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1 Introduction

The problem of bunch lengthening in electron storage rings has been extensively studied,
both analytically and numerically, but several points may still deserve further investigation.
Each particle in a bunch is affected by a wake force and, in the conventional analytical
theory [1], this force is uniformly distributed along the ring. According to this theory,
there exists a threshold current I;s, such that if I < Iy, the bunch distribution is a steady-
state solution of the Fokker—Planck equation [2] and satisfies the so-called Potential Well
Distortion equation (PWD) [3-5]. Otherwise, if I > Is the static distribution becomes
unstable and a regime of ‘anomalous bunch lengthening’ sets in; then Mode Coupling
Theory (MCT) has been used to describe beam instabilities [6-10].

Many of the sources of wake fields should be considered as localized objects and the
wake force is therefore a time-dependent function (here time means longitudinal position
along the ring). A cluster of several objects (e.g. the RF-cavities of an RF-station) can
be further replaced by a single localized source, provided the synchrotron phase advance
between the first and the last object be negligible, and such a situation may be more
realistic for large machines, such as TRISTAN [11] or LEP [12]. Localized sources of wake
fields seem more general, because one can first study the effect of several localized sources
and then extend the analysis to the distributed case; the reverse is not true.

A localized wake force is adopted in Multi-Particle Tracking (MPT) [13-16]. Usually this
force is applied at one or a few points of the ring, in order to save CPU time. Therefore the
conventional analytical theory and MPT are different and it seems desirable to construct
an analytic theory which both incorporates the time-dependent wake force and allows the
description of unstable regimes. In this paper we discuss a simplified model, where the
wake force experienced by the particles is localized at a single point of the storage ring.
The distinctive features of our model can be better understood by comparison with those
of the conventional analytical theory, that we now shortly review.

The PWD equation governs the steady-state distribution of particles in synchrotron
phase space. In the absence of wake fields and for linearized synchrotron oscillations,
the particles are confined in a parabolic potential well generated by the RF-voltage and
the equilibrium distribution is Gaussian. Wake fields change the shape of the potential
well and thus the equilibrium distribution is modified: however, as a consequence of the
assumption of distributed wake, this static regime is characterized by a constant energy
spread, independent of the beam current. The PWD equation, which is a nonlinear integral
equation, has been solved exactly for a purely resistive impedance [17], otherwise only
numerical solutions have been presented in the literature [18-21].

To study bunched-beam instabilities several authors [7-9] extended Sacherer’s theory.
Sacherer used the Vlasov equation, which describes the evolution of the phase-space distri-
bution for proton machines, expressed in polar coordinates. From this equation he derived
an integral equation and expanded the solution into azimuthal and radial modes. For low
beam intensities [22], the different azimuthal modes are well separated and only coupled-
bunch instabilities occur. He extended his theory also to high beam intensities [6], where
different azimuthal modes may become coupled, giving rise to a fast instability.

For electron machines, however, the Vlasov equation should be replaced by the Fokker—



Planck equation [2], which includes relaxation effects associated with synchrotron radia-
tion. In the limit where the radiation damping time becomes large and the diffusion con-
stant tends to zero, the Fokker—Planck equation reduces to the Vlasov equation. There are
several publications in which the Fokker-Planck equation has been used to try to explain
anomalous bunch lengthening (see references in [8]). In particular, Suzuki [9] developed a
formalism for solving the Fokker-Planck equation based on Sacherer’s theory. He intro-
duced polar coordinates (r, ¢) in phase space and split the distribution function ¥ into two
parts: ¥(r, ¢,t) = o(r) + ¥1(r, ¢,t). The first part is the stationary solution, neglecting
potential well distortion effects, while the second one is a time-dependent perturbation.
The Fokker—Planck equation is then linearized with respect to ¢; and transformed into an
integro-differential equation, azimuthal and radial modes are introduced and the solution
is represented through an expansion in terms of generalized Laguerre polynomials. A fast
instability occurs when coupling between different azimuthal modes is taken into account.
However, he found a discrepancy between theory and experimental data for SPEAR II.
As pointed out in a recent paper [23], such a discrepancy may be a consequence of having
neglected the effect of the potential well distortion in the stability analysis.

