Published for SISSA by 🙆 Springer

RECEIVED: August 26, 2016 ACCEPTED: August 26, 2016 PUBLISHED: August 30, 2016

## Erratum: Spontaneous symmetry breaking in the $S_3$ -symmetric scalar sector

## D. Emmanuel-Costa,<sup>a</sup> O.M. Ogreid,<sup>b</sup> P. Osland<sup>c</sup> and M.N. Rebelo<sup>a,d</sup>

<sup>a</sup> Centro de Física Teórica de Partículas – CFTP, Instituto Superior Técnico – IST, Universidade de Lisboa,

Av. Rovisco Pais, P-1049-001 Lisboa, Portugal

<sup>b</sup>Bergen University College,

Bergen, Norway

<sup>c</sup>Department of Physics and Technology, University of Bergen, Postboks 7803, N-5020 Bergen, Norway

<sup>d</sup> Theory Department, CERN, CH 1211 Geneva 23, Switzerland

*E-mail:* david.costa@tecnico.ulisboa.pt, omo@hib.no, Per.Osland@uib.no, rebelo@tecnico.ulisboa.pt

ERRATUM TO: JHEP02(2016)154

ARXIV EPRINT: 1601.04654



| Vacuum    | $\lambda_4$ | SCPV | Vacuum    | $\lambda_4$ | SCPV | Vacuum | $\lambda_4$ | SCPV |
|-----------|-------------|------|-----------|-------------|------|--------|-------------|------|
| C-I-a     | Х           | no   | C-III-f,g | 0           | no   | C-IV-c | Х           | yes  |
| C-III-a   | Х           | yes  | C-III-h   | X           | yes  | C-IV-d | 0           | no   |
| C-III-b   | 0           | no   | C-III-i   | X           | no   | C-IV-e | 0           | no   |
| C-III-c   | 0           | no   | C-IV-a    | 0           | no   | C-IV-f | Х           | yes  |
| C-III-d,e | Х           | no   | C-IV-b    | 0           | no   | C-V    | 0           | no   |

Table 6. Spontaneous CP violation.

In our discussion of Spontaneous CP violation two cases must be corrected. In "Table 6: Spontaneous CP Violation." cases C-III-c and C-IV-e corresponding to  $\lambda_4 = 0$  are indicated as having SPCV (spontaneous CP violation), however this is not the case. The correct table is given above.

As a result one may conclude that  $S_3$  symmetric models with  $\lambda_4 = 0$  cannot violate CP spontaneously. Still, there are cases with  $\lambda_4 \neq 0$  where spontaneous CP violation may occur in three Higgs doublet models with  $S_3$  symmetry.

The explanation for the absence of spontaneous CP violation in these two cases lies in the fact that models with  $\lambda_4 = 0$  have an additional SO(2) symmetry. This symmetry can be used to build a matrix U verifying eq. (8.3) for cases C-III-c and C-IV-e.

In order to prove that case C-III-c does not violate CP spontaneously we start from the corresponding set of vevs  $(\hat{w}_1 e^{i\sigma}, \hat{w}_2, 0)$  and perform a Higgs basis transformation on the Higgs doublets  $h_1$  and  $h_2$  by an SO(2) rotation into:

$$\begin{pmatrix} h_1'\\ h_2' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h_1\\ h_2 \end{pmatrix}$$
(8.5)

such that the vevs of the new  $S_3$  doublet fields now have the same modulus and are now of the form  $(ae^{i\delta_1}, ae^{i\delta_2}, 0)$ . This requires

$$\tan 2\theta = \frac{\hat{w}_1^2 - \hat{w}_2^2}{2\hat{w}_1\hat{w}_2\cos\sigma}.$$
(8.6)

Obviously the Lagrangian remains invariant. Next we perform an overall phase rotation of the three Higgs doublets with the phase factor  $\exp[-i(\delta_1 + \delta_2)/2]$ , leading now to the following vevs:  $(ae^{i\delta}, ae^{-i\delta}, 0)$ . Making use of the symmetry for the interchange  $h'_1 \leftrightarrow h'_2$ we can verify eq. (8.3) in the following way:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ae^{i\delta} \\ ae^{-i\delta} \\ 0 \end{pmatrix}^* = \begin{pmatrix} ae^{i\delta} \\ ae^{-i\delta} \\ 0 \end{pmatrix}.$$
(8.7)

In terms of the initial vevs, this equation translates into

$$e^{i(\delta_1+\delta_2)} \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{w}_1 e^{i\sigma} \\ \hat{w}_2 \\ 0 \end{pmatrix}^* = \begin{pmatrix} \hat{w}_1 e^{i\sigma} \\ \hat{w}_2 \\ 0 \end{pmatrix}, \quad (8.8)$$

or

$$e^{i(\delta_1+\delta_2)} \begin{pmatrix} \sin 2\theta & \cos 2\theta & 0\\ \cos 2\theta & -\sin 2\theta & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \hat{w}_1 e^{i\sigma} \\ \hat{w}_2 \\ 0 \end{pmatrix}^* = \begin{pmatrix} \hat{w}_1 e^{i\sigma} \\ \hat{w}_2 \\ 0 \end{pmatrix}.$$
 (8.9)

Notice that  $(ae^{i\delta}, ae^{-i\delta}, 0)$  is a special case of the PS vacuum, given in eq. (5.10).

In order to prove that C-IV-e does not violate CP spontaneously we start with the corresponding set of vevs:  $(\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$  where

$$\hat{w}_1 = \sqrt{-\frac{\sin 2\sigma_2}{\sin 2\sigma_1}}\hat{w}_2$$
 (8.10)

in this phase convention. In general one should write  $\sin(2\sigma_1 - 2\sigma_S)$  and  $\sin(2\sigma_2 - 2\sigma_S)$ in the latter relation, where  $\sigma_S$  would be the phase of the third vev. We now perform an SO(2) rotation, similar to the one specified above, with

$$\tan 2\theta = \frac{\hat{w}_1^2 - \hat{w}_2^2}{2\hat{w}_1\hat{w}_2\cos(\sigma_1 - \sigma_2)},\tag{8.11}$$

which once again will lead to equal moduli for the  $S_3$  doublet fields. In this case, the vevs will acquire the form  $(be^{i\gamma_1}, be^{i\gamma_2}, \hat{w}_S)$ . Unlike in case C-III-c, an overall phase rotation would also affect the vev of  $h_S$ . However, it turns out that condition (8.10) enforces

$$\gamma_1 + \gamma_2 = 0. (8.12)$$

As a result, this SO(2) rotation takes us to the PS vacuum, which, as we discussed previously, does not violate CP spontaneously.

**Open Access.** This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.