
Multi-threaded Software
Framework Development for

the ATLAS Experiment

Graeme Stewart, Tomaz Bold, John Baines, Paolo Calafiura, Andrea Dotti,
Steve Farrell, Charles Leggett, David Malon, Elmar Ritsch, Scott Snyder, Vakho

Tsulaia, Peter Van Gemmeren, Ben Wynne for the ATLAS Experiment

2016-01-21
1

Computing Challenges
• Great challenge of computing in the next decade will be one of power

• nJ per instruction
• Note it is likely that the power costs of memory access would be greater than CPU

power in an exascale machine
• This is driving evolution of larger numbers of cores on dies

• More transistors but no more clock speed
• And lower amounts of memory per core

2

Moore's
Law

Clock
Speed

Charles Leggett, LBL

New NERSC CRT building housing
Cori machine room at LBNL

End of
Homogeneity

• Computing for LHC experiments was developed
at a time when the market became extremely
homogeneous

• x86 architecture was dominant, mainly Intel
CPUs

• Physical limitations of high performance and high
power efficiency CPU computing are forcing a
challenge to this homogeneity

• Different CPU architectures: Aarch64,
PowerPC

• Different architectures: GPGPUs, Hybrid CPU
+ FPGAs

• More and more ‘features’ increasing theoretical
performance

• But not easy to use — especially for legacy
HEP code

• Dark silicon might start to dominate in the future
— specialist computing units lit up only when
needed

3

HPC Installed CPU Shares

The Road to High
Luminosity LHC

4

Event Complexity x Rate
= Challenge

Integrated
Luminosity ATLAS Pileup

Run1 (2009-2012) 25 25

Run2 (2015-2018) 125 40

Run3 (2021-2023) 300 60-80

HL-LHC (2026+) 300/yr 140-200

AthenaMP and beyond
• First big wall hit by ATLAS

is the memory wall
• Multi-processing with

copy on write (Athena
MultiProcess, or
AthenaMP) is serving
ATLAS well in Run2, but
we don’t expect this to
scale for Run3

• Need a multi-threading
solution — genuine
memory sharing, with all
its known advantages and
problems

5

Memory
Saving

Current ATLAS software framework is

Athena, built on top of a generic event

processing framework, Gaudi

(originally developed by LHCb, now a

shared project)

FFReq
• Step 1 — what do we need?

• Future Framework Requirements Taskforce, aka FFReq
• Design study reported end of 2014 on the requirements for a Run3 framework

• Large additional motivation was better integration with the ATLAS trigger
• In particular support for partial event processing in regions of interest
• At the moment this is served by running a single HLT master algorithm

on each event

• Effectively a sub-event scheduler built into a Gaudi algorithm

• N.B. Easier use of offline algorithms directly in the trigger is one of the
things needed for Run3 — maintain trigger’s rejection/selection power at
higher pile up and higher L1 rates

6

FFReq: Key
Points

• Support high level trigger use cases natively
• Clearly separate code that sees one event at a time

• Algorithm and Tool
• From code that sees all events at once

• Services
• All inter-algorithm communication goes via the event

store
• Try to limit the use of asynchronous incidents
• Exploit:

• Multiple event parallelism
• Inter-event parallelism at the algorithm level
• Allow for in-algorithm parallelism — very likely

necessary for high pileup tracking
• Use an underlying generic threading toolkit, layering on

only what we need
7

Services
Services

Services

Alg

Initialisation

Services

Alg

Alg

Alg

Alg

Tool

Tool

Tool

Tool

Finalisation

Tool

Schedulable
Incident

Schedulable
Incident

Scheduler

Parallel
Alg

Alg

Inter-event and in-event parallelism
(colours are events, shapes algorithms)

Framework element interaction within a
single event

Gaudi & AthenaMT
• After due consideration we decided that an updated version of Gaudi

fitted ATLAS’s needs
• Collaboration with LHCb and SFT was deemed highly desirable
• GaudiHive demonstrator had shown promising results

