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1 Introduction

The Standard Model (SM) of particle physics as the gauge theory of strong and electroweak

(EW) interactions has been tested and confirmed to a high precision since many years [1].

Furthermore, the observation of a Higgs boson at the LHC [2, 3] and the first measurements

of its production and decay channels are consistent with the SM Higgs mechanism of EW

symmetry breaking.

Nevertheless, the SM is expected to constitute only an effective theory valid up to a new

physics (NP) scale Λ where additional dynamic degrees of freedom enter. A renormalizable

quantum field theory of NP, realized at a scale higher than the EW one, satisfies in general

the following requirements:

(i) Its gauge group must contain the SM gauge group SU(3)C × SU(2)L × U(1)Y as a

subgroup.
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(ii) All SM degrees of freedom should be contained, either as fundamental or as composite

fields.

(iii) At low-energies the SM should be reproduced, provided no undiscovered weakly cou-

pled light particles exist (like axions or sterile neutrinos).

In most theories of physics beyond the SM that have been considered, the SM is recov-

ered via the decoupling of heavy particles, with masses Λ � MZ , guaranteed, at the per-

turbative level, by the Appelquist-Carazzone decoupling theorem [4]. Therefore, NP can be

encoded in higher-dimensional operators which are suppressed by powers of the NP scale Λ:

LSM = L(4)SM +
1

Λ
C(5)
νν Q

(5)
νν +

1

Λ2

ÿ

k

C
(6)
k Q

(6)
k +O

(
1

Λ3

)
. (1.1)

Here L(4)SM is the usual renormalizable SM Lagrangian which contains only dimension-

two and dimension-four operators, Q
(5)
νν is the Weinberg operator giving rise to neutrino

masses [5], Q
(6)
k and C

(6)
k denote the dimension-six operators and their corresponding Wil-

son coefficients, respectively [6, 7].

Even if the ultimate theory of NP was not a quantum field theory, at low energies

it would be described by an effective non-renormalizable Lagrangian [8] and it would be

possible to parametrize its effects at the EW scale in terms of the Wilson coefficients

associated to these operators. Thus, one can search for NP in a model independent way

by studying the SM extended with higher-dimensional gauge-invariant operators. Once a

specific NP model is chosen, the Wilson coefficients can be expressed in terms of the NP

parameters by matching the beyond the SM theory under consideration on the SM enlarged

with such higher dimensional operators.

Flavor observables, especially flavor changing neutral current processes, are excellent

probes of physics beyond the SM: since in the SM they are suppressed by the Fermi constant

GF as well as by small CKM elements and loop factors they are very sensitive to even small

NP contributions. Therefore, on one hand flavor processes can stringently constrain the

Wilson coefficients of the dimension-six operators induced by NP. On the other hand, if de-

viations from the SM were uncovered, flavor physics could be used as a guideline towards the

construction of a theory of physics beyond the SM. The second point is especially interesting

nowadays in light of the discrepancies between the SM predictions and the measurements of

b→ sµ+µ− and b→ cτν processes: the combination of B → D∗τν and B → Dτν branch-

ing fractions disagrees with the SM prediction [9] at the level of 3.9 standard deviations

(σ) [10]. Furthermore, b→ s`+`− global fits even show deviations between 4 σ and 5σ [11–

13]. These deviations have been extensively studied recently. Many NP models have been

proposed to explain the anomalies, (see for example [14–35] for b→ sµ+µ− and [34–47] for

b→ cτν.). Therefore, at the moment, B physics is probably our best guideline towards NP.

The effective field theory approach is an essential ingredient of all B physics calculations

within and beyond the SM. However, the Hamiltonian governing b → s and b → c transi-

tions is not invariant under the full SM gauge group, but only under SU(3)C×U(1)EM since

it is defined below the EW scale where SU(2)L×U(1)Y is broken (see for example [48, 49] for
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Figure 1. Mass scale hierarchy: the matching of the NP model onto the gauge invariant dimension-

six operators is performed at the mass scale Λ. After the EW symmetry breaking, the matching of

dimension-six operators on the effective Hamiltonian governing B physics is performed at the mass

scale µW . The Wilson coefficients at different mass scales are connected via RGE evolution.

a review of the use of effective Hamiltonians in B physics). As a consequence, the SM ex-

tended with gauge invariant dimension-six operators must be matched onto the low energy

effective Hamiltonian governing B physics (see figure 1). In the flavor sector only partial

analyses exist: the matching effects in the lepton sector were calculated in refs. [50–52],1

while in the quark sector b → sµ+µ− transitions and their correlations with B → K(∗)νν

and B → D(∗)τν were studied in refs. [54–58]. However a systematic and complete phe-

nomenological study of the gauge invariant dimension-six operators in B physics is still

missing. Such analysis proceeds, in a bottom-up approach, in the following three steps.

(i) The matching at the EW scale µW , of the order of MW , of the gauge invariant

operators onto the low-energy B physics Hamiltonian by integrating out the heavy

degrees of freedom represented by the top quark, the Higgs and the Z and W bosons.

It is the aim of this article to perform such systematic matching of the gauge invariant

operators.

(ii) The evolution of the effective Hamiltonian’s Wilson coefficients from the scale µW
down to the B meson scale µb, where µb is of the order of mb. This is obtained by

solving the appropriate renormalizarion group equation (RGE). We note that after

the matching procedure the set of operators in the B physics Hamiltonian is larger

than the SM one since new Lorentz structures must be taken into account, therefore

the anomalous dimension matrices get also bigger compared to the SM.2

1See ref. [53] for an analysis of non-gauge invariant effective operators for tau decays.
2For the anomalous dimension matrices beyond the SM for ∆F = 2 processes see for example refs. [59,

60], for 4-fermion operators ref. [60] and for b→ sγ refs. [61, 62].
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(iii) The assessment of the constrains on the dimension-six operators’ Wilson coefficients

(defined at the EW scale µW ) stemming from the available flavor observables. An

example of such analysis can be found in the section 5, while the complete numerical

analysis will be given in a subsequent publication.

The purpose of the outlined study is to depict the general pattern of deviations observed

in B physics employing dimension-six operators. It is worth noting however that in the

framework of higher dimensional operators, in order to correctly interpret any deviations

of the SM in terms of a specific NP model, it is necessary to map the pattern of deviations

observed at the EW scale back to the scale Λ where the BSM physics was supposedly

integrated out (see figure 1). Indeed due to operator mixing, the pattern of deviations at

the EW scale differs from the pattern of Wilson coefficients at the matching scale Λ. The

connection between these two mass scales is given by the RGE evolution of dimension-six

operators [63–65].

The outline of this article is as follow: in section 2 we list the operators relevant for

our analysis and discuss the EW symmetry breaking. Then, in section 3, we establish

our conventions for the B physics Hamiltonian and we perform the complete matching of

the dimension-six operators that give contributions to b → s or b → c transitions at tree

level. In section 4 we identify and calculate the leading one-loop EW matching corrections

for b → s processes for those operators which do not enter b → s transitions already at

tree-level. A phenomenological application of the computed matching conditions will be

given in section 5. Finally we conclude.

2 Gauge invariant operators

In this section we list the gauge invariant operators, following the conventions of ref. [7],

that contribute to b→ s or b→ c transitions at tree-level. Here we only consider operators

involving quark fields. The importance of flavor physics in constraining operators which

modify triple gauge couplings has been studied in ref. [66]. Recall that the gauge invariant

dimension-six operators are defined before EW symmetry breaking, implying that they are

given in the interaction basis (as the mass basis is not yet defined). After the EW symmetry

breaking, the fermions acquire their masses and the necessary diagonalizations of their mass

matrices affect the Wilson coefficients. As we will see, all these rotations can be absorbed

by a redefinition of the Wilson coefficients, except for the misalignment between the left-

handed up-quark and down-quark rotations, i.e. the Cabibbo-Kobayashi-Maskawa matrix

(CKM) which relates charged and neutral currents.

2.1 Operator formalism

In table 1 we list the operators contributing to b → s at the tree level (and possibly also

to b → c transitions), while table 2 gives the operators generating at tree level b → c but

not b→ s. For the SM Lagrangian we adopt the standard definition

L(4)SM = −1

4
GAµνG

Aµν − 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + (Dµϕ)†(Dµϕ) +m2ϕ†ϕ− 1

2
λ
(
ϕ†ϕ

)2
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+ i
(
` /D`+ e /De+ q /Dq + u /Du+ d /Dd

)
−
(
` Yeeϕ+ q Yuu rϕ+ q Yddϕ+ h.c.

)
, (2.1)

where `, q and ϕ stand for the lepton, quark and Higgs SU(2)L doublets, respectively, while

the right-handed isospin singlets are denoted by e, u and d. Here rϕi = εij(ϕ
j)∗, where

εij is the totally antisymmetric tensor with ε12 = +1. Flavor indices i, j, k, l = 1, 2, 3 are

implicitly assigned to each fermion field appearing in (2.1), and the Yukawa couplings Ye,u,d
are matrices in the generation space. Therefore, in table 1 the operator names in the left

column of each block should be supplemented with generation indices of the fermion fields

whenever necessary. Covariant derivatives are defined with the plus sign, i.e. for example

Dµq =

(
∂µ + igsT

AGAµ + ig
τ I

2
W I
µ + ig′Y Bµ

)
q, (2.2)

where Y is the hypercharge and TA = 1
2λ

A; λA and τ I are the Gell-Mann and Pauli

matrices, respectively. With the above definition for the covariant derivative, the gauge

field strength tensors read

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCν ,

W I
µν = ∂µW

I
ν − ∂νW I

µ − g εIJKW J
µW

K
ν ,

Bµν = ∂µBν − ∂νBµ. (2.3)

Moreover the Hermitian derivative terms are defined as

ϕ† i
↔
Dµϕ = iϕ†(Dµ −

←
Dµ)ϕ, ϕ† i

↔
Dµ

Iϕ = iϕ†(τ IDµ −
←
Dµτ

I)ϕ, (2.4)

where ϕ†
←
Dµϕ = (Dµϕ)†ϕ. For further details concerning conventions and notations, we

refer the reader to ref. [7].

