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Computing Challenges
• Great challenge of computing in the next decade will be one of power 

• nJ per instruction 
• Note it is likely that the power costs of memory access would be greater than CPU 

power in an exascale machine 
• This is driving evolution of larger numbers of cores on dies 

• More transistors but no more clock speed 
• And lower amounts of memory per core
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End of 
Homogeneity

• Computing for LHC experiments was developed 
at a time when the market became extremely 
homogeneous 

• x86 architecture was dominant, mainly Intel 
CPUs 

• Physical limitations of high performance and high 
power efficiency CPU computing are forcing a 
challenge to this homogeneity 

• Different CPU architectures: Aarch64, 
PowerPC 

• Different architectures: GPGPUs, Hybrid CPU 
+ FPGAs 

• More and more ‘features’ increasing theoretical 
performance 

• But not easy to use — especially for legacy 
HEP code 

• Dark silicon might start to dominate in the future 
— specialist computing units lit up only when 
needed
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The Road to High 
Luminosity LHC 
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Event Complexity x Rate  
= Challenge

Integrated 
Luminosity ATLAS Pileup

Run1 (2009-2012) 25 25

Run2 (2015-2018) 125 40

Run3 (2021-2023) 300 60-80

HL-LHC (2026+) 300/yr 140-200



AthenaMP and beyond
• First big wall hit by ATLAS 

is the memory wall 
• Multi-processing with 

copy on write (Athena 
MultiProcess, or 
AthenaMP) is serving 
ATLAS well in Run2, but 
we don’t expect this to 
scale for Run3 

• Need a multi-threading 
solution — genuine 
memory sharing, with all 
its known advantages and 
problems

5

Memory 
Saving

Current ATLAS software framework is 

Athena, built on top of a generic event 

processing framework, Gaudi 

(originally developed by LHCb, now a 

shared project)



FFReq
• Step 1 — what do we need? 

• Future Framework Requirements Taskforce, aka FFReq 
• Design study reported end of 2014 on the requirements for a Run3 framework 

• Large additional motivation was better integration with the ATLAS trigger 
• In particular support for partial event processing in regions of interest 
• At the moment this is served by running a single HLT master algorithm 

on each event 

• Effectively a sub-event scheduler built into a Gaudi algorithm 

• N.B. Easier use of offline algorithms directly in the trigger is one of the 
things needed for Run3 — maintain trigger’s rejection/selection power at 
higher pile up and higher L1 rates
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FFReq: Key 
Points

• Support high level trigger use cases natively 
• Clearly separate code that sees one event at a time 

• Algorithm and Tool 
• From code that sees all events at once 

• Services 
• All inter-algorithm communication goes via the event 

store 
• Try to limit the use of asynchronous incidents 
• Exploit: 

• Multiple event parallelism 
• Inter-event parallelism at the algorithm level 
• Allow for in-algorithm parallelism — very likely 

necessary for high pileup tracking 
• Use an underlying generic threading toolkit, layering on 

only what we need
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Gaudi & AthenaMT
• After due consideration we decided that an updated version of Gaudi 

fitted ATLAS’s needs 
• Collaboration with LHCb and SFT was deemed highly desirable 
• GaudiHive demonstrator had shown promising results 

• Underlying Intel Threaded Building Blocks had been shown to perform 
well 

• Similar ATLAS CaloHive example had demonstrated memory savings 
could be achieved in practice 

• And also given us insight into many of the pitfalls that would be faced 
along the way 

• Reinvigoration of the Gaudi project has been extremely welcome! 
• ATLAS specifics incorporated into Athena MultiThreaded, AthenaMT
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Event Views

• Multiple seeds from L1 
• In order to minimise investment in rejected events (99%) only 

consider restricted data in each trigger chain 
• Do this by creating a view for each region of interest 
• Algorithms will run on each RoI that interests them (generally, >1)
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Implementation 
Progress

• Measuring synthetic performance indicates that probably the best place for a 
view to live is within the main event’s whiteboard (central vs. cached) 

• We recently extended IProxyDict interface to allow event views to act on a 
ProxyDict using data handles 

• Data proxies used to allow on-demand reading (so it’s a bit cleverer than a 
pointer to memory) 

• Then algorithms can read from our offline event store or from an EventView all 
transparently 

• Both implement IProxyDict interface 
• Transparent use of offline algorithms in trigger ✔

• No longer a need for HLT algorithms and offline algorithms as distinct entities
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Scheduling and Views
• As the number of views is not known until runtime, how do we schedule them? 
• Don’t want a separate HLT specific scheduler — little better than the solution now 

• Want to take advantage of generic improvements and wider community 
• Treat views as separate (sub)events? 

• Problematic for merging — do we really use the same graph for views as the 
whole event? 

