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Including the metric fluctuations of a realistic cosmological geometry we reconsider an earlier suggestion 
that measuring the relative time-of-flight of ultra-relativistic particles can provide interesting constraints 
on fundamental cosmological and/or particle parameters. Using convenient properties of the geodetic 
light-cone coordinates we first compute, to leading order in the Lorentz factor and for a generic 
(inhomogeneous, anisotropic) space–time, the relative arrival times of two ultra-relativistic particles as 
a function of their masses and energies as well as of the details of the large-scale geometry. Remarkably, 
the result can be written as an integral over the unperturbed line-of-sight of a simple function of the 
local, inhomogeneous redshift. We then evaluate the irreducible scatter of the expected data-points due 
to first-order metric perturbations, and discuss, for an ideal source of ultra-relativistic particles, the 
resulting attainable precision on the determination of different physical parameters.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
It is well known that times of flight of ultra-relativistic (UR) 
particles received from a distant astrophysical source depend on 
the particle mass m, on the particle energy E measured by the 
observer, and on the details of the space–time geometry in which 
the particle trajectory is embedded.

The first pioneer study on this subject [1] has shown, in partic-
ular, that the observation of the relative arrival times of neutrinos 
of different energies emitted in Supernovae explosions can provide 
significant information on neutrino masses. In a later, complemen-
tary paper [2] it has been pointed out that measuring the relative 
arrival times of neutrinos and photons (or of different neutrino 
species), and knowing neutrino masses, energies, and the redshift 
of the source, one can in principle obtain numerical estimates of 
cosmological parameters (such as the present values of the Hubble 
and deceleration parameters).

The results presented in [1,2] are both based on the ho-
mogeneous and isotropic cosmology described by the standard 
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Friedman–Lemaître–Robertson–Walker (FLRW) metric. In this case 
the flight-time difference between two UR particles, emitted by the 
same source at time τs , can be expressed, to lowest order in the 
inverse Lorentz factor γ −1 = m/E , as [2]:

�τ = τ1 − τ2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ

1 + z(τ )
. (1)

Here τ is the proper time of the observer (with τo the arrival 
time at the observer of massless particles emitted by a source at 
time τs), m1,2 and E1,2 � m1,2 are energies and masses of the two 
particles as measured by the observer, and z is the cosmological 
redshift 1 + z = ao/a, where a is the scale factor of the FLRW ge-
ometry.

The Universe, however, is full of structure at different length 
scales. An interesting question is how Eq. (1) is affected by inho-
mogeneities when these are not assumed to be negligible. A priori 
one might expect that inhomogeneities could alter (1) by terms 
proportional to a lower power of m/E . More generally, such effects 
should be taken into account if one wants to connect precisely 
the data to cosmological and/or particle physics parameters. In this 
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Letter we exploit the remarkable properties of the so-called geode-
tic light-cone (GLC) coordinates [3] to answer the above questions. 
The basic simplification is that null geodesics are extremely simple 
to describe in GLC coordinates. UR (or nearly null) geodesics turn 
out to be sufficiently simple for the problem to be tractable.

We start by recalling the definition of GLC coordinates [3] and 
some already well known properties of them (see also [4] for a re-
cent discussion). They consist of a timelike coordinate τ , a null co-
ordinate w , and two angular coordinates θ̃a (a = 1, 2). The param-
eter τ can be identified with the proper time in the synchronous 
gauge and thus provides the four-velocity of a static geodesic ob-
server in the form uμ = −∂μτ . The GLC line-element depends on 
six arbitrary functions (ϒ, U a, γab = γba , a, b = 1, 2), and takes the 
form:

ds2 = ϒ2dw2− 2ϒdwdτ + γab(dθ̃a− U adw)(dθ̃b − U bdw), (2)

where γab and its inverse γ ab lower and raise the two-dimensional 
indices.