To investigate analytically the consequences of a localized wake source, one of the
authors [24] introduced a mapping theory and considered the simplified case where the
(short range) longitudinal wake is constant. A non-trivial assumption in this theory is that
the distribution function in synchrotron phase space can be approximated by a Gaussian
even in presence of wake force. This distribution can thus be parametrized by its first and
second order moments alone, describing the barycenter of the beam particles and their
spread in synchrotron phase space. The evolution of these moments from turn to turn is
governed by a nonlinear mapping, whose period-one fixed point can be found analytically
in the case of constant wake. The results obtained in [24], that we summarize and slightly
generalize in Sec. 2, show a relatively good agreement with those obtained by MPT and
are qualitatively different from those based on PWD. The aim of this paper is to extend
the analysis presented in [24], by investigating the stability of the period-one fixed point
and revealing some new and perhaps unexpected phenomena.

Within the limits of the Gaussian approximation, the period-one fixed point of the
moment mapping is the counterpart of the static solution of the Fokker-Planck equation
for a localized wake. In the conventional analytical theory, the Fokker-Planck equation is
then linearized around this static solution in order to study its stability against small, time-
dependent perturbations. In a similar way, in Sec. 3, we linearize the moment mapping
around the period-one fixed point and investigate its stability by looking at the eigenvalues
of the corresponding stability matrix. A noticeable difference, however, is that our mapping
includes only first and second-order moments of the particle distribution, whereas in MCT
the perturbation can be arbitrarily chosen and is usually parametrized by the coefficients
of an expansion in a complete basis of orthogonal polynomials.

Corresponding to the unstable character of the period-one fixed point in some region
of the parameter space (consisting of synchrotron tune, damping time and normalized
- strength of the wake force), the results of a numerical iteration of the mapping, presented
in Sec. 4, reveal the existence of a period-two fixed point, as well as the possible co-existence
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of period-one and period-two solutions, which are both stable.

In order to check the validity of these results, all based on the Gaussian approximation,
in Sec. 5 we compare them to the results obtained by Multi-Particle Tracking. The wake
force acting on each particle is computed either by an approximate Gaussian fit of the
particle distribution or by an exact (but time-consuming) particle-sorting routine. In
both cases, the agreement with the analytic results of the stability analysis and with
the numerical iteration of the moment mapping is rather good, in spite of the sensible
deviations from the Gaussian approximation revealed by MPT. A further check, obtained
by the more realistic simulation program SIMTRAC [14], is also quoted.

Finally, in Sec. 6, we briefly discuss the relevance of the present results, together with
the assumptions made in our model, to actual storage rings and suggest some possible
generalizations and further investigations.

2 The Moment Mapping

The longitudinal beam dynamics in electron storage rings can be described by the stochas-
tic equations of motion for a single particle (Langevin equations). Introducing the nor-
malized synchrotron variables

. longitudinal displacement energy deviation
1 =

, = 2.1
natural bunch length 2= Hatural energy spread (2.1)
and integrating the Langevin equations over one turn, we obtain the following stochastic
mapping valid in the case of localized wake force:

(2)=U<sz+fﬁ£—lﬁ—¢(xl))’ (2.2)

where = and 2/, are the synchrotron coordinates after one turn of a particle having initial
coordinates z; and z, just before it experiences the wake force ¢(z;). Here U is the rotation
matrix for synchrotron oscillations with phase advance y = 27v,

cosp sinp

v=( ). (23)
—sinp cosp

v is the synchrotron tune, A = exp(—2/T), T is the synchrotron damping time measured
in units of the revolution period and # a Gaussian random variable with < # >= 0 and
< 72 >= 1. Note that synchrotron oscillations have been linearized and are treated in
smooth approximation; therefore the integrated effect of radiation over one turn has been
localized at a single point of the ring. The wake force ¢(z;) is given by

¢(z1) =

a‘;%o /0 * o(e1 — w)W(u)du, (2.4)

where Ej is the nominal beam energy, oo the nominal relative energy spread (so that oo Ej
is the natural energy spread), e denotes the electron charge, @ the total charge in the bunch



and p(z) is the charge density normalized to unity. Here W(u) is the longitudinal wake
potential (measured in Volt/Coulomb) and represents the voltage induced at a relative
distance u behind a unit charge impulse.