For the operators in the classes (LL)(LL), (LL)(RR), (RR)(RR) and ψ2ϕ2D (except

for Qϕud), hermitian conjugation is equivalent to the transposition of generation indices in

each of the fermion currents. Moreover, the operators Q
(1)
qq , Q

(3)
qq , Quu and Qdd are symmet-

ric under exchange of the flavor indices ij ↔ kl. Therefore, we will restrict ourselves to

the operators satisfying [ij] < [kl], where [ij] denotes the two digit number [ij] = 10i+ j.

2.2 EW symmetry breaking

Although the set of gauge invariant dimension-six operators we have just introduced is

written in term of the flavor basis, actual calculations that confront theory with experiment

are performed using the mass eigenbasis which is defined after the EW symmetry breaking.

In the broken phase, flavor and mass eigenstates are not identical and the SU(2)L doublet

components are distinguishable. Therefore, we need to rotate the weak eigenstates into

mass eigenstates via the following transformations:

uiL → SuL ij u
j
L, uiR → SuR ij u

j
R , (2.5)

diL → SdL ij d
j
L, diR → SdR ij d

j
R , (2.6)
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(LR)(RL) or (LR)(LR) (LL)(LL) ψ2Xϕ

Q`edq (`
a

i ej)(dkq
a
l ) Q

(1)
qq (qiγµqj)(qkγ

µql) QdW (qiσ
µνdj)τ

IϕW I
µν

Q
(1)
quqd (qai uj)εab(q

b
kdl) Q

(1)
`q (`iγµ`j)(qkγ

µql) QdB (qiσ
µνdj)ϕBµν

Q
(8)
quqd (qai T

Auj)εab(q
b
kT

Adl) Q
(3)
qq (qiγµτ

Iqj)(qkγ
µτ Iql) QdG (qiσ

µνTAdj)ϕG
A
µν

(LL)(RR) Q
(3)
`q (`iγµτ

I`j)(qkγ
µτ Iql) ψ2ϕ3

Q`d (`iγµ`j)(dkγ
µdl) Qdϕ (ϕ†ϕ)(qi dj ϕ)

Qqe (qiγµqj)(ekγ
µel) (RR)(RR) ψ2ϕ2D

Q
(1)
qu (qiγµqj)(ukγ

µul) Qdd (diγµdj)(dkγ
µdl) Q

(1)
ϕq (ϕ†i

↔
Dµϕ)(qiγ

µqj)

Q
(1)
qd (qiγµqj)(dkγ

µdl) Qed (eiγµej)(dkγ
µdl) Q

(3)
ϕq (ϕ†i

↔
Dµ

Iϕ)(qiτ
Iγµqj)

Q
(8)
qu (qiγµT

Aqj)(ukγ
µTAul) Q

(1)
ud (uiγµuj)(dkγ

µdl) Qϕd (ϕ†i
↔
Dµϕ)(diγ

µdj)

Q
(8)
qd (qiγµT

Aqj)(dkγ
µTAdl) Q

(8)
ud (uiγµT

Auj)(dkγ
µTAdl) Qϕud i( rϕ†Dµϕ)(uiγ

µdj)

Table 1. Complete list of the dimension-six operators that contribute to b→ s (and possibly also

to b→ c) transitions at tree level.

(LR)(LR)

Q
(1)
`equ (`

a
i ej)εab(q

b
kul)

Q
(3)
`equ (`

a
i σ

µνej)εab(q
b
kσµνul)

Table 2. The two dimension-six operators that contribute to b → c but not to b → s transitions

at tree level.

where SdL, S
d
R, S

u
L and SuR are the 3×3 unitary matrices in flavor space that diagonalize the

mass matrix as

Sq†L ii′ m
i′j′
q SqR j′j = mqiδij . (2.7)

With these definitions, the CKM matrix V is given by

V = (SuL)† SdL . (2.8)

After these necessary field redefinitions, there are no flavor changing neutral currents

at tree-level in the SM, due to the unitarity of the transformation matrices, and mixing be-

tween generations only occurs in the charged quark current. When dimension-six operators

are included in the Lagrangian, the effect on them by the matrices SqL,R cannot be elimi-

nated by unitarity. However, these rotations can be absorbed into the Wilson coefficients.

As a first example, we consider the operator Qϕd which takes the form:

Cmnϕd Q
mn
ϕd = Cmnϕd

(
ϕ†i
↔
Dµϕ

)(
d
m
Rγ

µdnR

)
→ Cmnϕd

(
ϕ†i
↔
Dµϕ

)(
d
i
RS

d†
R imγ

µSdRnjd
j
R

)
. (2.9)

Redefining
rCijϕd = Cmnϕd S

d†
R imS

d
Rnj , (2.10)

we can indeed absorb SqL,R into the overall coefficient:

Cmnϕd Q
mn
ϕd = rCijϕd

(
ϕ†i
↔
Dµϕ

)(
d
i
Rγ

µdjR

)
. (2.11)

– 6 –
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In contrast to the SM, it is not possible anymore to avoid the appearance of flavor changing

neutral currents for all operators. Moreover, the redefinitions of the Wilson coefficients are

not unique, in general. Let us consider as a second example the operator Q
(1)
ϕq :

C(1)mn
ϕq Q(1)mn

ϕq = C(1)mn
ϕq

(
ϕ†i
↔
Dµϕ

)(
umL γ

µunL + d
m
L γ

µdnL

)
(2.12)

→ C(1)mn
ϕq

(
ϕ†i
↔
Dµϕ

)(
uiLS

u†
L imγ

µSuLnju
j
L + d

i
LS

d†
L imγ

µSdLnjd
j
L

)
. (2.13)

In this case we cannot absorb at the same time the rotation for the up quarks and for the

down quarks, so that we can choose to define

rC(1) ij
ϕq = C(1)mn

ϕq Sd†L imS
d
Lnj , (2.14)

or
qC(1) ij
ϕq = C(1)mn

ϕq Su†L imS
u
Lnj , (2.15)

obtaining the two equivalent expressions

C(1)mn
ϕq Q(1)mn

ϕq = rC(1) ij
ϕq

(
ϕ†i
↔
Dµϕ

)(
VkiV

∗
lju

k
Lγ

µulL + d
i
Lγ

µdjL

)
(2.16)

= qC(1) ij
ϕq

(
ϕ†i
↔
Dµϕ

)(
uiLγ

µujL + V ∗ikVjld
k
Lγ

µdlL

)
. (2.17)

For both definitions, the mass diagonalization leads to flavor changing neutral currents

either in the up sector, for the coefficient denoted with the tilde (∼), or in the down sector

for that one with the check (∨). The two notations are related through the identity

qCij = VikV
∗
jl

rCkl . (2.18)

All operators reported in table 1 must be analogously expressed in the mass basis. We

report in appendix A the explicit expressions for the Wilson coefficients rC.

2.3 Qdϕ and Quϕ

The operatorsQdϕ andQuϕ play a special role as they contribute to the quark mass matrices

after the EW symmetry breaking. For example, the down-quark mass matrix receives two

contributions, one from the SM Yukawa interactions and one from the operator Qdϕ:

mij
d =

v
‘

2

(
Y ij
d −

1

2

v2

Λ2
Cijdϕ

)
, (2.19)

where Yd is the Yukawa matrix of the SM and v = 246 GeV is the vacuum expectation value

of the SM Higgs field. For the coupling of the Higgs with the down-type quarks, defined

by the Lagrangian term LH = −h dLΓhdR + h.c., the extra contribution is enhanced by a

combinatorial factor of three compared to the contribution to the mass term:

Γhdidj =
1

‘

2

(
Y ij
d −

3

2

v2

Λ2
Cijdϕ

)
=
mij
d

v
− 1

‘

2

v2

Λ2
Cijdϕ . (2.20)

– 7 –
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Unlike in the pure dimension-four SM, the mass matrix and the quark-Higgs coupling

cannot be diagonalized simultaneously: a flavor changing interaction between the SM Higgs

and the quarks appears [51, 67, 68]. Indeed the first term in eq. (2.20) is rendered diagonal

by a field redefinition as in (2.6),

Ud†L ii′ m
i′j′

d UdR j′j = mdi
δij , (2.21)

where the new UdL,R matrices, necessary to diagonalize the mass in the presence of the Qdϕ
operator, differ from SdL,R by terms of order 1/Λ2. The quark-Higgs coupling matrix is now

given by

Γhdidj =
mdi

v
δij −

1
‘

2

v2

Λ2
rCijdϕ , (2.22)

where we have defined

rCijdϕ =
(
Ud†L CdϕU

d
R

)
ij

=
(
Sd†L CdϕS

d
R

)
ij

+O

(
1

Λ2

)
. (2.23)

Note that in this approximation all Wilson coefficients of the operators discussed above

remain unchanged since the extra rotation induced by the Qdϕ operator would lead to a

1/Λ4 effect. Similar considerations apply to the operator Quϕ.

