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GAUDI FRAMEWORK
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An object-oriented software architecture for event data processing applications in high energy physics domain.

 Designed on principles of:
 Separation of algorithms and data
 Composability and reusability 

(via abstract interfaces)
 Written in C++ and Python
 ~150k SLOC



GAUDI FRAMEWORK

Il lya Shapoval     IEEE NSS/MIC 2015/11/03 4

An object-oriented software architecture for event data processing applications in high energy physics domain.

 Designed on principles of:
 Separation of algorithms and data
 Composability and reusability 

(via abstract interfaces)
 Written in C++ and Python
 ~150k SLOC



HL Triggering 
Reconstruction
Analyses
Detector simulation 
Event display

GAUDI FRAMEWORK
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An object-oriented software architecture for event data processing applications in high energy physics domain.

 Designed on principles of:
 Separation of algorithms and data
 Composability and reusability 

(via abstract interfaces)
 Written in C++ and Python
 ~150k SLOC

>3.6M SLOC  
(C++ & Python)
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ATLAS and LHCb customization of Gaudi



CONCURRENT GAUDI (A.K.A. GAUDI HIVE)
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A prototype of a multithreaded task-based incarnation of Gaudi.

Time

Concurrent Gaudi (Hive) jobSequential Gaudi job

Time
Event

Tasks



CONCURRENT GAUDI (A.K.A. GAUDI HIVE)
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A prototype of a multithreaded task-based incarnation of Gaudi.

Concurrency 
control system 

Time

Concurrent Gaudi (Hive) job Gaudi Hive 
design



GAUDI HIVE CONCURRENCY CONTROL
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Previous 
approach

Reactive 
scheduling

Concurrency control 
system 

Intel TBB

Pool of unordered algorithms



GAUDI HIVE CONCURRENCY CONTROL
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New 
approach

Reactive 
scheduling

Predictive 
scheduling

Automatic 
constraints 
analysis

Concurrency control 
system 

Intel TBB

Pool of unordered algorithms



INTRA-EVENT TASK PRECEDENCE RULES
Control flow (CF) rules
 matching tasks with events
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Data flow (DF) rules
 matching tasks with their data inputs
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GAUDI HIVE: FINITE STATE MACHINE

INITIAL

CONTROL-
READY

DATAREADY

SCHEDULED

EXECUTED
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Revision of state is engaged 
Ntasks×Ntrials×Nevents times!

CFM

DFM

CFM := Control Flow Manager
DFM := Data Flow Manager

Phase of decision 
making for 
scheduling



DECISION MAKING IN SCHEDULING
CF manager

Operation:
• Global “waterfall” graph 

traversals
(each time a check or update of task’s 
state is requested)
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DF manager

Operation:
 Catalog look-ups
(each time a check or update of task’s 
state is requested)
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B

C

D

Catalog of inputs



DECISION MAKING IN SCHEDULING
CF manager

Problems:
• Complexity: 
Worst & Average: 𝑂𝑂 𝑛𝑛𝑎𝑎 + 𝑛𝑛𝑑𝑑 /iter
• Timing:
Wasting CPU on unnecessary  
“blank-fire” computations
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DF manager

Problems:
 Complexity:

Worst: 𝑂𝑂 𝑛𝑛𝑎𝑎 /iter, Average: 𝑂𝑂 1 /iter
 Timing:
Wasting CPU on necessary “blank-fire” 
computations: “blind-waiting-for-data” design
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• β

• α1
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B

C

D

Catalog of inputs



DECISION MAKING IN SCHEDULING
Graph-based decision making unit

 Ideal information partitioning

 Only one component for both CF and DF decisions

 Reach spectrum of insights on topology of the algorithms’ precedence

Illya Shapoval     IEEE NSS/MIC 2015/11/03 14

- Tasks
- CF decision hubs

- Task data 
inputs/outputs



DECISION MAKING COMPLEXITY
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Catalog-based

Graph-based

CF decisions DF decisions

Worst & Average: 
𝑶𝑶 𝒏𝒏𝒕𝒕 + 𝒏𝒏𝒅𝒅

Worst: 𝑶𝑶 𝒏𝒏𝒕𝒕 ,
Average: 𝑶𝑶 𝟏𝟏

Worst: 𝑶𝑶 𝒏𝒏𝒕𝒕 , 
Average: 𝑶𝑶 𝟏𝟏

Worst & Average: 
𝑶𝑶 𝟏𝟏

𝑛𝑛𝑡𝑡 - number of tasks
𝑛𝑛𝑑𝑑 - number of decision hubs



TIME OF DECISION MAKING
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Total time spent to reason about precedence rules per event (spans 263 tasks)
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SPEEDUP SATURATION: OPTIMISTIC TASK TIMING MAP 
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Intra-event + inter-event mode (uniform task timing ~10ms)