The above stochastic mapping is equivalent to an infinite hierarchy of deterministic
mappings for the statistical quantities

= <z>,
oij = < (:I:,' — :T:;)(:cj — :7:,-) >, (2.5)

......

and so on, which are the moments of the phase-space distribution ¥(z1, ;). If ¢ is nor-
malized to unity, the average value < f > over all particles of any function f(z1,z;) is
given by the integral [ [ dzidz2 f9 and the charge density p is the integral of ¢ over
3.

The original mapping can be conveniently split into three parts, representing the effect
of radiation, wake force and synchrotron oscillation, respectively.

Radiation:
T, = AZ,
oy, = on (2.6)
0"12 = A0’12
0,22 = A20'22 + (1 b A2)
Wake force:
7 Z;
—,2 = I3—< ¢($1) >
o5, = on (2.7)
0';2 = O12— < (1131 —_ il)¢>(:t1) >
0 = 0Op—2<(z2—T2)d(z1) >+ < $(z1)? > — < ¢(z1) >*

......

Synchrotron oscillation:

S
]
S
&
Q
&
b
=
3

(2.8)

......



Up to this point, everything is fairly general. In principle, this system should include
an infinite number of equations for all higher order moments. We now introduce the
main assumption, made in [24], that the distribution function in phase space is always a
Gaussian, even in presence of wake force, i.e.

2

1 1 B _ _
T,,Ty) = ——=¢€Xp|— 3 oMz — Zi)(z; — T;5)|. (2.9)
'lp( 1 2) 27r\/m P[ 2 ;;1 ¥ ( )( J J)]
This assumption corresponds to a truncation of the number of equations in the system
(2.6), (2.7), (2.8) and in what follows we consider only first and second-order moments.
According to the main assumption, the averages in Eq. (2.7) can be calculated as

< ¢(z1) >= %_;%92/0“ du W (u) exp[—4t;u], (2.10)
2 (eQ[ooEo)? [ [ u? + ul — uju,y
< ¢($1) >= W/o A dU1dU2 W(ul)W(U2) exp[— 3011 ], (211)
< (21— E)d(3) >= (—%‘ZTE—) [ duu W) expl-—), (2.12)
< (23 — F2)b(z1) >= %j < (21— 31)p(z1) > . (2.13)

For the sake of simplicity, as in [24], we limit ourselves to the case of a constant wake
potential

_fWo ,u>0
W(u) = { 0 . u<o. (2.14)
Then, introducing the dimensionless parameter Fy
GQWO
= 1
0 0'0E0 (2 5)

representing the strength of the wake force and proportional to the longitudinal loss factor,
Eqgs. (2.7) become

—1 —

.’131 = ml,

_, . ko

Ty = T2 — _é—,
oy = ou, (2.16)

o = o Foy/on
12 — 12 — 2\/— ’
™
2
’ F00’12 FO
Oy = 022 — —F/—— + —.
V7011 12

Note that in Eqs. (2.6), (2.16) and (2.8) the barycenter and the moment mappings are
decoupled. Generally the barycenter coordinates Z; are affected by higher-order moments,
but for a constant wake the Z; are completely decoupled from them. The second-order
moments o;; are the main subject of our subsequent investigation. Their evolution depends
on three parameters: Fp, v and T.



3 Analytical Investigation of the Stability of the Period-One
Fixed Point

The period-one fixed point of the moment mapping, Eqgs. (2.6), (2.16) and (2.8), is [24]

(o3)!/? = —aFo +[1 + (a* + D)FI, (3.1)

o _ Fo(aixl))l/2 3.2

012—2ﬁ(1+A)7 ()

s ,(1— A)m —6A(1 — A) 33

om=1+F—ra A (3:3)

where cot 1

= — 3.4
=5 /rl+ A’ (34)
b= (1 —A)+A(27r—6) (3.5)

12r(1+ A)(1—A2)
In order to investigate the stability of this fixed point, it is convenient to denote by & the
vector of the second-order moments
o1
o= ( O12 ) . (3.6)
022

Then the moment mapping can be written as a vector function of 7, i.e.