3 Tree level matching

In this section we perform the tree-level matching of the gauge invariant dimension-six

operators relevant for b→ s and b→ c transitions. This matching is performed at the EW

scale on the effective Hamiltonian governing B physics, which is defined below the EW

scale. Therefore, the effective B physics Hamiltonian contains the SM fields without W ,

Z, the Higgs and the top quark, while these are dynamical fields of the gauge invariant

dimension-six operator basis. As we will see, the B-physics Hamiltonian contains operators

with additional Lorentz structures compared to the ones relevant in the SM.

3.1 ∆B = ∆S = 2

In this section we consider Bs-Bs mixing. Here, following the conventions of refs. [59, 69],

the effective Hamiltonian is given by

H∆B=∆S=2
eff =

5
ÿ

j=1

Cj Oj +
3

ÿ

j=1

C ′j O
′
j + h.c. , (3.1)

with the operators defined as

O1 = (sγµPLb) (sγµPLb) , O2 = (sPLb) (sPLb) ,

O3 = (sαPLbβ) (sβPLbα) , O4 = (sPLb) (sPRb) ,

O5 = (sαPLbβ) (sβPRbα) , (3.2)

where α and β are color indices. The primed operators O′1,2,3 are obtained from O1,2,3 by

interchanging PL with PR.

– 8 –
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The contributions from the four-fermion operators to the Hamiltonian in eq. (3.1) read:

C1 = − 1

Λ2

[
rC(1) 2323
qq + rC(3) 2323

qq

]
, (3.3)

C ′1 = − 1

Λ2
rC2323
dd , (3.4)

C4 =
1

Λ2
rC
(8) 2323
qd , (3.5)

C5 =
1

Λ2

[
2 rC

(1) 2323
qd − 1

Nc

rC
(8) 2323
qd

]
, (3.6)

where Nc denotes the number of colors. In addition, we include for completeness the effects

of Qdϕ even though they are formally suppressed by 1/Λ4 because the 1/Λ2 effect in the

B-physics Hamiltonian is suppressed due to the mf/v coupling of the Higgs to the light

fermions.3 Here we get

C2 = − 1

2m2
h

(
Γh∗
bs

)2
, (3.7)

C ′2 = − 1

2m2
h

(
Γhsb

)2
, (3.8)

C4 = − 1

m2
h

ΓhsbΓ
h∗
bs , (3.9)

where Γhdidj is defined in eq. (2.20). Note that we do not include the analogous contribu-

tions from a modified Z coupling since in this case the coupling to light fermions are not

suppressed and especially b → sµ+µ− processes will give relevant tree-level constraints at

the 1/Λ2 level.

3.2 ∆B = ∆C = 1

For the charged current process b→ c`iνj we write the effective Hamiltonian as

H∆B=∆C=1
eff = −4GF

‘

2

[
CT OT +

ÿ

i=S,V

CiOi + C ′i O
′
i

]
, (3.10)

where the operators are

OV = (c γµPLb)
(
` γµPLν

)
, OT = (c σµνPLb)

(
` σµνPLν

)
, OS = (c PLb)

(
` PLν

)
,

(3.11)

and the prime operators are obtained by interchanging PL ↔ PR in the quark current.4

The four-fermion operators lead to the following contribution to the effective Hamil-

tonian:

CV =
v2

Λ2
Vci rC

(3) lli3
`q , C ′S =

v2

2Λ2
Vci rC∗ ll3i`edq , (3.12)

3Note that this counting argument already suggest, that the EFT approach to flavor changing Higgs

decays has quite limited applicability.
4The operator O′

T is identically zero due to Fierz transformations.
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CS =
v2

2Λ2
Vci rC

∗(1) ll3i
`equ , CT =

v2

2Λ2
Vci rC

∗(3) ll3i
`equ , (3.13)

where the summation over i = 1, 2, 3 is understood. The operators Qϕud and Q
(3)
ϕq induce

an anomalous u-d-W coupling. Their contribution to the b→ c`ν transition reads:

C ′V = − v2

2Λ2
rC23
ϕud , (3.14)

CV = − v
2

Λ2
Vci rC(3)i3

ϕq . (3.15)

The effect of such modified W couplings to quarks on the determination of Vcb (and anal-

ogously on Vub) has been discussed in refs. [70–80].

In principle, also momentum dependent modifications of the W -c-b coupling can lead

to effects in b → c`ν transitions as examined in refs. [73, 78] at the level of non-gauge

invariant operators. However, these effects scale like mbv/(m
2
WΛ2). Furthermore, also

corrections to Z-b-b couplings can appear which are stringently constrained, making the

possible contributions tiny [79]. Therefore we do not include these effects here.

3.3 ∆B = ∆S = 1

We describe the b→ s`−`′+ and b→ sγ transition via the effective Hamiltonian

H∆B=∆S=1
eff = −4GF

‘

2

(
ÿ

i

CiOi + C ′i O
′
i +

ÿ

i

ÿ

q

Cqi O
q
i + C

′q
i O

′q
i

)
, (3.16)

where the index q runs over all light quarks q = u, d, c, s, b. The operators contributing in

the first part are:

O1 = (s TAγµPLc) (c TAγµPLb) , O2 = (sγµPLc) (cγµPLb),

O7 =
e

16π2
mb (s σµνPR b) F

µν , O8 =
gs

16π2
mb (s TAσµνPR b) Gµν A ,

O``
′

9 =
e2

16π2
(s γµPLb) (`γµ`′) , O``

′
10 =

e2

16π2
(sγµPLb) (`γµγ5`

′) ,

O``
′

S = (sPRb) (``′) , O``
′

P = (sPRb) (`γ5`
′) ,

O``
′

T = (sσµνb) (`σµν`
′) , O``

′
T5 = (sσµνb) (`σµνγ5`

′) . (3.17)

While in the second part of the Hamiltonian we have four-quark operators with vectorial

Lorentz structures,

Oq3 = (sγµPLb) (qγµq) Oq4 = (s TAγµPLb) (q TAγµq) ,

Oq5 = (sγµγνγρPLb) (qγµγνγρq) , Oq6 = (s TAγµγνγρPLb) (q TAγµγνγρq) , (3.18)

and four-quark operators with scalar and tensor Lorentz structure (with the notation

of [62]),

Oq15 = (sPRb)(qPRq) , Oq16 = (sαPRbβ)(qβPRqα) ,

– 10 –



J
H
E
P
0
5
(
2
0
1
6
)
0
3
7

Oq17 = (sPRb)(qPLq) , Oq18 = (sαPRbβ)(qβPLqα) ,

Oq19 = (sσµνPRb)(qσµνPRq) , Oq20 = (sασ
µνPRbβ)(qβσµνPRqα) . (3.19)

The primed operators are obtained by interchanging everywhere PL ↔ PR. We recall that

in the SM only the vector operators receive contributions, while for the scalar/tensor op-

erator the matching contribution is zero. However, NP is expected to contribute to the

Hamiltonian also via scalar/tensor operators. We also note that the operators in (3.16) are

redundant since O1 and O2 can be obtained from Oq3−6, when q = c, via Fierz rearrange-

ments. We will include all NP contributions into the definition of Cq3−6 even though for

q = c they could be absorbed in C1 and C2 as well. Interestingly, at the leading-logarithmic

order only the operators Oq15−20 mix into the magnetic and chromomagnetic operators O7

and O8. The vector operators on the other hand mix neither into the magnetic and chro-

momagnetic nor into the scalar-tensor four-quark operators. The scalar-tensor operators

however mix into the vector ones [62].

Four fermion operators that involve two right handed currents (Qdd, Q
(1)
ud , and Q

(8)
ud ),

give the following contribution to the effective Hamiltonian:

C ′ q=d,s,b3 = − v2

6Λ2
rC1123, 2223, 2333
dd , C ′ q=d,s,b5 =

v2

24Λ2
rC1123, 2223, 2333
dd . (3.20)

Through a Fierz rearrangement also the operator rQ1321
dd contributes to

C ′d3 = − v2

6Λ2

1

Nc

rC1321
dd , C ′d5 =

v2

24Λ2

1

Nc

rC1321
dd , (3.21)

C ′d4 = − v2

3Λ2
rC1321
dd , C ′d6 =

v2

12Λ2
rC1321
dd . (3.22)

Operators with up-type quarks give:

C ′ q=u,c3 = − v2

6Λ2
rC
(1) 1123, 2223
ud , C ′ q=u,c5 =

v2

24Λ2
rC
(1) 1123, 2223
ud , (3.23)

C
′ q=u,c
4 = − v2

6Λ2
rC
(8) 1123, 2223
ud , C

′ q=u,c
6 =

v2

24Λ2
rC
(8) 1123, 2223
ud . (3.24)

In the set (LL)(RR) in table 1, the operators with right-handed up-type quarks give the

following contributions:

C q=u,c
3 =

2v2

3Λ2
rC(1) 2311, 2322
qu , C q=u,c

5 = − v2

24Λ2
rC(1) 2311, 2322
qu , (3.25)

C q=u,c
4 =

2v2

3Λ2
rC(8) 2311, 2322
qu , C q=u,c

6 = − v2

24Λ2
rC(8) 2311, 2322
qu . (3.26)

For the same operator set, but with left-handed up-type quarks, we obtain

C ′ q=u,c3 =
2v2

3Λ2
qC
(1) 1123, 2223
qd , C ′ q=u,c5 = − v2

24Λ2
qC
(1) 1123, 2223
qd , (3.27)

C ′ q=u,c4 =
2v2

3Λ2
qC
(8) 1123, 2223
qd , C ′ q=u,c6 = − v2

24Λ2
qC
(8) 1123, 2223
qd , (3.28)
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where qC
(1,8) ijkl
qd = VimV

∗
jn

rC
(1,8)mnkl
qd , as defined in section 2. The operators with four

down-type quarks give

C ′ q=d,s,b3 =
2v2

3Λ2
rC
(1) 1123, 2223, 3323
qd , C ′ q=d,s,b5 = − v2

24Λ2
rC
(1) 1123, 2223, 3323
qd , (3.29)

C q=d,s,b
3 =

2v2

3Λ2
rC
(1) 2311, 2322, 2333
qd , C q=d,s,b

5 = − v2

24Λ2
rC
(1) 2311, 2322, 2333
qd , (3.30)

C ′ q=d,s,b4 =
2v2

3Λ2
rC
(8) 1123, 2223, 3323
qd , C ′ q=d,s,b6 = − v2

24Λ2
rC
(8) 1123, 2223, 3323
qd , (3.31)

C q=d,s,b
4 =

2v2

3Λ2
rC
(8) 2311, 2322, 2333
qd , C q=d,s,b

6 = − v2

24Λ2
rC
(8) 2311, 2322, 2333
qd . (3.32)

Let us now investigate the set of four-fermion operators with the Dirac structure (LL)(LL).