SPEEDUP SATURATION: PESSIMISTIC TASK TIMING MAP 
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Intra-event + inter-event mode (real task timing)



WAYS TO FACILITATE SCALABILITY

• Further reduce framework-level overhead 
(not discussed in this talk)
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WAYS TO FACILITATE SCALABILITY

• Further reduce framework-level overhead 
(not discussed in this talk)

• Improve intra-event concurrency dynamics
• its low level pushes to overuse the inter-event concurrency

• may help to better utilize data locality
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INTRA-EVENT CONCURRENCY DYNAMICS
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Speedup: 7.45 (93%)

Reactive scheduling only (8 threads, 263 tasks per event)
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Speedup: 14.4 (72%)

Reactive scheduling only (20 threads, 263 tasks per event)



HARMFUL DEGREES OF FREEDOM…

• Typical task precedence graphs (in LHCb) are significantly heterogeneous

• Concurrency disclosure dynamics is drastically dependent on execution front
• uncontrolled in Gaudi Hive minimalistic reactive scheduling
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PREDICTIVE SCHEDULING IN GAUDI HIVE

What:

• maximize concurrency disclosure dynamics
• or at least create facilitating pressure towards it 

How:

• rank algorithms reflecting their ‘importance’ within precedence graph 
• plenty of ranking strategies studied elsewhere

• prioritize the queue of ready-to-run algorithms following each reactive iteration
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ASYMMETRY OF PRODUCTS CONSUMPTION

Rank algorithm by its products consumption extent
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Precedence graph with all, but data nodes, faded out. Color intensity of a 
data node represents the number of its consumers



PREDICTIVE SCHEDULING: PRODUCTS CONSUMPTION EXTENT (PCE)
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Uniform task timing map (~10ms)

+ up to 30 %



PREDICTIVE SCHEDULING: DATA REALM ECCENTRICITY (DRE)
• rank algorithm by its eccentricity in data realm

• implements critical path lookup technique in case of uniform task timing map

• note: not only graph diameter is tracked, but also all other sub-critical paths
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Color intensity represents eccentricity-based rank



PREDICTIVE SCHEDULING: DATA REALM ECCENTRICITY (DRE)
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Uniform task timing map (~10ms)

+ up to 34 %



PREDICTIVE SCHEDULING: DRE MODE
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Speedup: 7.45 (93%) Speedup: 14.7 (74%)
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Speedup: 7.45 (93%)

Speedup: 7.91 (99%)

Speedup: 14.7 (74%)

Speedup: 19.2 (95%)



SPEEDUP SATURATION IN PREDICTIVE SCHEDULING
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Intra-event + inter-event mode (uniform task timing map, ~10ms)
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Intra-event + inter-event mode (uniform task timing map,  ~10ms)

+ up to 1.8 %

3E instead of 4E
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GENERIC ANALYSIS OF PRECEDENCE CONSTRAINTS
• built-in tool available to create materialized views of polymorphous precedence 

graphs

• provides, for a given event and hardware platform:
• visualization of critical and sub-critical paths

• theoretical intra-event speedup limit

• expertize on how to increase throughput in a given data processing workflow
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CONCLUSION

Graph-based decision making in concurrency control allows to:
• (Algorithmically) Reduce decision making time by 2x, and improve its asymptotic 

complexity

• Implement predictive scheduling with diverse look-ahead strategies, which:

• yield significant improvement in intra-event speedup (~30% in LHCb event reconstruction 
workflow)

• allow to achieve higher throughput in harsh data processing conditions
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SPARE SLIDES
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TESTBED FOR BENCHMARKING
• Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz
• 2 sockets: 24 + 24 HT
• L2 256KB, L3 30 MB

Data processing workflow configuration:
• Precedence graph of close to real size and topology 

(LHCb Brunel reconstruction case)
• CPUCrunchers as tasks
• Real/uniform tasks’ timings
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RATIO OF DECISION MAKING TIME TO EVENT PROCESSING TIME
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Chosen max. speedup of concurrent event processing is 
conservative:  4x !



SYSTEMATICS: ZERO MEASUREMENT
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SYSTEMATICS BY MEASUREMENT OF KNOWN DURATION
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RUNAWAY OF DECISION MAKING
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