& = 5(3). (3.7)
Expanding & around the period-one fixed point
d=a"+6d, (3.8)
we obtain the linearized mapping
50 = Mz 6. (3.9)

Here the 3 x 3 stability matrix M(&, Fo,v,T) is defined by

QJIQ)
Qi Uy

M= (3.10)

and has the following form:

Fosin2u FoAoqg sin? p : _ FoA sin p 2 12

) a/mon 2oy A sin 2u R A2 SuL-p

_ __sin2p oAgi2sin2u _ Focos2u _ FoAsin2p A2

- 2 + 4011\/7ﬂ711 4\/1I’0'11 ACOS 2'“ 2\/‘"'011 2 sin 2# ° (3’11)

a2 Fpsin2p AFyoi2cos?p A sin 2 FoA cos? p A 2 2
! 4,/m0o11 2011/T011 s1 M NZTZE Cos™ |

The period-one fixed point is stable if and only if all the (complex) eigenvalues
Xi(6%, Fo,v,T), (i = 1,2,3), of the matrix M(5*, Fo,v,T) have norm smaller than one.
As a matter of fact, if |\;| < 1 for all i, an initial departure 65 from the fixed point solution

& is damped after iterating the mapping. Conversely, if [\;| > 1 for some i, the initial
departure may grow indefinitely.

cos? pu —

=



3.1 Solution of the Secular Equation.

The secular equation for the stability matrix M can be written as follows:
D) =X+ a1 A +axA + a3 =0, (3.12)

where the real coefficients a; are complicated functions of the parameters Fy, v and T. We
explicitly computed the eigenvalues (in analytic form) by solving the secular equation for
M, which is of third degree in A, using the well known Cardano formulae [25].

A representative result, for the special cases v = .05,.1,.15 and .2, is shown in Fig. 1,
where the black points in the (T, Fy) plane indicate instability of the period-one solution.
We call the set of these points the bifurcation area. Obviously, the shape of the bifurcation
area depends on the value of the synchrotron tune v and for larger values of v, it extends
to larger values of the damping time 7.

The formulae for the eigenvalues show that they have a complicated dependence on
Fy, v and T, therefore is would be desirable to get some topological information about
the bifurcation region in the parameter space. To this end, let us consider the Routh-
Hurwitz criterion (see Appendix A), a powerful tool to study the asymptotic stability of
a system without explicitly solving the secular equation for the stability matrix. This
criterion becomes very useful if we study higher order moments, when the stability matrix
has higher dimension and the secular equation cannot be solved analytically.

We can distinguish two classes of systems, with continuous or discrete evolution in time.
In the first case the evolution equation is a differential equation and in the second case it is a
difference equation, i.e. a mapping. For a system with continuous evolution, the deviations
from a steady-state solution obey a linear differential equation associated to a characteristic
polynomial P(s), by Laplace transform. The roots s; = iwy of this polynomial are related
to the complex frequencies wy of the normal modes and the steady state is asymptotically
stable provided all these roots have negative real parts. The Routh-Hurwitz criterion is
an algebraic test on the (real) coefficients of the polynomial P(s), allowing to establish
whether all its roots lie in the left-half s-plane (see also [26]). For a system with discrete
evolution in time, the secular equation D()\) = 0 of the linear stability matrix plays the role
of the characteristic equation P(s) = 0. The stability condition |A| < 1 becomes equivalent
to Re(s) < 0 under the transformation s = :\\—f—}-, that associates to the polynomial D(\)
a polynomial P(s) whose coefficients are linear combinations of the coeflicients of D().
Thus the Routh—-Hurwitz criterion can be easily extended also to discrete-time systems.

Moreover there exists a corollary of Rouché’s theorem [27] stating that if the coefficients
of a polynomial depend continuously on some real parameters, then the lines P(iw) = 0
(w being real), corresponding to purely imaginary roots of the polynomial, divide the
parameter space into simply connected, disjoint domains in each of which the polynomial
P(s) has a fixed number of zeros with positive real part. Therefore our (Fy, v, T) space can
be divided into disjoint domains, in each of which the period-one fixed point of the moment
mapping is either stable or unstable. This helps in the exploration of the parameter space:
once a stability boundary is discovered, we know that it must enclose a region where the
number of stable and unstable eigenvalues is fixed. Relatively few points are then sufficient
to explore the inside of such a region.
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Figure 1: Bifurcation area for v = .05, v = .1, v = .15 and v = .2.
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On the left-hand side of Fig. 2, we plot the eigenvalue norms |X;|, for v = .2 and different
values of T. In the particular case T = 25 (top), the period-one fixed point is unstable only
in a finite interval of Fy values. In general, depending on the value of T, the period-one
solution can also become definitely unstable above a certain value of Fo, as for T = 140
(middle), or remain stable for all Fo values, as in the bottom plot where T=250.