In the GLC coordinates the (interior of the) past light-cone of 
a given observer is defined by w = (<) wo = constant. Further-
more, null geodesics stay at fixed values of the angular coordinates 
θ̃a = θ̃a

o = constant, with θ̃a
o specifying the source direction at the 

observer position. Finally, the redshift z of a signal propagating 
along a light-cone, emitted at time τ by a comoving source and 
received at time τo by a comoving observer, is given by a simple 
generalization of the standard FLRW expression:

1 + z = ϒ(τo, wo, θ̃
a
o )/ϒ(τ , wo, θ̃

a
o ). (3)

The above properties of the GLC coordinates have already found 
several interesting applications [3–15]. In the present context we 
are interested in describing a family of almost null geodesics that 
start from a source lying on a past light-cone w = wo at a given z. 
The geodesics, however, reach the observer at later values of w , 
w = wi . The latter will depend on the Lorentz factor γi of the ith
particle which thus travels between the two light-cones w = wo
and w = wi .

We then write down the standard geodesic equation and mass-
shell constraint for a point particle of mass m, propagating in the 
metric (2). The latter condition reads

2(ϒτ̇ )ẇ − γab
˙̃
θa ˙̃

θb + 2Ua
˙̃
θa ẇ − (ϒ2 + U 2)ẇ2 = 1 , (4)

where a dot denotes differentiation with respect to the particle’s 
proper time ds = √−dxμdxν gμν . In order to make the extrapola-
tion to the massless limit smooth, let us rescale proper time by the 
Lorentz factor at the observer, γo . In that case the r.h.s. of Eq. (4)
becomes m2/E2 � 1, with E the energy measured by the observer. 
Our claim now is that there is a perturbative hierarchy among the 
quantities τ̇ , ẇ, ˙̃θa , with:

τ̇ ∼ γ 0,
˙̃
θa ∼ γ −1, ẇ ∼ γ −2 . (5)

We will check below that such an assumption is self consistent. 
Assuming it, we can rewrite (4) in the form:

2(ϒτ̇ )ẇ − γab
˙̃
θa ˙̃

θb + 2Ua
˙̃
θa ẇ + · · · = m2

E2
, (6)

where the dots represent next-to-next-to-leading contributions. 
Analogously, the geodesic equations read:

(ϒτ̇ ). = (
U aγab,τ − Ub,τ

)
τ̇ ˙̃
θb + . . . , (7)

ẅ = − 1

2ϒ
γab,τ

˙̃
θa ˙̃

θb − 1

ϒ

(
ϒ,a − Ua,τ

)
ẇ ˙̃

θa + . . . , (8)

¨̃
θa = −γ abγbc,τ τ̇

˙̃
θ c − γ ab (

ϒ,b − Ub,τ

)
τ̇ ẇ

−
(
γ ab	cd b + 1

U aγcd,τ

)
˙̃
θ c ˙̃

θd + . . . , (9)

2ϒ
where 	cd b = 1
2 (γcb,d + γdb,c − γcd,b). It is a straightforward 

(though tedious) exercise to verify that, to next to leading order 
included, the constraint (4) is preserved by the evolution equa-
tions (7), (8) and (9).

At the same level of approximation, we find immediately 
from (6) that

2ẇ =
m2

E2 + γ ab Ja Jb

ϒτ̇ + Ua
˙̃
θa

, (10)

where Ja ≡ γab
˙̃
θb . This equation is clearly consistent with (5)

since the numerator is of order γ −2 while the denominator is of 
O (1) with a relative correction O (γ −1). Another straightforward 
calculation shows that (10) gives the correct result for ẅ once 
Eqs. (7)–(9) are used. A useful input for this check is the small-
ness (O (γ −2)) of the first derivative of Ja

J̇a = 1

2

(
γbc,a − 1

ϒ
Uaγbc,τ

)
˙̃
θb ˙̃

θ c − (
ϒ,a − Ua,τ

)
τ̇ ẇ . (11)

The quantity we need to compute is dw/dτ = ẇ/τ̇ . From (10)
we obtain, to leading order in m/E ,

dw

dτ
= ϒ

2(ϒτ̇ )2

(
m2

E2
+ γ ab Ja Jb

)
. (12)