Recalling that for this class of operators we consider only those that fulfill [ij] ≤ [kl]. We

obtain the following matching contribution from the vertices involving four left-handed

down-type quarks:

C q=s,b
3 = − v2

6Λ2

[
rC(1) 2223, 2333
qq + rC(3) 2223, 2333

qq

]
, (3.33)

C q=s,b
5 = +

v2

24Λ2

[
rC(1) 2223, 2333
qq + rC(3) 2223, 2333

qq

]
, (3.34)

Cd3 = − v2

6Λ2

[
rC(1) 1123
qq + rC(3) 1123

qq +
1

Nc

(
rC(1) 1321
qq + rC(3) 1321

qq

)]
, (3.35)

Cd5 = +
v2

24Λ2

[
rC(1) 1123
qq + rC(3) 1123

qq +
1

Nc

(
rC(1) 1321
qq + rC(3) 1321

qq

)]
, (3.36)

Cd4 = − v2

3Λ2

(
rC(1) 1321
qq + rC(3) 1321

qq

)
, (3.37)

Cd6 = +
v2

12Λ2

(
rC(1) 1321
qq + rC(3) 1321

qq

)
. (3.38)

From the operators with two left-handed up-type quarks we obtain

Cq=u,c3 = − v2

6Λ2

(
χ(1)
u,c − χ(3)

u,c +
2

Nc
Ξ(3)
u,c

)
, (3.39)

Cq=u,c5 = +
v2

24Λ2

(
χ(1)
u,c − χ(3)

u,c +
2

Nc
Ξ(3)
u,c

)
, (3.40)

Cq=u,c4 = − 2v2

3Λ2
Ξ(3)
u,c , (3.41)

Cq=u,c6 = +
v2

6Λ2
Ξ(3)
u,c , (3.42)

where the symbols χq and Ξq stand for

χ(1)
q =

ÿ

[kl]<[23]

rC(1) kl23
qq VqkV

∗
ql +

ÿ

[kl]>[23]

rC(1) 23kl
qq VqkV

∗
ql + 2 rC(1) 2323

qq VqsV
∗
qb , (3.43)

χ(3)
q =

ÿ

[kl]<[23]

rC(3) kl23
qq VqkV

∗
ql +

ÿ

[kl]>[23]

rC(3) 23kl
qq VqkV

∗
ql + 2 rC(3) 2323

qq VqsV
∗
qb , (3.44)
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Ξ(3)
q =

ÿ

[2j]<[k3]

rC(3) 2jk3
qq V ∗qjVqk +

ÿ

[j3]<[3k]

rC(3) j32k
qq V ∗qkVqj + 2 rC(3) 2323

qq V ∗qbVqs . (3.45)

Dim-6 operators involving scalar currents generate the following matching contribution for

the operators O15−20 in eq. (3.16) involving u or c quarks:

Ci=u,c15 =
v2

2Λ2

(
rC
(1) ii23
quqd − 1

2Nc

rC
(8) ii23
quqd +

1

4
V ∗msVin

rC
(8)min3
quqd

)
, (3.46)

C
′ i=u,c
15 =

v2

2Λ2

(
rC
∗(1) ii32
quqd − 1

2Nc

rC
∗(8) ii32
quqd +

1

4
V ∗inVmb

rC
∗(8)min2
quqd

)
, (3.47)

Ci=u,c16 =
v2

4Λ2

[
rC
(8) ii23
quqd + V ∗msVin

(
rC
(1)min3
quqd − 1

2Nc

rC
(8)min3
quqd

)]
, (3.48)

C
′ i=u,c
16 =

v2

4Λ2

[
rC
∗(8) ii32
quqd + V ∗inVmb

(
rC
∗(1)min2
quqd − 1

2Nc

rC
∗(8)min2
quqd

)]
, (3.49)

Ci=u,c19 =
v2

32Λ2
V ∗msVin

rC
(8)min3
quqd , (3.50)

C
′ i=u,c
19 =

v2

32Λ2
V ∗inVmb

rC
∗(8)min2
quqd , (3.51)

Ci=u,c20 =
v2

16Λ2
V ∗msVin

(
rC
(1)min3
quqd − 1

2Nc

rC
(8)min3
quqd

)
, (3.52)

C
′ i=u,c
20 =

v2

16Λ2
V ∗inVmb

(
rC
∗(1)min2
quqd − 1

2Nc

rC
∗(8)min2
quqd

)
. (3.53)

The operators Q
(1)
ϕq , Q

(3)
ϕq , Qϕud and Qϕd, involving a Z and W coupling with right-

handed fermions, contribute to the four-quark operators in eq. (3.10) in the following way:

Ci3 =
v2

Λ2

[
1

3Nc

(
T i3 +

1

2

)
Σi
ϕq −

(
T i3
3

+Qi sin2 θW

)(
rC(1) 23
ϕq + rC(3) 23

ϕq

)]
, (3.54)

C
′ i
3 =

v2

Λ2

(
4

3
T i3 −Qi sin2 θW

)
rC23
ϕd , (3.55)

Ci4 =
2v2

3Λ2

(
T i3 +

1

2

)
Σi
ϕq , (3.56)

Ci5 =
v2

Λ2

[
T i3
12

(
rC(1) 23
ϕq + rC(3) 23

ϕq

)
− 1

12Nc

(
T i3 +

1

2

)
Σi
ϕq

]
, (3.57)

C
′ i
5 = − v

2

Λ2

T i3
12

rC23
ϕd , (3.58)

Ci6 = − v2

6Λ2

(
T i3 +

1

2

)
Σi
ϕq , (3.59)

Ci18 = − v
2

Λ2

(
T i3 +

1

2

)
V ∗is

rCi3ϕud , (3.60)

C
′ i
18 = − v

2

Λ2

(
T i3 +

1

2

)
Vib rC∗i2ϕud , (3.61)

where i = u, d, c, s, b and Qi and T i3 denote its charge and third isospin component, respec-

tively. Moreover we introduced the short notation Σi
ϕq = rC

(3) j3
ϕq VijV

∗
is + rC

(3) 2j
ϕq VibV

∗
ij .
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The operators involving a vector-current with left-handed quarks directly appear at

tree level in the coefficients for O9, O10 in eq. (3.17):

Cij9 =
π

α

v2

Λ2

[
rC
(1) ij23
`q + rC

(3) ij23
`q + rC23ij

qe

]
, (3.62)

Cij10 =
π

α

v2

Λ2

[
rC23ij
qe − rC

(1) ij23
`q − rC

(3) ij23
`q

]
, (3.63)

where the indices i, j = 1, 2, 3, corresponding to e, µ and τ . Similar contributions appear

for the operators O′9, O
′
10 from vector-currents involving right-handed quarks:

C ′ij9 =
π

α

v2

Λ2

[
rCij23`d + rCij23ed

]
, (3.64)

C ′ij10 =
π

α

v2

Λ2

[
rCij23ed − rCij23`d

]
. (3.65)

Scalar operators contribute to the coefficients of O′P , O
′
S :

C ′ijS = C ′ijP =
v2

4Λ2
rCij23`edq . (3.66)

Also, for the operators OP , OS we have

CijS = −CijP =
v2

4Λ2
rC∗ji32`edq , (3.67)

where the hermitian conjugate of the operator Qijmn`edq is defined as rC∗ ijmn`edq

(
ejR`

i
L

)
(qnLd

m
R ) .

These results agree with those in [57] in the case of lepton flavor conservation. Also the

operators QdB and QdW appear already at tree-level in the effective Hamiltonian through

O7 and O
′
7:

C7 = 2
‘

2 sin θW
π

α

MW

mb

v2

Λ2

(
cos θW rC23

dB − sin θW rC23
dW

)
, (3.68)

C
′
7 = 2

‘

2 sin θW
π

α

MW

mb

v2

Λ2

(
cos θW rC∗ 32dB − sin θW rC∗ 32dW

)
. (3.69)

The operators O9 and O10, and similarly O′9 and O′10, receive the following lepton flavor

conserving tree-level contribution through the effective s-b-Z coupling appearing in the

operators Qϕd, Q
(1)
ϕq and Q

(3)
ϕq :

Cii9 =
π

α

v2

Λ2

(
rC(1) 23
ϕq + rC(3) 23

ϕq

) (
−1 + 4 sin2 θW

)
, (3.70)

Cii10 =
π

α

v2

Λ2

(
rC(1) 23
ϕq + rC(3) 23

ϕq

)
, (3.71)

C
′ ii
9 =

π

α

v2

Λ2
rC23
ϕd

(
−1 + 4 sin2 θW

)
, (3.72)

C
′ ii
10 =

π

α

v2

Λ2
rC23
ϕd . (3.73)
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The operator QdG contributes to the Wilson coefficients of O8 and O′8 in the following way:

C8 =
‘

2
8π2

g gs

MW

mb

v2

Λ2
rC23
dG , (3.74)

C ′8 =
‘

2
8π2

g gs

MW

mb

v2

Λ2
rC∗ 32dG , (3.75)

where g and gs are the SU(2)L and SU(3)C coupling constants, respectively. Interestingly,

as already noted in ref. [57], there is no matching contribution to tensor operators at the

dimension-six level.