In the bifurcation regions of Fig. 1, we found that Eq. (3.12) has only one unstable
(JA| > 1) root. This eigenvalue must be necessarily real, since D(\) is a third degree
polynomial with real coefficients, and hence either the roots are all real or two of them are
complex conjugate while the third one is real.

On the right-hand side of Fig. 2, we show the eigenvalue trajectories in the complex
plane as Fy changes, for v = .2 and values of T equal to those of the left-hand side
plots. For T = 25 (top), one eigenvalue is always real and remains within the unit circle
(therefore it is not plotted). The other two are complex conjugate for small F,. When
increasing Fp, they approach the real axis and eventually become real. Then these two
roots move in opposite directions along the real axis and, as Fp enters the unstable range in
the left-top picture, one of them crosses the unit circle. Hence, when bifurcation appears,
all eigenvalues are real. By further increasing Fp, these two eigenvalues come back and
coalesce, within the unit circle, and eventually become again complex conjugate leaving
the real axis along paths slightly different from those they came through. This type of
behavior is qualitatively similar for all T in the interval from T ~ 10 to T' ~ 45 (for v = .2).

For values of T such that the period-one solution becomes definitely unstable above
a certain value of Fy, the eigenvalue trajectories show the same qualitative behaviour,
except that once the complex conjugate pair becomes real, they remain definitely real
even increasing Fy, one staying inside the unit circle and the other outside (middle of
Fig. 2, where T = 140). For values of T such that the period-one solution is stable for all
values of Fy, on the other hand, the complex-conjugate pair never reaches the real axis,

staying always within the unit circle (see for example the bottom plots of Fig. 2, where
T = 250).

3.2 Asymptotic Behaviour in Parameter Space.

Here we study the stability of the period-one fixed point for large values of the parameters.
Let us consider the limit F; — oo first. Instead of computing

Jim A7, B v, T),  i=1,2,3 (3.13)
0—00

one can equivalently compute the roots of the secular equation det (M Fomsoo M) =0,
where

= lim M(o%, Fy,v,T). (3.14)

==Fo—o0 Fy—o0
The analytic expression of this matrix is reported in Appendix B, together with the cor-
responding asymptotic expression of the period-one fixed point.

It is seen that the o{?p ., are proportional to F§ and, since the matrix elements in

Eq. (3.11) contain only the ratios Fy//o11 and 012/011, they become independent of Fp.
Therefore, for F;, — oo the eigenvalues of the stability matrix remain finite. Nevertheless,
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the asymptotic values of the |\i| may still be larger than one: this happens, for example,
for the bifurcation regions of Fig. 1.

Similarly for T — oo, i.e. A — 1, one easily obtains the asymptotic expression of
the stability matrix and of the period-one fixed point (see Appendix B). In this case the
stability matrix does not depend on 6, A or F,, so that the eigenvalues are asymptotically
functions of v alone. One of them tends to 1 and the remaining two tend to the complex
conjugate pair exp(+4miv): of course, since we are considering the limit of large damping
time, the norm of the three eigenvalues tends to unity. However, a numerical investigation
of the eigenvalue norms beyond the parameter range of Fig. 1 indicates that no further
bifurcation regions appear for larger values of T'.

4 Numerical Iteration of the Moment Mapping: Search of Period-
Two Fixed Points

In order to further clarify the results of our analytic investigation, we implemented a
numerical code which iterates the moment mapping (2.6), (2.16), (2.8). As a result, we
found that in the range of parameters where the period-one fixed point is unstable, period-
two solutions develop, which are fixed points of

& = S[S(3)). (4.1)
Period-two solutions obviously occur in alternating pairs, 3°, 55°, related by
5%, = 5(35). (4.2)

This scenario (instability of the period-one solution, onset of a stable period-two solution)
is, to the best of our knowledge, completely new for this simple model.