• Or use a multi-scheduler approach 
• Generation of a view spawns a scheduler to handle that view and run all the 

needed algorithms on it 
• Parent scheduler will wait for children to finish (child will probably set a control 

flow state) 
• Or dynamic scheduler extensions  

• Will require deeper changes into the scheduler code
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View Schedulers
• In simple cases can just deep copy 

the current scheduler (with state!) 
• Algorithms just create a view — 

nothing more 
• May need to support cases where 

the child scheduler has a different 
flow graph 

• Would probably be also useful for 
accelerator plugins 

or 
• At certain points in the graph, allow 

the dynamic extension with a known 
sub-graph connected to a view 

• Allows for a single scheduler  
• Optimises throughput through 

consumption analysis

12

Base Event Scheduler

Dynamic sub-graph
or sub-scheduler

Dynamic sub-graph
or sub-scheduler

Control FlowControl Flow

Control FlowControl Flow

We need to prototype!



Data Handles
• ATLAS’s current event store (StoreGateSvc) has interfaces used directly by most 

tools and algorithms 
• Too tied to a particular usage pattern 
• Not visible to the scheduler 

• First multi-threading prototypes implemented a cumbersome manual 
declaration of dependencies 

• Thus we migrate to data handles in order to: 
• Automatically declare data dependencies to the scheduler 

• Note this percolates from algorithm to tool to tool, etc. (very common 
design pattern in ATLAS to delegate work to a chain of tools) 

• Abstract away from specifics of the event store and treat data (handle) with 
OO semantics 

• May use different event store implementation for analysis use cases
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Re-entrant Algorithms and 
Handles

• Early versions of GaudiHive had two algorithm classes 
• Cloneable and non-cloneable 

• Cloneable is better than non-cloneable, but consumes additional memory 
• Best case is an algorithm with re-entrant execute method 

• const	
  execute() able to run multiple events simultaneously, without cloning 

• However, first implementation of handles did not play nicely with this 
• Private data member used ‘magic’ to cache the event specific handle 

information 
• Would need to vary event by event → not const anymore :-( 

• New design requires an extra call at the top of execute 
• Resolve the handle property to the event specific proxy (stored on the stack) 
• Exact implementation is being discussed, but will be prototyped soon

14



Conditions for Run3
• In parallel to any framework changes we are planning a major upgrade to our 

conditions data infrastructure for Run3 

• Guiding idea is to greatly simplify the database internals (schemas and 
tables), embed Frontier (caching http layer) into the core design, simplify the 
client side to REST interactions and unify the serialisation method (e.g., 
JSON) 

• This borrows heavily from CMS’s work during LS2 with whom we’re 
cooperating closely 

• Conditions will be stored on lumi-block boundaries as open intervals 
• Payload is always just a BLOB 

• Client must know how to interpret it, but the supporting infrastructure is 
simple 

• Global tag (used a lot in ATLAS) is a simple list of child tags
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Current Conditions Access
• Conditions access is based on the concept of intervals of validity 

• Basically a value, plus a time or event range for which this value is valid 
• Different conditions have different cadence - from single events, to luminosity blocks 

(60s) to whole LHC runs 
• Current ATLAS model for retrieving conditions is not very suited to multi-event processing 

• Conditions related tools register a callback when a validity boundary is crossed for 
their folders 

• Callback generally performs a calibration calculation on their conditions data, results 
stored in private cache 

• Users of this data call the tool to retrieve current calibrated value 
• Conditions database component of Athena is in charge of checking at the beginning 

of each event if any conditions have gone out of validity 
• If they have then the new data is retrieved from the database; callback is then 

fired to notify all clients
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Conditions as Data
• Instead of conditions being retrieved ‘on demand’, inform the 

scheduler they are a data input for an algorithm 
• Prevents stalling while conditions are retrieved 

• Instead of callbacks and private caching, write conditions 
algorithms that perform the calibration and use the event store 
for calibrated values 

• Use detector store because conditions cadence is very 
different from event cadence 

• Internally a container by IOV 
• Calibration algorithm (plus tools) first check if current values are 

still valid 
• If not, new retrieval is triggered 

• Underlying Athena service is in charge of actual DB interactions 
• Bulk requests and more efficient interactions 

• Time varying data, with a different cadence to events is a 
common problem 

• Scope for a common project with Gaudi partners 
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I/O and Metadata
• We have started to look at our i/o infrastructure 

• Audit for thead safety issues  
• Near term goals: 

• Simultaneous reading and writing from i/o layer — more or less in place 
• Supporting Athena G4 multi-threading prototype 

• Simultaneous writing to multiple streams — should come early next year 
• Longer term we want to  

• Revisit transient/persistent layers and look again at direct ROOT conversion services 
• Try and simplify things 

• Ensure we make less assumptions about how we read data 
• Particularly towards more event streaming over the network 

• In-file Metadata sub-system requires a real re-design 
• Currently incident driven — even with AthenaMP we have issues and file merging is a real 

pain
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Service Migration: 
Magnetic Field