The tree level contribution to the four-quark scalar operators stemming from the op-

erator Qdϕ is given by

Cb15 = Cb17 = −MWmb

m2
h

sin θW
‘

2e

v2

Λ2
rC23
dϕ , (3.76)

C
′b
15 = C

′b
17 = −MWmb

m2
h

sin θW
‘

2e

v2

Λ2
rC∗ 32dϕ . (3.77)

4 One-loop matching corrections

In this section we analyze the leading one-loop matching corrections to the b → s tran-

sitions arising from the dimension-six operators in (1.1). Let us define what we mean by

“leading” one-loop matching corrections. First of all, if one of the gauge invariant opera-

tors can contribute already at tree-level to b → s transitions, a calculation of loop effects

is not necessary, since the corresponding Wilson coefficient would already be stringently

constrained. Therefore, the loop contribution would only be a subleading effect. With this

argument, one can already eliminate all operators that do not contain right-handed up-type

quarks: left-handed up quarks always come with their SU(2)L down quark partner that then

contributes to the Hamiltonian at the tree level. Note that it might be possible that an op-

erator containing quark doublets is flavor-violating for up-type quarks but flavor conserving

concerning down-type quarks (i.e. not contributing b→ s transitions due to an alignment

in flavor space). However, we do not consider this possibility here and focus on operators

with up-quark SU(2)L singlets. Therefore, we are left with the operators given in table 3.

In the following, we will identify six different classes of matching effects which can

be numerically relevant and discuss each of them in a separate subsection. We have the

following contributions of gauge invariant dimension-six operators to the ones of the B

physics Hamiltonian:

1. 4-fermion operators to 4-fermion operators (∆B = ∆S = 1).

2. 4-fermion operators to 4-fermion operators (∆B = ∆S = 2).

3. 4-fermion operators to O7 and O8.

4. Right-handed Z couplings to O9, O10 and Oq3−6.

5. Right-handed W couplings to O7 and O8.

6. Magnetic operators to O7, O8, O9, O10 and Oq4.
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ψ2Xϕ (RR)(RR) (LL)(RR)

QuW (qiσ
µνuj) τ

I
rϕW I

µν Qeu (eiγµej)(ukγ
µul) Q`u (`iγµ`j)(ukγ

µul)

QuB (qiσ
µνuj) rϕBµν Quu (uiγµuj)(ukγ

µul) Q
(1)
qu (qiγµqj)(ukγ

µul)

QuG (qiσ
µνTAuj) rϕGAµν Q

(1)
ud (uiγµuj)(dkγ

µdl) Q
(8)
qu (qiγµT

Aqj)(ukγ
µTAul)

ψ2ϕ2D Q
(8)
ud (uiγµT

Auj)(dkγ
µTAdl) (LR)(LR)

Qϕud ( rϕ† iDµϕ)(uiγ
µdj) Q

(1)
quqd (qai uj)εab(q

b
kdl)

Qϕu (ϕ†i
↔
Dµϕ)(uiγ

µuj) Q
(1)
quqd (qai T

Auj)εab(q
b
kT

Adl)

Table 3. Dim-6 operators that contribute to b→ s transitions at the one-loop level.

b s

`, q `, q

t t

W

(a)

b s

q q

t t
W

(b)

b s

t

Z, γ

` `

(c)

b s

t

γ, g

(d)

Figure 2. One-loop diagrams in unitary gauge contributing to the low energy theory generated

by the four-fermion operators in table 3.

We perform the matching of the operators in table 3 by integrating out the heavy

degrees of freedom represented by the Higgs and the top quark, together with the W and

Z bosons. The amplitudes are evaluated at vanishing external momenta, setting all lepton

and quark masses to zero except for the top quark mass. To calculate the contribution to

the magnetic operators O7 and O8, as well as the photon and gluon penguins, we expanded

the amplitudes up to the second order in external momenta and small quark-masses. In

order to check our result we performed the calculation in a general Rξ gauge, and we

explicitly verified the cancellation of the ξ dependent part in the final results.

In several cases, the amplitudes have ultraviolet (UV) divergences. Such divergences

signal the running and/or the mixing of different gauge invariant operators between the NP

scale Λ and the EW scale. The divergences can be (and are) removed via renormalization

for which we choose the MS scheme. The residual finite terms constitute in these cases

the matching result. To indicate the exact origin of the logarithms, we used the notation

log(m2
t /µ

2
W ) for the one-loop contributions where only the top quark appears in the loop

internal legs, while log(M2
W /µ

2
W ) signals the presence of at least one W -boson in the loop.

4.1 Contribution of 4-fermion operators to 4-fermion operators (∆B = ∆S =

1)

We start by reporting the matching contribution to the semi-leptonic operators O9 and

O10 from four-fermion operators that couple up-type quarks and charged leptons: Q`u
and Qeu. Obviously, only a charged particle (i.e. the W and the charged Goldstone) can

give a contribution to a bs operator which is only possible via a genuine vertex correction.
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Moreover, the result turns out to be proportional to m2
uj . Therefore, we include only the

top-quark contribution while u or c quark effects are vanishing in the massless limit.

Calculating the diagram in figure 2a (and the analogous Goldstone contribution unless

one is working in unitary gauge) gives the following matching contributions:

Cij9 =
λt

sin2 θW

v2

Λ2

[
rCij33`u + rCij33eu

]
I(xt) , (4.1)

Cij10 =
λt

sin2 θW

v2

Λ2

[
rCij33eu − rCij33`u

]
I(xt) , (4.2)

where xt = m2
t /M

2
W and

I(xt) =
xt

16

[
− ln

(
M2
W

µ2W

)
+

xt − 7

2(1− xt)
− x2t − 2xt + 4

(xt − 1)2
ln (xt)

]
. (4.3)

The four-fermion operators involving only quark fields can also contribute to C
(′)
9 and C

(′)
10

through a closed top loop (figure 2c) to which an off-shell Z or photon is attached. In this

case the contribution is evidently lepton flavor conserving:

Cii9 = rC(1) 2333
qu

v2

Λ2

(
3xt

8 sin2 θW
− 3xt

2
− 2

3

)
ln

(
m2
t

µ2W

)
, (4.4)

C ′ii9 = rC
(1) 3323
ud

v2

Λ2

(
3xt

8 sin2 θW
− 3xt

2
− 2

3

)
ln

(
m2
t

µ2W

)
, (4.5)

Cii10 = − rC(1) 2333
qu

v2

Λ2

3xt

8 sin2 θW
ln

(
m2
t

µ2W

)
, (4.6)

C ′ii10 = − rC
(1) 3323
ud

v2

Λ2

3xt

8 sin2 θW
ln

(
m2
t

µ2W

)
. (4.7)

Furthermore, through a W -boson exchange (figure 2b) the operators under discussion

give a one-loop matching contribution to ∆B = ∆S = 1 four-quark operators of the form:

Ci3 = rC(1) 2333
qu

α

4π

v2

Λ2

{
ln

(
m2
t

µ2
W

)[
Qi

(
3xt

2
+

2

3

)
+T i3

xt

2 sin2 θW

]
+

2

3

(
T i3−

1

2

) |Vti|2 I(xt)

sin2 θW

}
, (4.8)

C
′i
3 = rC

(1) 3323
ud

α

4π

v2

Λ2

{
ln

(
m2
t

µ2
W

)[
Qi

(
3xt

2
+

2

3

)
−T i3

2xt

sin2 θW

]
− 8

3

(
T i3−

1

2

) |Vti|2 I(xt)

sin2 θW

}
, (4.9)

Ci4 = rC(8) 2333
qu

v2

Λ2

{
αs
24π

ln

(
m2
t

µ2
W

)
+

α

6π

(
T i3 −

1

2

) |Vti|2 I(xt)

sin2 θW

}
, (4.10)

C
′i
4 = rC

(8) 3323
ud

v2

Λ2

{
αs
24π

ln

(
m2
t

µ2
W

)
− 2α

3π

(
T i3 −

1

2

) |Vti|2 I(xt)

sin2 θW

}
, (4.11)

Ci5 = − rC(1) 2333
qu

α

32π sin2 θW

v2

Λ2

[
T i3 xt ln

(
m2
t

µ2
W

)
+

4

3

(
T i3 −

1

2

)
|Vti|2 I(xt)

]
, (4.12)

C
′i
5 = + rC

(1) 3323
ud

α

32π sin2 θW

v2

Λ2

[
T i3 xt ln

(
m2
t

µ2
W

)
+

4

3

(
T i3 −

1

2

)
|Vti|2 I(xt)

]
, (4.13)

Ci6 = rC(8) 2333
qu

α

24π sin2 θW

v2

Λ2

(
1

2
− T i3

)
|Vti|2 I(xt) , (4.14)

C
′i
6 = rC

(8) 3323
ud

α

24π sin2 θW

v2

Λ2

(
T i3 −

1

2

)
|Vti|2 I(xt) , (4.15)
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where Qi is the charge of the quark, T i3 = 1/2 for q = u, c and T i3 = −1/2 for q = d, s, b.