Corresponding to the situation sketched in the top of Fig. 2, we found that period-one
and period-two fixed points can co-exist for values of F beyond the region of instability of
the period-one solution, each fixed point being an attractor. Therefore a bistable regime
shows up and the final fixed point to which the iteration converges depends on the choice
of initial conditions. Such a bistable behaviour is encountered quite often, e.g., within the
interval from T ~ 10 to T ~ 45, for v = .2 (see Fig. 1). This situation is represented in the
left-hand side of Fig. 3 with reference to 011, 012, 022, respectively, for T' = 25. These plots
should be compared to those corresponding to the definitely unstable case (see right-hand
side of Fig. 3, where T = 140) and to the stable case (see Fig. 4, where T = 250).

The possibility of bistability should be taken into account even in the conventional
analytical theory of anomalous bunch lengthening, since the stability of the static solution
of the PWD equation does not rule out the appearance of other time-dependent, stable
solutions.

5 Multi-Particle Tracking

The possible dependence of the new results presented above on the Gaussian approximation
was checked using a suitable version of Multi-Particle Tracking code, which is based on
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an entirely different philosophy and has been widely used to study several longitudinal as
well as transverse effects in particle accelerators.

In a first version of our code, the stochastic Langevin equations are solved using a Gaus-
sian fit of the particle distribution to compute the wake force acting on each particle. We
apply the transformation (2.2) to the phase-space coordinates of an ensemble of 2000 par-
ticles. In doing so, the stochastic variable 7 is generated starting from a very good random
uniform deviate generator, due to Knuth [28], followed by an elementary transformation
to normal deviate, also taken from [28]. The wake force (2.4) is computed assuming a
constant wake potential and a Gaussian fit for the charge density p(z), computed as

o@) = [ p(a) dy (5.1)

with ¥(z,y) given by Eq. (2.9), wherein the moments o;; and the mean values Z; are
computed according to Egs. (2.5) and the averages are taken over the particle sample.

In a second version of the code, we use a sorting routine (without binning) to compute
the wake force on each particle. An indexing routine is used to enqueue all particles
following a given one, in order to compute the wake force from the wake potential, assumed
constant. In both cases, the initial particle coordinates in synchrotron phase space are
generated as random Gaussian.

The comparison of MPT results with the results of the moment mapping shows a quite
satisfactory qualitative/quantitative agreement, including period-doubling and bistability.
For the period-two solutions, we also found an unexpected phenomenon: particles tend to
cluster into several ‘islands’ in phase space, possibly related to multipole resonances.

In Fig. 5 we report the results of MPT after 2000 turns, using 2000 particles, with
T = 25, v = .2 and Fy = 4. In the case of Gaussian fit (left), besides the core of the
bunch distribution one can distinguish four islands. At each turn, only two of them are
populated while the other two are almost empty. The island population is reversed at the
next turn and the original distribution is recovered after two turns. In the case of MPT
with sorting routine (right-hand side of Fig. 5), the islands are less pronounced and the

agreement with the results of the moment mapping are even better (see the left-hand side
plots of Fig. 3).

By means of a standard contour-plot generating utility, we obtained from Figs. 5 the
contour levels shown in Figs. 6. From these plots one can draw the conclusion that the
Gaussian approximation for the phase-space distribution function, though allowing to pre-
dict the qualitative features of the bunch dynamics, is not realistic, in view of the appear-
ance of several maxima.

As a final check of our results, we used the more realistic simulation program SIMTRAC
[14]. The latter can track longitudinal as well as transverse motion of a given number of
super-particles in a circular machine. The machine geometry is modelled by a ring divided
into sectors, each possessing an RF-station and an arc-section, and the synchrotron tune for
small amplitude oscillations is controlled by the peak value of a sinusoidal RF-voltage (i.e.
synchrotron oscillations are nonlinear and are not treated in smooth approximation). It is
possible to assign different values to various parameters and to choose among different wake
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models. We tracked 500 particles (no binning) with a choice of parameters corresponding
tov = .2, T = 22, F, around 4 and of course a constant longitudinal wake. The result
was in good qualitative agreement with our previous analysis, showing a time-dependent
behaviour of the particle distribution even after 400 turns (i.e. more than 18 damping
times), with a periodicity of two turns.

