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GAUDI FRAMEWORK

An object-oriented software architecture for event data processing applications in high energy physics domain.

+»+ Designed on principles of:
v Separation of algorithms and data
v" Composability and reusability
(via abstract interfaces)
** Written in C++ and Python

v

% ~150k SLOC % Nal | et

Gamma-ray

/ Space Telescope
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GAUDI FRAMEWORK

An object-oriented software architecture for event data processing applications in high energy physics domain.

+»+ Designed on principles of:
v Separation of algorithms and data
v" Composability and reusability

(via abstract interfaces) HL Triggering
% Written in C++ and Python iec?”Str“Ct'O” ~3 6MSLOC ATLAS and LHCb customization of Gaudi
nalyses o

% ~150k SLOC (C++ &Python)

Detector simulation
Event display _

Gaudi-based

NS ent Data

SETYICE

4 Histogram
Service
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CONCURRENT GAUDI (axa GAUDI HIVE)

A prototype of a multithreaded task-based incarnation of Gaudi.

Sequential Gaudi job Concurrent Gaudi (Hive) job

! ! 4 J
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Event

IENS
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CONCURRENT GAUDI (axa GAUDI HIVE)

A prototype of a multithreaded task-based incarnation of Gaudi.

Concurrent Gaudi (Hive) job Gaudi Hive
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Reactive
scheduling BRANY

Pool of unordered algorithms

Illya Shapoval IEEE NSS/MIC 2015/11/03 8



e\ 'R‘e tlve
4 %Yf* °
‘ / scheduhng

Predictive
scheduling

Automatic
constraints
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GAUDI HIVE: FINITE STATE MACHINE

Phase of decision
making for
scheduling

Revision of state is engaged
NtasksttriastNevents times!

L EXECUTED

CFM := Control Flow Manager
DFM := Data Flow Manager
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Catalog of inputs

Wperation: = » . 4 -+ % T EEEES
e - Operation: /PR
e Catalog look-ups { ,_

. (each time a check or update of task’s
(each time a check or update of task’s state is requested)

stateis requested)

I”

. Global “waterfal graph

traversals
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Catalog of inputs

‘Problems: - | - Problems:

 Complexity: - o Complexity:

Worst & Average: O(na Bt )/iter Worst: 0(n, )/iter, Average: O(1)/iter
e Timing: * Timing:

Wasting CPU on unnecessary Wasting CPU on necessary “blank-fire”
computations: “blind-waiting-for-data” design

/\ “blank-fire” computations
/\a hapoval |EEE NSS/MIC 2015/11/03 13



.. . e . - CF decision hubs
. e - K $/ g ' | | . - Task data b
| | , % | inputs/outputs R
v’ Ideal information partitioning a3 \1\
v Only one component for both CF and DF decisions

v Reach spectrum of insights on topology of the algorithms’ precedence
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. -4.:.:"“%?‘,_ ". r' i : e T b T s : \'
P Vorst: O(n. ) Worst & Average:
i 5 g ~ Average: 0(1) (1)

- !
n; - number of tasks
n, - number of decision hubs
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TIME OF DECISION MAKING

0 10

18
® catalog-based (legacy)
a catalog-based (legacy, fixed)

® graph-based

Threads

Total time spent to reason about precedence rules per event (spans 263 tasks)
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SPEEDUP SATURATION: OPTIMISTIC TASK TIMING MAP

Speedup

Threads

Intra-event + inter-event mode (uniform task timing ~10ms)
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SPEEDUP SATURATION: PESSIMISTIC TASK TIMING MAP

» uncontrolled (real,1E)
e uncontrolled (real,4E) |
e uncontrolled (real,10E)|

e uncontrolled (real,16E)
e uncontrolled (real,20E)
_..|— ideal

20 30
Threads

Intra-event + inter-event mode (real task timing)
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mprove intra-event concurrency dynamics

: g . ts low level pushes to;overuSé tTme_inter-event concurrency
K may help to better utilize daté_locality f*’%\
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INTRA-EVENT CONCURRENCY DYNAMICS

Bl Scheduled

n
£
K=
]
=
Q
o
g

150
DM iteration

Reactive scheduling only (8 threads, 263 tasks per event)
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INTRA-EVENT CONCURRENCY DYNAMICS

n
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DM iteration

Reactive scheduling only (20 threads, 263 tasks per event)
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e uncontrolled in Gaudi Hive minimalistic reactive scheduling
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. rank'-algorithms reflecting theiﬁ ‘importance’ within precedence graph
Al plenty of ranking strategies studied elsewhere

e prioritize the queue of ready-to-run algorithms following each reactive iteration
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ASYMMETRY OF PRODUCTS CONSUMPTION