Four-fermion operators not containing the flavor violating current sb contribute to the

four-quarks operators in (3.16) in the following way:

Ci=d,s,b3 = λt
α

6π sin2 θW

v2

Λ2

[
4 rC

(1) 33ii
ud − rC(1) ii33

qu

]
I(xt) , (4.16)

Ci=u,c3 = λt
α

6π sin2 θW

v2

Λ2

[
4

(
rCii33uu −

1

Nc

rCi33iuu

)
− qC(1) ii33

qu

]
I(xt) , (4.17)

Ci=d,s,b4 = λt
α

6π sin2 θW

v2

Λ2

[
4 rC

(8) 33ii
ud − rC(8) ii33

qu

]
I(xt) , (4.18)

Ci=u,c4 = λt
α

6π sin2 θW

v2

Λ2

[
−8 rCi33iuu − qC(8) ii33

qu

]
I(xt) , (4.19)

Ci=d,s,b5 = λt
α

24π sin2 θW

v2

Λ2

[
rC(1) ii33
qu − rC

(1) 33ii
ud

]
I(xt) , (4.20)

Ci=u,c5 = λt
α

24π sin2 θW

v2

Λ2

[
qC(1) ii33
qu − rCii33uu +

1

Nc

rCi33iuu

]
I(xt) , (4.21)

Ci=d,s,b6 = λt
α

24π sin2 θW

v2

Λ2

[
rC(8) ii33
qu − rC

(8) 33ii
ud

]
I(xt) , (4.22)

Ci=u,c6 = λt
α

24π sin2 θW

v2

Λ2

[
qC(8) ii33
qu + 2 rCi33iuu

]
I(xt) , (4.23)

where here we used also the notation introduced in section 2: qC
(1,8) ijkl
qu = VimV

∗
jn

rC
(1,8)mnkl
qu .

4.2 Contribution of 4-fermion operators to 4-fermion operators (∆B = ∆S =

2)

The Hamiltonian for Bs-Bs mixing in eq. (3.1) gets a one-loop matching contribution

through the graph in figure 2b:

C1 = λt
α

4π sin2 θW

1

Λ2
I(xt)

[(
1 +

1

Nc

)
rC(8) 2333
qu − 2 rC(1) 2333

qu

]
, (4.24)

C4 = −λt
α

2π sin2 θW

1

Λ2
I(xt) rC

(8) 3323
ud , (4.25)

C5 = λt
α

π sin2 θW

1

Λ2
I(xt)

[
− rC

(1) 3323
ud +

1

2Nc

rC
(8) 3323
ud

]
. (4.26)

4.3 Contributions of 4-fermion operators to O7 and O8

Four-fermion operators with scalar currents contribute to the low energy Hamiltonian (3.16)

through the diagram in figure 2d:

C7 =− 1

6

mt

mb

v2

Λ2
ln

(
m2
t

µ2W

)[
rC
(1) 2333
quqd + CF rC

(8) 2333
quqd

]
, (4.27)

C ′7 =− 1

6

mt

mb

v2

Λ2
ln

(
m2
t

µ2W

)[
rC
∗(1) 3332
quqd + CF rC

∗(8) 3332
quqd

]
, (4.28)

C8 =− 1

4

mt

mb

v2

Λ2
ln

(
m2
t

µ2W

)[
rC
(1) 2333
quqd − 1

2Nc

rC
(8) 2333
quqd

]
, (4.29)
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C ′8 =− 1

4

mt

mb

v2

Λ2
ln

(
m2
t

µ2W

)[
rC
∗(1) 3332
quqd − 1

2Nc

rC
∗(8) 3332
quqd

]
, (4.30)

where CF = (N2
c − 1)/(2Nc). Note that the contribution to C7 or C8 from 4-fermion

operators involving vector currents vanishes (excluding QCD corrections).

4.4 Contributions of right-handed Z couplings to O9, O10 and Oq
3−6

The operator Qϕu, involving only right-handed up-type quarks, gives through a Z-penguin

(figure 3f) a matching contribution to the ∆B = ∆S = 1 Hamiltonian in eq. (3.16) of the

form:

Ci3 = −λt
α

π sin2 θW

v2

Λ2
I(xt) rC33

ϕu

(
Qi sin2 θW +

1

3
T i3

)
, (4.31)

Ci5 = λt
α

12π sin2 θW

v2

Λ2
I(xt) rC33

ϕu T
i
3 , (4.32)

Cii9 =
λt

sin2 θW

v2

Λ2
rC33
ϕu I(xt)

(
−1 + 4 sin2 θW

)
, (4.33)

Cii10 =
λt

sin2 θW

v2

Λ2
rC33
ϕu I(xt) , (4.34)

where I(xt) has been defined in eq. (4.3). The possibility to probe the anomalous couplings

of the Z boson to top quark with rare meson decays were also studied in [81].

4.5 Contributions of right-handed W couplings to O7 and O8

The operator Qϕud couples the W boson to right-handed quarks, which induces a non-zero

contribution only to the magnetic terms O7, O8:

C7 =
mt

mb

v2

Λ2
E7

ϕud(xt) rC33
ϕud V

∗
ts , (4.35)

C ′7 =
mt

mb

v2

Λ2
E7

ϕud(xt) rC∗ 32ϕud Vtb , (4.36)

C8 =
mt

mb

v2

Λ2
E8

ϕud(xt) rC33
ϕud V

∗
ts , (4.37)

C ′8 =
mt

mb

v2

Λ2
E8

ϕud(xt) rC∗ 32ϕud Vtb , (4.38)

where the xt-functions, in agreement with [82, 83], are

E7
ϕud(xt) =

−5x2t + 31xt − 20

24(xt − 1)2
+
xt(2− 3xt)

4(xt − 1)3
ln (xt) , (4.39)

E8
ϕud(xt) = −x

2
t + xt + 4

8(xt − 1)2
+

3xt

4(xt − 1)3
ln (xt) . (4.40)

4.6 Contributions of magnetic operators to O7, O8, O9, O10 and Oq
4

In this subsection we summarize the matching contributions arising from the magnetic

operators in table 3. The operators QuB and QuW contribute to the effective Hamiltonian

for b→ sγ and b→ s`` transitions via the one-loop diagrams in figure 3.
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W
b s

t t

γ, g

(a)

W
b s

tt

γ, g

(b)

b s

γ

t

W W

t

(c)

b s

γ

W

t

(d)

W
b s

t t

Z, γ, g

`, q `, q

(e)

W
b s

tt

Z, γ, g

`, q `, q

(f)

b s

Z, γ

t

W W

t

`, q`, q

(g)

b s

Z, γ

W

t

`, q `, q

(h)

Figure 3. One-loop diagrams in the unitary gauge for b → sV transitions (with V = Z, γ, g)

originating from the operators QuB , QuW and QuG. The red dots represent an operator insertion.

For each of these diagrams a symmetric one must also be considered, with the effective operator

in the W -t-b vertex. Box diagrams and self energies on the external legs (not depicted here) must

also be included.

For simplicity, let us first consider the operators rC33
uW and rC33

uB that generate an extra

term for the top anomalous magnetic moment resulting in a chirality flipping vertex with

the W boson. We will later analyse the case when the vertices with the photon and the

Z are flavor violating. Here we include only the contributions to four-quark operators

arising from gluon-penguin diagrams, which are of O(αs), and we neglect the subleading

EW penguin diagrams, of O(α). We obtained the following contributions to the effective

Hamiltonian in eq. (3.16):

Ci4 = λt
αs
π

mt

MW

‘

2 v2

Λ2
AuW (xt) Re ( rC33

uW ) , (4.41)

C7 = λt
mt

MW

‘

2 v2

Λ2

{
rC33
uWE

7
uW (xt)+ rC∗33uW F 7

uW (xt)+
cos θW
sin θW

[
rC33
uBE

7
uB(xt)+ rC∗33uB F 7

uB(xt)
]}

, (4.42)

C8 = λt
mt

MW

‘

2 v2

Λ2

[
rC33
uW E8

uW (xt) + rC∗33uW F 8
uW (xt)

]
, (4.43)

Cii9 = λt
mt

MW

‘

2 v2

Λ2

[
Re ( rC33

uW )

(
YuW (xt)

sin2 θW
− ZuW (xt)

)
− cos θW

sin θW
Re ( rC33

uB)ZuB(xt)

]
, (4.44)

Cii10 = −λt
mt

MW

‘

2 v2

Λ2

YuW (xt)

sin2 θW
Re ( rC33

uW ) , (4.45)

where the explicit expressions for the xt-dependent functions are

E7
uW (xt) =

1

8
ln

(
M2
W

µ2
W

)
+
−9x3t +63x2t−61xt+19

48(xt − 1)3
+

3x4t−12x3t−9x2t +20xt−8

24(xt − 1)4
ln (xt) , (4.46)

F 7
uW (xt) = −3x3t − 17x2t + 4xt + 4

24(xt − 1)3
+
xt(2− 3xt)

4(xt − 1)4
ln (xt) , (4.47)

E7
uB(xt) = −1

8
ln

(
M2
W

µ2
W

)
− (xt + 1)2

16(xt − 1)2
− x2t (xt − 3)

8(xt − 1)3
ln (xt) , (4.48)
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F 7
uB(xt) = −1

8
, (4.49)

E8
uW (xt) =

3x2t − 13xt + 4

8(xt − 1)3
+

5xt − 2

4(xt − 1)4
ln (xt) , (4.50)

F 8
uW (xt) =

x2t − 5xt − 2

8(xt − 1)3
+

3xt

4(xt − 1)4
ln (xt) , (4.51)

AuW (xt) =
5x2t − 19xt + 20

24(xt − 1)3
+

xt − 2

4(xt − 1)4
ln (xt) , (4.52)

YuW (xt) =
3xt

4(xt − 1)
− 3xt

4(xt − 1)2
ln (xt) , (4.53)

ZuW (xt) =
99x3t − 136x2t − 25xt + 50

36(xt − 1)3
− 24x3t − 45x2t + 17xt + 2

6(xt − 1)4
ln (xt) , (4.54)

ZuB(xt) = −x
2
t + 3xt − 2

4(xt − 1)2
+

3xt − 2

2(xt − 1)3
ln (xt) . (4.55)

We found that the expressions for the functions EiuW ,F iuW ,YuW and ZuW are in agreement

with the results reported in [82, 83], while AuW , ZuB, E
7
uB and F 7

uB are new to the best

of our knowledge. Note that the effect on the magnetic operators O7 and O8 is divergent

while it is finite for the four-fermion operators. Moreover, all these effects scale like 1/Λ2

and do not possess an additional suppression by 1/M2
W .