6 Discussion and Conclusions

We presented an analytic parametric study of a simplified mapping and the results of its
numerical iteration, showing the bifurcation of the equilibrium distribution in synchrotron
phase space for electron storage rings with localized, constant wake force, as well as the
possible occurrence of bistability. These results have been confirmed by Multi-Particle
Tracking. It is reasonable to expect that our model will either show a cascaded period-
doubling-bifurcation route to chaos (to be identified with turbulent bunch lengthening)
or a back-bifurcation from period-two to period-one solutions, possibly depending on the
parameter values. In order to clarify this issue, we hope to extend our analytic approach
to discuss the stability of period-two fixed points.

Let us remark that, within the limits of the Gaussian approximation, our moment
mapping describes the single-turn dynamics of the bunch. This should be contrasted
with other bifurcating sequences, discussed in the literature in connection with the PWD
equation [29]. Strictly speaking, these bifurcations concern only the iterative solution of
a static problem, although it is conceivable to attach some dynamical meaning to the
iteration procedure.

In the following, we discuss two critical points of our model, namely the assumption of a
constant wake and the Gaussian approximation, which help making an analytic approach
viable. In connection with the first issue, it should be clearly stated that our model is not
realistic, since the wake potential W (u) at a longitudinal distance u behind a unit charge
impulse is usually a rapidly decreasing function near the origin and, further behind, it
has a damped oscillating behaviour. The first zero of the wake occurs at a distance which
depends on the dimensions of the source (e.g. the length of an RF-cavity). When the bunch
is much longer then the region of divergence of the wake (typically a few millimeters) and,
at the same time, much shorter then the distance of its first zero (typically more than
10 cm), then for most of the particles the wake might be loosely approximated by a
constant. However, the dynamical consequences of the divergent part of the wake are
difficult to assess, in view of the continuous redistribution of particles within the bunch
due to synchrotron oscillations.

The constant wake W, appearing in our model should be identified with twice the value
of the longitudinal loss factor. In the case of LEP [12], for a bunch length of 1.5 cm this
gives Wy ~ 550 V/pC. At injection energy, when E; = 20 GeV and the relative energy
spread is 09 ~ 3 X 107*, a bunch current around 0.1 mA (i.e. a total charge in the bunch
Q ~ 10 nC) corresponds to a normalized strength of the wake force Fo ~ 1. Larger
values of Fy may be reached when approaching the nominal bunch current of 0.75 mA.
For reasonable values of the synchrotron tune v, the range of damping time T in which
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our model predicts the instability of the period-one fixed point does not extend beyond a
few hundred turns (see Fig. 1). Although such small values of T are typical for LEP at
50 GeV, the corresponding strength Fp of the wake force scales as the inverse square of the
energy Eo (because of the energy spread ooEp in the denominator of Eq. (2.15)) and thus
becomes smaller then unity in the interesting range of bunch current. The situation is even
worse at injection energy, when the synchrotron damping time becomes of the order of a
few thousands turns. In both cases, as a consequence of the assumption of constant wake,
our model predicts an instability threshold much higher than the observed one (around
0.1 mA at 20 GeV [30]).

The other main assumption we made is that the particle distribution in synchrotron
phase space can be approximated by a Gaussian, even in presence of wake fields. The
results obtained by the correspondingly truncated moment mapping obviously depend
on this approximation and, when we compare them to MPT results, it appears that we
introduce some unphysical features in our solution, as already noted in [24]. For example,
Fig. 6 (left) shows contour plots for the particle distribution corresponding to the period-
two fixed point, obtained by MPT with a Gaussian fit for the wake force; the presence of
islands in phase space indicates deviations from the Gaussian approximation. In the right-
hand side plots of Fig. 6, we use a version of MPT with sorting routine to compute the wake
force acting on each particle, which gives the most realistic simulation, and again we see
islands in phase space which cannot correspond to a Gaussian distribution. Nevertheless,
all the qualitatively new results derived by the moment mapping (period-two solutions and
bistability) are confirmed by MPT, especially when the sorting routine is adopted. What
we can argue is that, within the Gaussian approximation, we are able to see at least a part
of the total number of the system instabilities, which could be described through a more
general analytic representation.

