of
features during operations in Run 1.
Therefore these two components were completely
redesigned, using a distributed run control tree and
a separate central expert system application, the
Central Hint and Information Processor (CHIP).

Applications in the ATLAS TDAQ system are organized in a tree-like hierarchical structure (the run control tree), where each
application is managed by a parent Controller. The topmost node of the tree is the Root Controller. Controller applications are
responsible to keep the system in a coherent state by starting and stopping their child applications and by sending them the proper
commands needed to reach a state suitable for data-taking. Controller applications interact with CHIP by informing it about any
changes (their own or their children). CHIP acts as an intelligent system having a global view on the TDAQ. It is capable of recovering
from error conditions and guiding the TDAQ system through automated procedures in order to take data efficiently.
The RC has been re-implemented with state of the art C++ technologies such as boost and Intel Threading Building Blocks.
CHIP has been designed and implemented based on a third party open source java based Complex Event Processing (CEP) engine,
ESPER.

CHIP
Root
CTRL

CTRL

APP 1

APP 2
Status update
CHIP actions

Status update/Problem
reporting

Commands

• Message Transport System (MTS)
MTS underwent a review of the requirements that led to a
complete redesign and new implementation to match its actual
role (fast and reliable transport layer for TDAQ Error Reporting
System messages). The redesigned system is reliable, scalable and
its performance has been improved. The plot shows the rates of
messages reported in MTS in technical runs in April 2014. In the
condition of the plot (60000 applications running) MTS reached a
maximum rate of 18kHz of delivered messages.

• Resource Manager
After an initial review and simplification of the requirements, the
system underwent partial changes with the introduction of Boost
multi-index containers. As a result the code base has been
reduced by 40% against the previous implementation thus
leading to a more maintainable system. The plot shows that the
resource manager introduces a negligible overhead to the
initialization of the RC tree.

• Information System Archiver, P-BEAST (a Persistent Back-End
for the ATLAS TDAQ)

P-BEAST is a new component designed and implemented to
archive operational monitoring information for analysis by
experts. It provides CORBA and REST interfaces for data access. Its
implementation is based on Google protobuf (data persistence),
CORBA (internal protocol and user programming interface) and
libmicrohttpd (Web server).

• P-BEAST Dashboard
This web application offers an interface to
visualize any operational monitoring data
published by the TDAQ system through
configurable and customizable dashboards.
The data is provided by P-BEAST and the
application is based on the Grafana project,
adapted to support a custom data source
within the AngularJS framework.

• ELisA
The ATLAS electronic logbook (ELisA) is a web
application used to record and share messages
about ATLAS data taking activities by system
operators, experts and automated services.
The information is stored in an ORACLE
database. The adoption of an MVC-driven
architecture has allowed one to focus code
development on specific features of the
project, while profiting from the reliability of
established third-party technologies such as
the Spring framework. The tool also provides
an HTTP-based REST API, such that other
programs can access its features.

Execute tests for a
component

• Dependencies between tests
of one component

• Process management
• Form result for component out

of results of individual tests

Test groups of
composite

components

• Dependencies between
components

• Form global result for
composite components out of
results of individual
components

Represent
components and
the test results

• Show testable components
and their relation

• Show components status and
tests outcome

• Allow user to select and
execute tests

Operator

Run Control
CHIP

Test Configuration fully
defined by system

experts in the
configuration database

Functional testing is used by:
• The Run Control (RC) system that

periodically verifies the functioning of the
components it is in charge of;

• The Central Hint and Information
Processor (CHIP) that executes tests to
diagnose problems;

• The Operator who manually executes
tests via a dedicated graphical user
interface.