Now we turn our attention to the operators Qi3uW and Qi3uB, where i = 1, 2.5 These

operators lead to an anomalous W -t-di coupling, plus two flavor-violating neutral currents

(Z/γ)tc and (Z/γ)tu, so then in the diagram 3b one top quark propagator becomes q = u, c.

However, we recall that this amplitude is non-zero only for the γ penguin, or the transition

b→ sγ — the effective coupling is proportional to σµνqν , where q is the momentum of the

boson. Only the functions arising from a γ penguin will be modified in this case, i.e. the

functions Z,E7, F 7. Repeating the calculations performed for rC33
uB and rC33

uW we obtain the

following results for the matching:

Ci4 =
αs
π

mt

MW

‘

2 v2

Λ2
AuW (xt) ΣuW , (4.56)

C7 =
mt

MW

‘

2 v2

Λ2

{
rCi3uWV

∗
isVtbE

′7
uW (xt) + rC∗ i3uWVibV

∗
tsF

7
uW (xt)

+
cos θW
sin θW

[
rCi3uBV

∗
isVtbE

′7
uB(xt) + rC∗ i3uB VibV

∗
tsF

7
uB(xt)

]}
, (4.57)

C8 =
mt

MW

‘

2 v2

Λ2

[
rCi3uWV

∗
isVtbE

8
uW (xt) + rC∗ i3uWVibV

∗
ts F

8
uW (xt)

]
, (4.58)

Cii9 =
mt

MW

‘

2 v2

Λ2

[
ΣuW

(
YuW (xt)

sin2 θW
− Z ′uW (xt)

)
− cos θW

sin θW
ΣuBZ

′
uB(xt)

]
, (4.59)

Cii10 = − mt

MW

‘

2 v2

Λ2

YuW (xt)

sin2 θW
ΣuW , (4.60)

where ΣuW = ( rCi3uWV
∗
isVtb + rC∗ i3uWVibV

∗
ts)/2 and ΣuB = ( rCi3uBV

∗
isVtb + rC∗ i3uB VibV

∗
ts)/2 (the

summation over i = 1, 2 is implied). The new functions introduced above are:

5The effect of a right-handed W -t-d coupling on b→ dγ was studied in ref. [84].
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Z ′uW (xt) =
54x3t − 59x2t − 35xt + 34

18 (xt − 1) 3
− 15x3t − 27x2t + 10xt + 1

3 (xt − 1) 4
ln (xt) , (4.61)

Z ′uB(xt) =
1

1− xt

ln (xt) , (4.62)

E
′7
uW (xt) =

1

8
ln

(
M2
W

µ2
W

)
+
−3x3t +63x2t−67xt+19

48(xt − 1)3
+

3x4t−18x3t−3x2t +20xt−8

24(xt − 1)4
ln (xt) , (4.63)

E
′7
uB(xt) = −1

8
ln

(
M2
W

µ2
W

)
+

xt + 1

16(xt − 1)
− x2t

8(xt − 1)2
ln (xt) . (4.64)

The operator Q33
uG gives a chromo-magnetic coupling with the top quark, that con-

tributes at one-loop to O8 and O4 through the gluon-penguin diagrams in figure 3b, 3f.

The explicit matching contributions are

Ci4 = λt
ggs

16π2
mt

MW

‘

2 v2

Λ2
Re ( rC33

uG)AuG(xt) , (4.65)

C8 = λt
g

gs

mt

MW

‘

2 v2

Λ2

[
rC33
uGE

8
uG(xt) + rC∗33uG F 8

uG(xt)
]
, (4.66)

where AuG = ZuB, E8
uG = E7

uB and F 8
uG = F 7

uB. Moreover, the operators Qi3uG lead to a

flavor violating neutral current involving a gluon and up-type quarks, whose effects in the

effective Hamiltonian are

Ci4 =
ggs

16π2
mt

MW

‘

2 v2

Λ2
A′uG(xt)

rCi3uGVtbV
∗
is + rC∗i3uGVibV

∗
ts

2
, (4.67)

C8 =
g

gs

mt

MW

‘

2 v2

Λ2

[
rCi3uGVtbV

∗
isE

′8
uG(xt) + rC∗i3uGVibV

∗
ts F

8
uG(xt)

]
, (4.68)

where A′uG = Z ′uB and E
′8
uG = E

′7
uB.

5 Phenomenological example

As an example of phenomenological applications of the matching conditions reported in sec-

tions 3 and 4, we will consider the operator rQ33
ϕud that gives rise to a one-loop contribution

to C7 and C8 (see eqs.(4.35) and (4.37)). We can employ the inclusive B → Xsγ branching

ratio to constrain the the Wilson coefficient rC33
ϕud. Let us denote the Wilson coefficients

in (3.16) as Ci(µ) = CSM
i (µ) + ∆Ci(µ), where ∆Ci(µ) are possible non-SM terms. The

calculation of the contribution to the decay B → Xsγ proceeds precisely as in the SM case:

• The evolution of the Wilson coefficients in (3.16), from the mass scale µ = µW down

to µ = µb, where µb is of the order of mb, by solving the appropriate RGE.

• The evaluation of the corrections to the matrix elements 〈sγ|Oi(µ) |b〉 at the scale

µ = µb, and the subsequent shift induced in the branching ratio B(B → Xsγ).
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The beyond-SM effect on B(B → Xsγ), driven by the new additive contribution involving

∆C7,8, can be compactly written as

Bth(B → Xsγ)× 104 = (3.36± 0.23)− 8.22 ∆C7 + 1.99 ∆C8

VtbV
∗
ts

, (5.1)

where ∆C7,8 are defined at the mass scale µW = 160 GeV [85]. The theoretical predic-

tion (5.1) incorporates NNLO QCD corrections as well as nonperturbative effects. The

input parameters and their uncertainties can be found in appendix D of ref. [86]. Moreover

it is assumed that the quadratic terms in ∆C7,8 are negligible.

For the purpose of this example we assume rC33
ϕud to be real and we neglect the imaginary

part of Vtb and Vts. Identifying the non-SM terms ∆C7,8 with the results in eqs.(4.35)

and (4.37), and taking into account the current world average [10]

Bexp(B → Xsγ) = (3.43± 0.21± 0.07)× 10−4, (5.2)

we can find the current 95% C.L. bounds

− 3.3× 10−3 ≤ rC33
ϕud [µW = 160GeV]

v2

Λ2
≤ 2.7× 10−3. (5.3)

This quite strong bound takes place due to a relative enhancement mt/mb compared to the

SM case: the SM chiral suppression factor mb/MW is replaced by the factor mt/MW [87].

It can be interesting to compare (5.3) with the Wtb vertex structure searches at the LHC.

The 8 TeV data on the single top quark production cross section and the measurements of

the W -boson helicity fractions allowed the authors of [88] to set a bound on rC33
ϕud (v2/Λ2)

at the level of 10−1. Also, ATLAS searches for anomalous couplings in the Wtb vertex from

the measurement of double differential angular decay rates of single top quarks produced

in the t-channel show similar sensitivities [89].

6 Conclusions

In this article, we calculated (at the EW scale) the matching of the gauge invariant

dimension-six operators on the B physics Hamiltonian (including lepton flavor violating

operators) integrating out the top, W , Z and the Higgs. After performing the EW symme-

try breaking and diagonalizing the mass matrices, we first presented the complete tree-level

matching coefficients for b → s and b → c transitions. Operators involving top quarks do

not contribute to b → s processes at the tree level, as the top is not a dynamical degree

of freedom of the B physics Hamiltonian. Therefore, we identified all operators involving

right-handed top quarks which can give numerically important contributions at the one

loop-level:

1. 4-fermion operators to 4-fermion operators (∆B = ∆S = 1).

2. 4-fermion operators to 4-fermion operators (∆B = ∆S = 2).

3. 4-fermion operators to O7 and O8.
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4. Right-handed Z couplings to O9, O10 and Oq3−6.

5. Right-handed W couplings to O7 and O8.

6. Magnetic operators to O7, O8, O9, O10 and Oq4.

Once the necessary running between the EW scale and the B meson scale is performed,

our results can be used systematically to test the sensitivity of B physics observables on

the dimension six operators.
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A Dimension-six operators in the mass basis

Here we explicitly relate the Wilson coefficients of the gauge invariant operators in the

interaction basis to the mass basis. This translation is necessary, if the results obtained

in this article have to be related to a UV complete model, where the interaction basis is

specified. For the notation, we refer the reader to the original paper in ref. [7].