We now note that the time dependence of both ϒτ̇ and Ja ap-
pears only at higher order in m/E thanks to Eqs. (7) and (11), 
respectively. Evaluating ϒτ̇ at the observer gives simply ϒo ≡
ϒ(τo, wo, θ̃o) (because of the rescaling we adopted on the proper 
time). Integrating now (12) from the source to the observer (along 
the geodesic) gives:

wi − wo = 1

2

τo∫
τs

dτ
ϒ

ϒ2
o

(
m2

i

E2
i

+ γ ab Ja Jb) , (13)

where, to this order in γ −1, τi has been taken equal to τo . There 
are two further simplifications that we can apply to our final re-
sult (13). The first is that Ja is zero at the observer (and then also 
all along the geodesic, because of its approximate constancy) for a 
geodesic arriving exactly at the observer. The same is true for the 
quantity γ ab Ja Jb appearing in (13), since it can also be written 
as γab

˙̃
θa ˙̃

θb . The second observation is that the integral in Eq. (13)
can be taken along the unperturbed null geodesic (with constant 
θ̃a and w), since deviations from it are subleading.

Let us finally, compare two such geodesics starting from the 
same source at the same time τs . Their relative time delay can be 
easily obtained by subtracting two equations like (13) to yield:

w1 − w2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ
ϒ

ϒ2
o

(τ , wo, θ̃
a
o ) ,

τ1 − τ2 =
(

m2
1

2E2
1

− m2
2

2E2
2

) τo∫
τs

dτ

1 + z(τ , wo, θ̃
a
o )

, (14)

where we used Eq. (3) and �τ ≡ τ1 − τ2 = ϒo(w1 − w2) (see also 
[3]).

This is our main result showing that, to leading order in γ −1
1,2 , 

the arrival-time difference is very similar to the FLRW expression 
in Eq. (1), with the only difference that the redshift along the 
(massless) line-of-sight, being the exact redshift associated with a 
generic (inhomogeneous and anisotropic) geometry, is no longer 
just a function of time. The obtained geometric corrections, to 
leading order again, are the same for the two particles and thus 
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factor out in the time-delay difference. The simplicity of (14) sug-
gests that a general derivation of it should exist, even without 
using a particular coordinate system as done here.

The result (14), beside being intrinsically important for the 
study of UR geodesics, allows us to check the interesting possi-
bility that future measurements of time-of-flight differences �τ
may provide significant physical information even after taking into 
account the dispersion due to large-scale inhomogeneities. Let us 
compute, to this purpose, the irreducible statistical error for a sin-
gle �τ measurement, due to a realistic stochastic background of 
scalar metric perturbations. These are described – to first order 
and in the absence of anisotropic stresses – by the Bardeen poten-
tial ψ which appears in the metric of the Poisson (or longitudinal) 
gauge (PG) as [16]:

ds2 = a2(η)
[
−dη2(1 + 2ψ) + (1 − 2ψ)(dr2 + r2d�2)

]
. (15)

We begin by expressing the value of �τ as a function of ψ and 
of the observational coordinates (the redshift of the source and 
the direction of observation). For this, we need the first order ex-
pansion of ϒ(τ , wo, θ̃o) in term of ψ , and a further expansion 
of ϒ and of the lower limit τs of the integral in (14) around a 
time coordinate τ̄ (0) such that the observed redshift z is given 
by 1 + z = ϒ(τo, wo, θ̃o)/ϒ(τ , wo, θ̃o) = ao/a(τ̄ (0)). We then ob-
tain (see [15] for details):

ϒ = ϒ(0)(τ̄ (0)) + ϒ(1)(τ̄ (0), wo, θ̃
a
o ) + · · · ,

τs = τ̄
(0)
s + τ̄

(1)
s (τ̄

(0)
s , wo, θ̃

a
o ) + · · · , (16)

where ϒ(0) coincides with the scale factor of the unperturbed met-
ric in the PG.