• Good example of efficient, but serial, code is the ATLAS magnetic field service 
• Field is computed via a Biot-Savart component from magnet currents in the 

detector 
• Plus an interpolated correction, based on position: Bcor(x,y,z) 

• Looked up in a 300MB field map, which is expensive (and used 
extensively in simulation) 

• Cache field values used in an interpolated volume  
• Very good chance of a hit when following a G4 particle 

• However, when multiple particles are in flight lookup order becomes 
randomised 

• Lose all benefits of the cache
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Thread Safe State
• New implementation of the field service uses thread local storage to 

manage the cache 
• First call on a thread allocates store 
• As Intel TBB keeps each task element on its own thread, following a 

particle per thread keeps the cache benefits 
• No client side changes 

• However, thread local storage is not perfect 
• We are also planning to introduce client side caching 

• Client can pass in a non-const cache object using a different 
interface 

• Best performance and flexibility when in performance critical parts of 
the code
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Multi-Process-
Thread Flexibility

• Note that our multi-process architecture in AthenaMP will not disappear 
• We already make good use of it when running on big machines, such as supercomputers 

• Cannot scale to those machines with threads alone 
• Knight’s Landing boards will come with NUMA domains 
• AthenaMP and AthenaMT together 

• Run processes per NUMA domain, with threads in each domain to constrain memory 
• We also use MPI to straddle across nodes for cases where the scheduling unit of a machine 

is multiple nodes (supercomputers) 
• Have run millions of CPU hours on NERSC’s Edison machine in this way 

• Goal remains to maximise the range of resources we can take advantage of
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G4Hive AthenaG4MT
• Attempt to get multiple G4 events running on different threads, controlled by Gaudi 

scheduler 
• Strong motivation is Phase II Cori machine at NERSC 
• 9300 Knights Landing machines (670 000 cores, >~1GB/core) 

• This has been a very instructive exercise 
• Sensitive detector classes needed a new implementation to support on 

demand creation per thread 
• User actions required considerable refactoring and lots of tedious recoding 
• I/O system turned out to have many assumptions about serial processing built 

in (see previous slide on i/o) 
• Teaching us about the balancing act between hacked solutions and over elaborate 

designs — focus on the actual problem!
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AthenaG4MT Results
• Clear 

demonstration of 
good multi-
threading scaling 

• Threads all kept 
~100% busy 

• N.B. No 
magnetic field in 
this example
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Code Review
• To try and understand where we are with the algorithmic code we will 

undertake a software review this year 
•  A high level review of subsystem code 

• What’s the design…? (Is there a design…?) 
• Obstacles to threading? 
• Opportunities for parallelism? 

• Much benefit in asking sub-systems to prepare this material — oblige 
people to put on their ‘design goggles’ 

• Make them aware of challenges of the new framework 
• Opportunity for reviewers to learn from a different area of the software 

• Outcome may well be just start over — e.g., some ATLAS muons algorithms 
and Simulation base infrastructure rewrite
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Migration Tools and 
Strategy
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• 3.5 million lines of C++ is a serious headache to migrate 

• Strategy 1: Use machines 

• Making more use of sanitisation checkers 

• ASAN — check for memory errors; UBSAN — check for undefined behaviour; TSAN — thread sanitiser 

• gcc static checker plugin 

• Redundant division checker; Naming guidelines; Thread safety checks 

• Strategy 2: Invest in the test 

• We need to invest more in testing our code — looking at gmock as a way to help test framework components 

• May then be able to take advantage of code refactoring tools 
• Strategy 3: 

• Developer education is vital 
• Good advice 
• Real examples 
• Always keep it simple 

• Make things as simple as possible for the ‘average’ developer — writing a basic Athena algorithm or tool 
should have few gotchas and most of those should be machine trapped (const execute!)



Timeline and Goals
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• Now->2016 
• Deliver core framework with most functionality 

enabled

Dates Framework Algorithmic Code

2015 Baseline Functionality Very few algorithms, concentrate on high inherent 
parallelism; general clean-up

2016 Most functionality available (including 
views)

Wider set, including CPU expensive algorithms with 
internal parallelism; continue clean-up/prep; first 

trigger chains

2017 Performance improvements and final 
features Migration starts with select groups

2018 Performance improvements Start bulk migration

2019 Bug fixes Finish bulk migration

2020 Bug fixes Integration



Summary
• Phase I Software Upgrade is underway 

• We know what we want to achieve 
• Already substantial progress in many areas 

• Effort to work on core framework is identified already 
• Investment in tools and tests will pay off handsomely  
• And we also need to train the development community 

• Very healthy revival of Gaudi as a community effort 
• Particularly helpful discussions with LHCb 

• Have started to seriously think about what the algorithmic code should look like for Run3 
• There will be a lot of code we need to rewrite 
• Important to start discussions with reco, sim and analysis groups to shape the new 

framework and the new interfaces properly 
• Code review will help us to understand and evolve today’s code 

• And provide good examples for the community
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