Rank algorithm by its products consumption extent

Precedence graph with all, but data nodes, faded out. Color intensity of a
data node represents the number of its consumers

Illya Shapoval IEEE NSS/MIC 2015/11/03
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PREDICTIVE SCHEDULING: PRODUCTS CONSUMPTION EXTENT (PCE)

° unéonﬁn”éd(lOwﬁ)é

o DRE (10 ms)
e
¢

20 30
Threads

Uniform task timing map (~10ms)
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PREDICTIVE SCHEDULING: DATA REALM ECCENTRICITY (DRE)

e rank algorithm by its eccentricity in data realm

Color intensity represents eccriity-based rank
e implements critical path lookup technique in case of uniform task timing map

e note: not only graph diameter is tracked, but also all other sub-critical paths
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PREDICTIVE SCHEDULING: DATA REALM ECCENTRICITY (DRE)

> uncontrolled (10ms) é é é o ;. ;s ;. oo
e PCE (10ms) S B

20 30
Threads

Uniform task timing map (~10ms)
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PREDICTIVE SCHEDULING: DRE MODE

Non-predictive intra-event concurrency dynamics
(20 threads, 263 algorithms)
100 150 200 250

| Speedup:14.7(74%)

Non-predictive intra-event concurrency dynamics

(8 threads, 263 algorithms)
50 100 150 200 50
] B Scheduled
| I Scheduled | | Queued
50 o ——
40/ 40
] 1 " ]
£ | E |
< £ 1
¥ 30/ £ 30
=] 1 <] 1
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CEn < |
20, 201
10

100
DM itereation
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PREDICTIVE SCHEDULING: DRE MODE

Algorithms

= = = =
o N B [=2]
o o o o

Algorithms
=]

Non-predictive intra-event concurrency dynamics
(8 threads, 263 algorithms)
50 100 150 200

Scheduled
Ml Queued

b ) b

i b i

100 150
DM itereation

Predictive (DRE) intra-event concurrency dynamics
(8 threads, 263 algorithms)
50 100 150 200

Scheduled

100 150
DM iteration
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(20 threads, 263 algorithms)
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Scheduled
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Predictive (DRE) intra-event concurrency dynamics
(20 threads, 263 algorithms)
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SPEEDUP SATURATION IN PREDICTIVE SCHEDULING

e uncontrolled (4E) é | é
— ideal

Speedup
w
o

N
o

Threads

Intra-event + inter-event mode (uniform task timing map, ~10ms)
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SPEEDUP SATURATION IN PREDICTIVE SCHEDULING

0 1

e uncontrolled (4E) é | é
— ideal I
e DRE (3E) A

Speedup

Threads

Intra-event + inter-event mode (uniform task timing map, ~10ms)
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GENERIC ANALYSIS OF PRECEDENCE CONSTRAINTS

e built-in tool available to create materialized views of polymorphous precedence
graphs

e provides, for a given event and hardware platform:
e visualization of critical and sub-critical paths
e theoretical intra-event speedup limit

e expertize on how to increase throughput in a given data processing workflow
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............

_mp'lement predlctlve sche ulmg wﬂbd‘fverse Iook ahead strategies, which:

. y|eId S|gn|f|cant improvement in mtra event speedup (~30% in LHCb event reconstructlon .
workflow)

e allow to achieve higher throughput in harsh data processing conditions
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*..,

. _-Pr'ec'e'dence‘gra.ph' of close to real size and topology
(LHCb Brunel reconstruction case) &
~* CPUCrunchers as tasks

e Real/uniform tasks’ timings
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RATIO OF DECISION MAKING TIME TO EVENT PROCESSING TIME

20
Threads

Chosen max. speedup of concurrent event processing is

. ; I
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SYSTEMATICS: ZERO MEASUREMENT

Measuring "empty" decision making, per event
(263 algorithms)
20 30 40

. gfapﬁ-based (aggressive) |
e list-based (minimalistic)

20 30
Threads
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SYSTEMATICS BY MEASUREMENT OF KNOWN DURATION

Corrected decision making time: systematics extracted from
measurements of known quantities
20 30

| » graph-based (w/o systematics)
e graph-based

30
Threads
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RUNAWAY OF DECISION MAKING

Illya Shapoval

IEEE NSS/MIC 2015/11/03

Count of decision making cycles
(263 algorithms)

* cycles (agressive)
* cycles (minimalistic)
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;150
Q

Threads
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