Hereafter, for simplicity, we shall explicitly omit two types of 
perturbative corrections: those describing the effects of peculiar 
velocity and those arising from the Bardeen potential both evalu-
ated at the observer position. The reason is that the uncertainty 
due to the first type of terms can be effectively removed, as usual, 
by taking into account the actual value of the observer’s proper 
velocity inferred from observational data (e.g., from CMB dipole 
measurements). The second type of terms, on the other hand, 
only gives a sub-leading contribution to the variance (i.e. to the 
dispersion of the single experimental points around their mean 
value) that we are going to estimate in this Letter for the observ-
able �τ (for this second point, see, in particular, the discussion 
after Eq. (20)).

Using the results for ϒ(1) and τ̄ (1)
s previously obtained in [15], 

we find that the perturbed value of the flight-time difference (14)
can then be written as

�τ = τ1 − τ2 = �τ(0)(1 + δτ (1)) , (17)

where �τ(0) is the unperturbed result in Eq. (1), while δτ (1) is 
the fractional correction due to the first-order scalar perturbations, 
and is given by:

δτ (1) =

⎡⎢⎢⎣
ηo∫

η̄
(0)
s

dη
a2(η)

ao

⎤⎥⎥⎦
−1

ηo∫
η̄

(0)
s

dη
a2(η)

ao

×
{(

∂ηH
H2

− 1

)⎡⎣ψ + 2

ηo∫
η

dη′∂η′ψ(η′) + v‖

⎤⎦
+ 1 [

∂ηψ + ∂r v‖
] + ψ(η)

}
. (18)
H(η)
In the above equations ψ(η) stands for ψ(η, ηo − η, θ̃a
o ). Also, we 

have defined H(η) = ∂η(ln a), and we have called η̄(0)
s the confor-

mal time parameter related to τ̄ (0)
s and to the observed redshift zs

by dη̄
(0)
s = dτ̄

(0)
s /a = −(1 + zs)

−1H−1dzs . Finally, we have intro-
duced the so-called velocity perturbation defined by

v‖(η) = 1

a(η)

η∫
ηin

dη′a(η′)∂rψ(η′, ηo − η, θ̃a
o ) ,

where ηin denotes an early enough initial time when the integrand 
was negligible [5].

We are now in the position of evaluating the variance of 
�τ/�τ (0) , i.e. the quantity controlling the dispersion of its exper-
imental value around its mean value, due to the inhomogeneity 
corrections given in Eq. (18). Following [5], and assuming that ψ
describes a stochastic background of metric fluctuations with van-
ishing statistical (or ensemble) average (ψ = 0), we can obtain the 
intrinsic dispersion of the flight-time measurements over its back-
ground value (let us call it σ ) as:

σ =
√

〈(δτ (1))2〉. (19)

The brackets 〈· · · 〉 denote angular average, the overbar · · · sta-
tistical average (the computation of the mean value 〈�τ/�τ (0)〉
requires the inclusion of second order perturbations, and is post-
poned to future work).

In order to compute σ it is now convenient to decompose the 
Bardeen potential into Fourier modes:

ψ(η, �x) = 1

(2π)3/2

∫
d3k ei�k·�xψk(η)E(�k), (20)

where E is a unit statistical variable satisfying the conditions 
E�(�k) = E(−�k), E(�k) = 0 and E(�k)E(�k′) = δ(�k + �k′). We then insert 
the above expansion into Eqs. (18) and (19), and, assuming statis-
tical isotropy (ψk only dependent on |�k|), we can easily perform 
the angular integration. Proceeding in this way we can convince 
ourselves that, at least for the range of zs discussed in this paper, 
the leading contribution1 to σ comes from the term containing 
the so-called redshift space distortion (∂r v‖), being the term with 
the highest power of k in Fourier space (see e.g. the discussion in 
[6,8]).