• Underlying Intel Threaded Building Blocks had been shown to perform
well

• Similar ATLAS CaloHive example had demonstrated memory savings
could be achieved in practice

• And also given us insight into many of the pitfalls that would be faced
along the way

• Reinvigoration of the Gaudi project has been extremely welcome!
• ATLAS specifics incorporated into Athena MultiThreaded, AthenaMT

8

Event Views

• Multiple seeds from L1
• In order to minimise investment in rejected events (99%) only

consider restricted data in each trigger chain
• Do this by creating a view for each region of interest
• Algorithms will run on each RoI that interests them (generally, >1)

9

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

✘
Alg Alg

Muon pt >
6GeV

✔ ✘

Muon pt >
10GeV

L1_MU0 L1_MU6 L1_MU10

L2_MU0 L2_MU6 L2_MU10

Prescale Prescale Prescale

Alg Alg

Muon pt >
6GeV

✔ ✔

✘

Implementation
Progress

• Measuring synthetic performance indicates that probably the best place for a
view to live is within the main event’s whiteboard (central vs. cached)

• We recently extended IProxyDict interface to allow event views to act on a
ProxyDict using data handles

• Data proxies used to allow on-demand reading (so it’s a bit cleverer than a
pointer to memory)

• Then algorithms can read from our offline event store or from an EventView all
transparently

• Both implement IProxyDict interface
• Transparent use of offline algorithms in trigger ✔

• No longer a need for HLT algorithms and offline algorithms as distinct entities

10

View depth

Scheduling and Views
• As the number of views is not known until runtime, how do we schedule them?
• Don’t want a separate HLT specific scheduler — little better than the solution now

• Want to take advantage of generic improvements and wider community
• Treat views as separate (sub)events?

• Problematic for merging — do we really use the same graph for views as the
whole event?

• Or use a multi-scheduler approach
• Generation of a view spawns a scheduler to handle that view and run all the

needed algorithms on it
• Parent scheduler will wait for children to finish (child will probably set a control

flow state)
• Or dynamic scheduler extensions

• Will require deeper changes into the scheduler code

11

View Schedulers
• In simple cases can just deep copy

the current scheduler (with state!)
• Algorithms just create a view —

nothing more
• May need to support cases where

the child scheduler has a different
flow graph

• Would probably be also useful for
accelerator plugins

or
• At certain points in the graph, allow

the dynamic extension with a known
sub-graph connected to a view

• Allows for a single scheduler
• Optimises throughput through

consumption analysis

12

Base Event Scheduler

Dynamic sub-graph
or sub-scheduler

Dynamic sub-graph
or sub-scheduler

Control FlowControl Flow

Control FlowControl Flow

We need to prototype!

Data Handles
• ATLAS’s current event store (StoreGateSvc) has interfaces used directly by most

tools and algorithms
• Too tied to a particular usage pattern
• Not visible to the scheduler

• First multi-threading prototypes implemented a cumbersome manual
declaration of dependencies

• Thus we migrate to data handles in order to:
• Automatically declare data dependencies to the scheduler

• Note this percolates from algorithm to tool to tool, etc. (very common
design pattern in ATLAS to delegate work to a chain of tools)

• Abstract away from specifics of the event store and treat data (handle) with
OO semantics

• May use different event store implementation for analysis use cases

13

Re-entrant Algorithms and
Handles

• Early versions of GaudiHive had two algorithm classes
• Cloneable and non-cloneable

• Cloneable is better than non-cloneable, but consumes additional memory
• Best case is an algorithm with re-entrant execute method

• const	
 execute() able to run multiple events simultaneously, without cloning

• However, first implementation of handles did not play nicely with this
• Private data member used ‘magic’ to cache the event specific handle

information
• Would need to vary event by event → not const anymore :-(

• New design requires an extra call at the top of execute
• Resolve the handle property to the event specific proxy (stored on the stack)
• Exact implementation is being discussed, but will be prototyped soon