In order to improve our model, we plan to consider a more general wake potential (e.g.,
a superposition of Gauss-Hermite functions) and a Stratonovich expansion of the phase-
space distribution as in [31]. The latter allows the introduction of higher-order moments
of the particle distribution, although the manipulation of analytic expressions may become
very cumbersome (for example, the dimension of the stability matrix tends to infinity).
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Appendix A Routh-Hurwitz Algorithm

The necessary and sufficient condition for the asymptotic stability of a linear, continuous-
time system is that all the zeros of its characteristic polynomial P(s) have negative real
parts. A polynomial with this property is called a Hurwitz polynomial. The Routh-
Hurwitz algorithm is a powerful tool for discussing asymptotic stability without actually
calculating the roots of P(s). The RH algorithm, in its simplest version [32], is embodied
in the following

Theorem 1 - The necessary and sufficient conditions for a polynomial P(s) with real

coefficients
P(s) = sFbsF b

to be a Hurwitz polynomial are either
b, >0,b3>0, bs >0,....

P,>0,P,>0,Ps>0,....

or

by > 0,b4 > 0,b6 > 0,....
P >0,P; >0,Ps>0,...

where P; are the following determinants:

b b by b3 bs
P1=b1,P2= 11 b3 ,P3= 1 b2 b4 g oo
2 0 b bs

By a suitable modification of the Routh-Hurwitz algorithm for continuous-time systems,
it is possible to investigate the stability of discrete-time systems as well. For discrete-time
systems, the unit circle in the A-plane plays the same role as the left-half s-plane for
continuous-time systems and the asymptotic stability problem corresponds to determining
whether the zeros of a given polynomial

D) = M 4+ a0 4 a7 Lt

lie inside or outside the unit circle.

The bilinear transformation
_ A+1

A-1
maps the interior (exterior) of the unit circle in the A-plane into the left (right) half s-plane.
Hence the zeros of

S

s+1. P(s)
.s—l)—(s—l)’c

A(s) = D(
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in the right-half s-plane correspond to the zeros of D(\) outside the unit circle in the
A-plane. The zeros of A(s) are those of its numerator P(s)

P(s) = bos® + bysFt + ...+ b,

hence the stability of the discrete-time system can be discussed by applying the Routh—

Hurwitz test to P(s) above.
The coeficients b; of P(s) are linear combinations of the coefficients a; of the original

polynomial D(A):

bo 1
bl ay
=M
bi ag

For the special case of our interest, k = 3, the transformation matrix is

1 1 1 1
3 1 -1 -3
Mi=1ls -1 -1 3
1 -1 1 -1

Appendix B Asymptotic Formulae

From Egs. (3.1)-(3.5), the asymptotic expression for the period-one fixed point when
Fy — oo is the following;:

Uﬁ,Fo—»oo ~ F(?(_a' + v 0,2 + b)27
cot i

© T /A A
b = (1l — A) + A(27 —6)
127(1 + A)(1 — A?)
o FO\/O?
012,Fp—»0 ™

2/7(1+A)’
-~ F2((1 — AH)7 —6A(1 — A))
022,Fo—>oo ~ .
Ton(1 = AZ)?

Then, using Eq. (3.11), the stability matrix Mg, ..o has the form

2 sin 2u Asin? p . Asin? u 2 .2
COS - —_
: 2/1 4){,—,7 + Tr(itAn Asin2p — =7=F A 2sm I
M __sin2p sin2u _ cos2u __ Asin2y A®sin2u
Fyp—oo ™ 7 T 8r(i4A)7? 1/ A cos2p — S0 2 )

1 a2 sin2 Acos _ : A cos? 2 2
sin® u + 3725 + maeae Asin2py — 2Z=£  Afcos®p
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»

with
vy =-—a+Va?+b.
In the other asymptotic case, T — oo, which means A — 1, the period-one fixed

point is

0N Tmoo ™ Fozb,
Fov/oi
47’
~ 1+ F}b,
™ —3
247(1 — A)’

oo
012,T—>oo

oo
022, T—00

b ~

while the stability matrix has the following expression:

cos?p  sin2u  sin’p
sin2 sin 2
Mr_oo~ | —%5% cos2p =8
sin®p  —sin2y cos’pu

The eigenvalues of this matrix are 1 and ek,
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