Keeping only this leading contribution, and considering the lin-
ear regime where the time evolution of the perturbation modes 
can be appropriately parametrized by the growth factor g(η) as 
ψk(η) = g(η)ψk(ηo)/g(ηo), we can write down our final estimate 
for the expected dispersion as follows:

σ 2 � 〈(δτ (1)

lead)
2〉 =

⎡⎢⎢⎣
ηo∫

η̄
(0)
s

dη
a2(η)

a2
o

⎤⎥⎥⎦
−2

∞∫
0

dk k3P(k, ηo)

×
ηo∫

η̄
(0)
s

dη
a2(η) f (η)

a2
oH(η)

ηo∫
η̄

(0)
s

dη′ a2(η′) f (η′)
a2

oH(η′)
I

(
k(η − η′)

)
, (21)

1 Let us recall here that the additional (possibly large) contributions to σ related 
to the intrinsic velocity of the observer have been subtracted from Eq. (18), by tak-
ing into account the observational value of such velocity that can be inferred from 
current experimental data.
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Fig. 1. Expected fractional dispersion of measurements of flight-time differences of 
UR particles, according to Eq. (21), as induced by a realistic spectrum of fluctua-
tions in the CDM (dotted curve) and �CDM (dashed curve) case. We also plot the 
fractional dispersion σ̂ defined in Eq. (22) and associated with the present experi-
mental uncertainty on the value of the cosmological constant (solid curve).

where f (η) = ∫ η
ηin

dη′[a(η′)/a(η)][g(η′)/g(ηo)],

I(x) = sin x

x

(
1 − 12

x2
+ 24

x4

)
+ 4 cos x

x2

(
1 − 6

x2

)
,

and we have used the dimensionless power spectrum, P(k, η) =
k3|ψk(η)|2/(2π2).

For a realistic estimate of the expected dispersion we shall now 
consider a spectrum of scalar perturbations of inflationary ori-
gin, parametrized by an amplitude A, a spectral index ns and a 
pivot scale k0. Following the standard conventions (see e.g. [17]) 
we set P(k, η) = (9/25)(g(η)/g∞)2 A(k/k0)

ns−1T 2(k), where T (k)

is the so-called transfer function which takes into account the sub-
horizon evolution of modes re-entering during the radiation era, 
and g/g∞ is well approximated by a simple function of the critical 
density parameters (see, for example, [18]) with g∞ normalized in 
such a way that g(ηo) = 1. We will use for T (k) the parametriza-
tion presented in [18], and for the primordial spectrum the ap-
proximated values A = 2.2 × 10−9, ns = 0.96, k0 = 0.05 Mpc−1, as 
reported in [19].

As a first, illustrative example we consider the standard CDM-
dominated model, where g(η) ≡ 1 and (a/ao) = (η/ηo)

2. In that 
case all time integrations can be performed analytically, and we 
have explicitly checked that the perturbative contributions appear-
ing in Eq. (18), and not included into our expression (21), are 
indeed subleading and provide negligible corrections to our es-
timate of the dispersion. We have numerically integrated over 
the Fourier modes using the transfer function of [18] with keq =
0.07h2�m0 Mpc−1, h = 0.67, ao = 1 and �m0 = 1 (without includ-
ing baryon effects); also, we have integrated between the infrared 
cutoff given by the present horizon scale ao H0 and the UV cutoff 
kU V = 0.1h Mpc−1 � 300 ao H0. The obtained result for σ is illus-
trated in Fig. 1 (dotted curve labelled as σCDM) as a function of zs .

In the case of a background �CDM geometry the spectrum be-
comes time dependent and, in that case, also the time integrals in 
Eq. (21) must be performed numerically. Using ��0 = 0.685 [19], 
and neglecting again baryons, we obtain for σ the result illustrated 
in Fig. 1 (dashed curve labelled as σ�CDM).