14

Conditions for Run3
• In parallel to any framework changes we are planning a major upgrade to our

conditions data infrastructure for Run3

• Guiding idea is to greatly simplify the database internals (schemas and
tables), embed Frontier (caching http layer) into the core design, simplify the
client side to REST interactions and unify the serialisation method (e.g.,
JSON)

• This borrows heavily from CMS’s work during LS2 with whom we’re
cooperating closely

• Conditions will be stored on lumi-block boundaries as open intervals
• Payload is always just a BLOB

• Client must know how to interpret it, but the supporting infrastructure is
simple

• Global tag (used a lot in ATLAS) is a simple list of child tags

15

Current Conditions Access
• Conditions access is based on the concept of intervals of validity

• Basically a value, plus a time or event range for which this value is valid
• Different conditions have different cadence - from single events, to luminosity blocks

(60s) to whole LHC runs
• Current ATLAS model for retrieving conditions is not very suited to multi-event processing

• Conditions related tools register a callback when a validity boundary is crossed for
their folders

• Callback generally performs a calibration calculation on their conditions data, results
stored in private cache

• Users of this data call the tool to retrieve current calibrated value
• Conditions database component of Athena is in charge of checking at the beginning

of each event if any conditions have gone out of validity
• If they have then the new data is retrieved from the database; callback is then

fired to notify all clients

16

Conditions as Data
• Instead of conditions being retrieved ‘on demand’, inform the

scheduler they are a data input for an algorithm
• Prevents stalling while conditions are retrieved

• Instead of callbacks and private caching, write conditions
algorithms that perform the calibration and use the event store
for calibrated values

• Use detector store because conditions cadence is very
different from event cadence

• Internally a container by IOV
• Calibration algorithm (plus tools) first check if current values are

still valid
• If not, new retrieval is triggered

• Underlying Athena service is in charge of actual DB interactions
• Bulk requests and more efficient interactions

• Time varying data, with a different cadence to events is a
common problem

• Scope for a common project with Gaudi partners

17

Alg1 Alg 2

Event Store

Data Dependency

Conditions
Calibration

Conditions
Dependency

Detector Store

I/O and Metadata
• We have started to look at our i/o infrastructure

• Audit for thead safety issues
• Near term goals:

• Simultaneous reading and writing from i/o layer — more or less in place
• Supporting Athena G4 multi-threading prototype

• Simultaneous writing to multiple streams — should come early next year
• Longer term we want to

• Revisit transient/persistent layers and look again at direct ROOT conversion services
• Try and simplify things

• Ensure we make less assumptions about how we read data
• Particularly towards more event streaming over the network

• In-file Metadata sub-system requires a real re-design
• Currently incident driven — even with AthenaMP we have issues and file merging is a real

pain

18

Service Migration:
Magnetic Field

• Good example of efficient, but serial, code is the ATLAS magnetic field service
• Field is computed via a Biot-Savart component from magnet currents in the

detector
• Plus an interpolated correction, based on position: Bcor(x,y,z)

• Looked up in a 300MB field map, which is expensive (and used
extensively in simulation)

• Cache field values used in an interpolated volume
• Very good chance of a hit when following a G4 particle

• However, when multiple particles are in flight lookup order becomes
randomised

• Lose all benefits of the cache

19

Thread Safe State
• New implementation of the field service uses thread local storage to

manage the cache
• First call on a thread allocates store
• As Intel TBB keeps each task element on its own thread, following a

particle per thread keeps the cache benefits
• No client side changes

• However, thread local storage is not perfect
• We are also planning to introduce client side caching

• Client can pass in a non-const cache object using a different
interface

• Best performance and flexibility when in performance critical parts of
the code

20

Multi-Process-
Thread Flexibility

• Note that our multi-process architecture in AthenaMP will not disappear
• We already make good use of it when running on big machines, such as supercomputers