Operator Definition in the mass basis

QdB rCijdB

[
Vki u

k
Lσ

µνdjRϕ
+ + d

i
Lσ

µνdjR

(
v+h+iϕ0

‘

2

)]
Bµν

rCijdB = CmndB S
d†
L imS

d
Rnj

QdW rCijdW

[
Vki u

k
Lσ

µνdjRϕ
+ − diLσµνdjR

(
v+h+iϕ0

‘

2

)]
W 3
µν + . . .

rCijdW = CmndWS
d†
L imS

d
Rnj

QuB rCijuB

[
uiLσ

µνujR

(
v+h−iϕ0

‘

2

)
− V ∗ik d

k
Lσ

µνujRϕ
−
]
Bµν

rCijuB = CmnuB S
u†
L imS

u
Rnj

QuW rCijuW

[
uiLσ

µνujR

(
v+h−iϕ0

‘

2

)
+ V ∗ik d

k
Lσ

µνujRϕ
−
]
W 3
µν + . . .

rCijuW = CmnuWS
u†
L imS

u
Rnj

QdG rCijdG

[
Vki u

k
Lσ

µνTAdjRϕ
+ + d

i
Lσ

µνTAdjR

(
v+h+iϕ0

‘

2

)]
GAµν

rCijdG = CmndG S
d†
L imS

d
Rnj

QuG rCijuG

[
uiLσ

µνTAujR

(
v+h−iϕ0

‘

2

)
− V ∗ik d

k
Lσ

µνTAujR ϕ
−
]
GAµν

rCijuG = CmnuG S
u†
L imS

u
Rnj
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Operator Definition in the mass basis

Q
(1)
ϕq

rC
(1) ij
ϕq

(
ϕ†i
↔
Dµϕ

)(
VmiV

∗
nj u

m
L γ

µunL + d
i
Lγ

µdjL

)

rC
(1) ij
ϕq = C

(1)mn
ϕq Sd†L imS

d
Lnj

Q
(3)
ϕq

rC
(3) ij
ϕq

(
ϕ†i
↔
D

1

µϕ

)(
Vmi u

m
L γ

µdjL + V ∗nj d
i
Lγ

µunL

)
+ . . .

rC
(3) ij
ϕq = C

(3)mn
ϕq Sd†L imS

d
Lnj

Qϕd rCijϕd

(
ϕ†i
↔
Dµϕ

)(
d
i
Rγ

µdjR

)

rCijϕd = Cmnϕd S
d†
R imS

d
Rnj

Qϕu rCijϕu

(
ϕ†i
↔
Dµϕ

)(
uiRγ

µujR

)

rCijϕu = Cmnϕu S
u†
R imS

u
Rnj

Qϕud rCijϕud
(

rϕ†iDµϕ
) (
uiRγ

µdjR

)

rCijϕud = CmnϕudS
u†
R imS

d
Rnj

Qdϕ rCijdϕ
(
ϕ†ϕ

) [
Vmiu

m
L d

j
Rϕ

+ + d
i
Ld

j
R

(
v+h+iϕ0

‘

2

)]

rCijdϕ = Cmndϕ S
d†
L imS

d
Rnj

Table 4. Operators with quarks, gauge and/or Higgs bosons.

Operator Definition in the mass basis

Q
(1)
qq

rC
(1) ijkl
qq

(
VmiV

∗
nj u

m
L γ

µunL + d
i
Lγ

µdjL

)(
VmkV

∗
nl u

m
L γµu

n
L + d

k
Lγµd

l
L

)

rC
(1) ijkl
qq = C

(1) pqrs
qq Sd†L ipS

d
L qjS

d†
LkrS

d
L sl

Q
(3)
qq

rC
(3) ijkl
qq

(
VmiV

∗
nj u

m
L γ

µunL − d
i
Lγ

µdjL

)(
VmkV

∗
nl u

m
L γµu

n
L − d

k
Lγµd

l
L

)
+ . . .

rC
(3) ijkl
qq = C

(3) pqrs
qq Sd†L ipS

d
L qjS

d†
LkrS

d
L sl

Q
(1)
qd

rC
(1) ijkl
qd

(
VmiV

∗
nj u

m
L γ

µunL + d
i
Lγ

µdjL

)(
d
k
Rγµd

l
R

)

rC
(1) ijkl
qd = C

(1) pqrs
qd Sd†L ipS

d
L qjS

d†
RkrS

d
R sl

Q
(8)
qd

rC
(8) ijkl
qd

(
VmiV

∗
nj u

m
L γ

µ TAunL + d
i
Lγ

µ TAdjL

)(
d
k
RγµT

AdlR

)

rC
(8) ijkl
qd = C

(8) pqrs
qd Sd†L ipS

d
L qjS

d†
RkrS

d
R sl

Q
(1)
qu

rC
(1) ijkl
qu

(
VmiV

∗
nj u

m
L γ

µunL + d
i
Lγ

µdjL

) (
ukRγµu

l
R

)

rC
(1) ijkl
qu = C

(1) pqrs
qu Sd†L ipS

d
L qjS

u†
RkrS

u
R sl
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Operator Definition in the mass basis

Q
(8)
qu

rC
(8) ijkl
qu

(
VmiV

∗
nj u

m
L γ

µ TAunL + d
i
Lγ

µ TAdjL

) (
ukRγµT

AulR
)

rC
(8) ijkl
qu = C

(8) pqrs
qu Sd†L ipS

d
L qjS

u†
RkrS

u
R sl

Q
(1)
ud

rC
(1) ijkl
ud

(
uiRγ

µujR

)(
d
k
Rγµd

l
R

)

rC
(1) ijkl
ud = C

(1) pqrs
ud Su†R ipS

u
R qjS

d†
RkrS

d
R sl

Q
(8)
ud

rC
(8) ijkl
ud

(
uiRT

AγµujR

)(
d
k
RT

Aγµd
l
R

)

rC
(8) ijkl
ud = C

(8) pqrs
ud Su†R ipS

u
R qjS

d†
RkrS

d
R sl

Qdd rCijkldd

(
d
i
Rγ

µdjR

)(
d
k
Rγµd

l
R

)

rCijkldd = Cpqrsdd Sd†R ipS
d
R qjS

d†
RkrS

d
R sl

Quu rCijkluu

(
uiRγ

µujR

) (
ukRγµu

l
R

)

rCijkluu = Cpqrsuu Su†R ipS
u
R qjS

u†
RkrS

u
R sl

Q
(1)
quqd

rC
(1) ijkl
quqd

[(
uiLu

j
R

)(
d
k
Ld

l
R

)
− V ∗imVnk

(
d
m
L u

j
R

) (
unLd

l
R

)]

rC
(1) ijkl
quqd = C

(1) pqrs
quqd Su†L ipS

u
R qjS

d†
LkrS

d
R sl

Q
(8)
quqd

rC
(8) ijkl
quqd

[(
uiLT

AujR

)(
d
k
LT

AdlR

)
− V ∗imVnk

(
d
m
L T

AujR

) (
unLT

AdlR
)]

rC
(8) ijkl
quqd = C

(8) pqrs
quqd Su†L ipS

u
R qjS

d†
LkrS

d
R sl

Table 5. Four-fermion operators with four quarks.

Operator Definition in the mass basis

Q
(1)
`q

rC
(1) ijkl
`q

(
ν iLγ

µν jL + e iLγ
µe jL

) (
Vmk V

∗
nl u

m
L γµu

n
L + d kLγµd

l
L

)

rC
(1) ijkl
`q = C

(1) ijmn
`q Sd†LkmS

d
Lnl

Q
(3)
`q

rC
(3) ijkl
`q

(
ν iLγ

µν jL − e iLγµe
j
L

) (
Vmk V

∗
nl u

m
L γµu

n
L − d kLγµd lL

)
· · ·

rC
(3) ijkl
`q = C

(3) ijmn
`q Sd†LkmS

d
Lnl

Qeu rCijkleu

(
e iRγ

µe jR

) (
u kRγµu

l
R

)

rCijkleu = Cijmneu Su†RkmS
u
Rnl

Qed rCijkled

(
e iRγ

µe jR

) (
d kRγµd

l
R

)

rCijkled = Cijmned Sd†RkmS
d
Rnl
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Operator Definition in the mass basis

Q`u rCijkl`u

(
ν iLγ

µν jL + e iLγ
µe jL

) (
u kRγµu

l
R

)

rCijkl`u = Cijmn`u Su†RkmS
u
Rnl

Q`d rCijkl`d

(
ν iLγ

µν jL + e iLγ
µe jL

) (
d kRγµd

l
R

)

rCijkl`d = Cijmn`d Sd†RkmS
d
Rnl

Qqe rCijklqe

(
Vmi V

∗
nj u

m
L γµu

n
L + d iLγµd

j
L

) (
e kRγ

µe lR
)

rCijklqe = Cmnklqe Sd†L imS
d
Lnj

Q`edq rCijkl`edq

[
V ∗nl

(
ν iLe

j
R

) (
d kRu

n
L

)
+
(
e iLe

j
R

) (
d kRd

l
L

)]

rCijkl`edq = Cijmn`edq S
d†
RkmS

d
Lnl

Q
(1)
`equ

rC
(1) ijkl
`equ

[
V ∗km

(
ν iLe

j
R

) (
dmL u

l
R

)
−
(
e iLe

j
R

) (
ukLu

l
R

)]

rC
(1) ijkl
`equ = C

(1) ijmn
`equ Su†LkmS

u
Rnl

Q
(3)
`equ

rC
(3) ijkl
`equ

[
V ∗km

(
ν iLσ

µνe jR

) (
dmL σµνu

l
R

)
−
(
e iLσ

µνe jR

) (
ukLσµνu

l
R

)]

rC
(3) ijkl
`equ = C

(3) ijmn
`equ Su†LkmS

u
Rnl

Table 6. Four-fermion operators with two quarks and two leptons.
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