As before, we have used a UV cut-off kU V = 0.1h Mpc−1, as the 
limiting momentum scale below which perturbations can be de-
scribed in the linear regime. To be more realistic, and take into 
consideration the effect of the mildly non-linear regime, we should 
include the baryon contribution and use, for example, the so-
called HaloFit model [20,21] to describe the non-linear evolution 
of the spectrum. On the other hand, our results are rather insen-
sitive to the choice of the UV cutoff. For instance, by going from 
kU V = 0.1h Mpc−1 to kU V = 20h Mpc−1, and including both non-
linear and baryon effects, would increase the value of σ by only 
about 10%. This very weak dependence on the cutoff can be un-
derstood from the results obtained in [8] for the averaged flux. In 
fact, by looking at the exact result in CDM, it can be shown that, 
after performing the η and η′ integrations, our leading effect for 
σ goes like 

∫
dk kP(k), exactly like the case of the average of the 

flux performed on a sphere of constant redshift embedded in our 
past light-cone [8].

To better quantify the possible impact that the scatter of the 
data illustrated in Fig. 1 might have on future precision mea-
surements of cosmological parameters, let us consider the depen-
dence of �τ from the present value of the cosmological constant 
��0 by also plotting in Fig. 1 (with a solid curve) the disper-
sion σ̂ caused by the present experimental uncertainty ��0 =
0.685+0.017

−0.016. Namely we plot, for an FLRW Universe:

σ̂ = �τ(0)|��0=0.669 − �τ(0)|��0=0.702

2�τ(0)|��0=0.685
. (22)

As clearly shown by the dashed and solid curves of Fig. 1, for a 
source with zs � 1 the expected dispersion due to metric perturba-
tions does not prevent, in principle, the possibility of using UR test 
particles for measuring cosmological parameters to a significantly 
better level of accuracy than the current one. On the other hand, 
the intrinsic dispersion σ for the �CDM case and the dispersion σ̂
due to ��0 are nearly the same at a redshift z∗ � 0.36. This sug-
gests that we can (or cannot) determinate the value of ��0 with 
better accuracy than the current one using a single measurement 
of the time delay if we have (or don’t have) a suitable source at 
zs > z∗ .

It should be noted that the dispersions σ and σ̂ are both inde-
pendent of the ratios mi/Ei corresponding to the two UR particles. 
This follows from the non-trivial fact that, to leading order, the 
geometric corrections associated with large scale inhomogeneities 
are the same for the two particles and thus factor out in the time-
delay difference of Eq. (14) (just like the dependence on the FLRW 
geometry in Eq. (1)).

This factorization has also the following important conse-
quence. Consider, for instance, the arrival time of photons and 
neutrinos emitted (almost) simultaneously by a distant source 
at a given redshift zs . In a given FLRW background we can di-
rectly connect the flight-time difference to the inverse Lorentz 
factor γ −1 = m/E of the neutrinos, according to Eq. (1). However, 
the large-scale inhomogeneities induce a theoretical error given 
by (19). Therefore, inferring the Lorentz factor of the neutrinos (or 
their masses if we measure their energy) from �τ(0) we will have 
to take into account this uncertainty. Clearly, the fractional error 
induced on the Lorentz factor will be

�γ /γ = σ/2 . (23)

In Fig. 2 we plot the dispersion σ for the range 0.01 < zs < 0.1
(which is particularly interesting for the detection of UR particles 
coming from SNe explosions). In both the CDM and �CDM case 
σ appears to stabilize at very small zs at values about 10% above 
those reached at zs = 0.01 (although non-linear effects could enter 
at very small zs). Picking the �CDM case, we would conclude that 
the error induced by inhomogeneities on the determination of the 
Lorentz factor via flight-time differences should not exceed 5%.

In conclusion, realistic inhomogeneities do not appear to ham-
per the possibility of extracting important information on either 
cosmological or particle physics parameters. Unfortunately, as al-
ready pointed out in [2], the main obstacle to making practical use 
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Fig. 2. Same as Fig. 1 for the range 0.01 < zs < 0.1. The dispersion ̂σ (not shown) is 
negligibly small in this range.

of these ideas remains the difficulty in finding appropriate sources 
for which time-of-flight observations are both possible and suffi-
ciently free from other systematic errors.
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