• Cannot scale to those machines with threads alone
• Knight’s Landing boards will come with NUMA domains
• AthenaMP and AthenaMT together

• Run processes per NUMA domain, with threads in each domain to constrain memory
• We also use MPI to straddle across nodes for cases where the scheduling unit of a machine

is multiple nodes (supercomputers)
• Have run millions of CPU hours on NERSC’s Edison machine in this way

• Goal remains to maximise the range of resources we can take advantage of

21

G4Hive AthenaG4MT
• Attempt to get multiple G4 events running on different threads, controlled by Gaudi

scheduler
• Strong motivation is Phase II Cori machine at NERSC
• 9300 Knights Landing machines (670 000 cores, >~1GB/core)

• This has been a very instructive exercise
• Sensitive detector classes needed a new implementation to support on

demand creation per thread
• User actions required considerable refactoring and lots of tedious recoding
• I/O system turned out to have many assumptions about serial processing built

in (see previous slide on i/o)
• Teaching us about the balancing act between hacked solutions and over elaborate

designs — focus on the actual problem!

22

AthenaG4MT Results
• Clear

demonstration of
good multi-
threading scaling

• Threads all kept
~100% busy

• N.B. No
magnetic field in
this example

23

Increasing threads improves
throughput for a modest

memory increase

1 thread2 threads

3 threads

5 threads

20 threads

Thread CPU usage
measured by Intel VTune

Code Review
• To try and understand where we are with the algorithmic code we will

undertake a software review this year
• A high level review of subsystem code

• What’s the design…? (Is there a design…?)
• Obstacles to threading?
• Opportunities for parallelism?

• Much benefit in asking sub-systems to prepare this material — oblige
people to put on their ‘design goggles’

• Make them aware of challenges of the new framework
• Opportunity for reviewers to learn from a different area of the software

• Outcome may well be just start over — e.g., some ATLAS muons algorithms
and Simulation base infrastructure rewrite

24

Migration Tools and
Strategy

25

• 3.5 million lines of C++ is a serious headache to migrate

• Strategy 1: Use machines

• Making more use of sanitisation checkers

• ASAN — check for memory errors; UBSAN — check for undefined behaviour; TSAN — thread sanitiser

• gcc static checker plugin

• Redundant division checker; Naming guidelines; Thread safety checks

• Strategy 2: Invest in the test

• We need to invest more in testing our code — looking at gmock as a way to help test framework components

• May then be able to take advantage of code refactoring tools
• Strategy 3:

• Developer education is vital
• Good advice
• Real examples
• Always keep it simple

• Make things as simple as possible for the ‘average’ developer — writing a basic Athena algorithm or tool
should have few gotchas and most of those should be machine trapped (const execute!)

Timeline and Goals

26

• Now->2016
• Deliver core framework with most functionality

enabled

Dates Framework Algorithmic Code

2015 Baseline Functionality Very few algorithms, concentrate on high inherent
parallelism; general clean-up

2016 Most functionality available (including
views)

Wider set, including CPU expensive algorithms with
internal parallelism; continue clean-up/prep; first

trigger chains

2017 Performance improvements and final
features Migration starts with select groups

2018 Performance improvements Start bulk migration

2019 Bug fixes Finish bulk migration

2020 Bug fixes Integration

Summary
• Phase I Software Upgrade is underway

• We know what we want to achieve
• Already substantial progress in many areas

• Effort to work on core framework is identified already
• Investment in tools and tests will pay off handsomely
• And we also need to train the development community

• Very healthy revival of Gaudi as a community effort
• Particularly helpful discussions with LHCb

• Have started to seriously think about what the algorithmic code should look like for Run3
• There will be a lot of code we need to rewrite
• Important to start discussions with reco, sim and analysis groups to shape the new

framework and the new interfaces properly
• Code review will help us to understand and evolve today’s code

• And provide good examples for the community

27

Gene Amdahl — pioneer
of understanding parallel

computing

