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The Fock-space Hamiltonian truncation method is developed further, paying particular attention to the
treatment of the scalar field zero mode. This is applied to the two-dimensional ϕ4 theory in the phase where
the Z2-symmetry is spontaneously broken, complementing our earlier study of the Z2-invariant phase and
of the critical point. We also check numerically the weak/strong duality of this theory discussed long ago
by Chang.
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I. INTRODUCTION

The two-dimensional ϕ4 theory is perhaps the simplest
quantum field theory (QFT) which is not exactly solvable.
It is thus an ideal laboratory for studying approximate
solution techniques. In our recent paper [1], we studied this
theory using the method of Hamiltonian truncation—a
QFT analogue of the Rayleigh-Ritz method in quantum
mechanics. In that work, we considered the case of positive
bare mass m2 > 0 and of quartic coupling g ¼ ḡm2 with
ḡ ¼ Oð1Þ. The physical particle mass is given by

mph ¼ fðḡÞm; ð1:1Þ

and the function fðḡÞ was determined numerically. We
observed that the physical mass vanishes for ḡ ¼ ḡc ≈ 3,
signaling the presence of a second order phase transition.
In [1], our focus was mainly on the region below and

around the critical coupling ḡc. In this second work of the
series we will instead be interested in the complementary
region ḡ > ḡc. In this range of couplings the theory is
massive, but the Z2 symmetry, ϕ → −ϕ, is spontaneously
broken. In infinite volume, there are therefore two degen-
erate vacua and two towers of massive excitations
around them.
We will be able to determine the low energy spectrum as

a function of ḡ. In finite volume the exact degeneracy is
lifted, and the energy eigenstates come in pairs split by a
small amount, exponentially small if the volume is large. In
this paper, as in [1], we will regulate the theory by putting it
in finite volume.

In the Z2-broken phase, there is also a topologically
nontrivial sector of “kink” states corresponding, in the
semiclassical limit, to field configurations interpolating
between the two vacua. In this work we will probe the
kink mass by studying the mass splittings in the topologi-
cally trivial sector. In the future it would be interesting to
study the kink sector directly.
One interesting feature of the theory under study is that it

enjoys a weak/strong coupling duality first discussed by
Chang [2]. The dual description exists for all ḡ ≥ ḡ� ≈ 2.26.
As we review below, the duality relates a description in
which the theory is quantized around the Z2-invariant
vacuum state to an equivalent description in which it is
quantized around a Z2-breaking vacuum. For ḡ not much
above ḡ� both descriptions are strongly coupled,1 and they
can be equivalently employed as a starting point for the
numerical computations. In Sec. II we present a comparison
between the numerical spectra obtained using the two
descriptions, serving both as a nontrivial test of the method
and as a check of the Chang duality.
On the other hand, for ḡ ≫ ḡ� the dual description

becomes weakly coupled and provides the better starting
point. In Sec. III, we will explain a modification of the
method which can be used, among other things, to study
this regime (a weakly coupled ϕ4 theory with negative m2)
efficiently. It is based on a different treatment of the zero
mode of the field. We will compare the numerical results
with the predictions from perturbation theory and from
semiclassical analyses.
We conclude in Sec. IV. Several technical details are

relegated to the appendixes.
Recently, the Z2-broken phase of the two-dimensional

ϕ4 model was studied in Ref. [3] using a version of the
Published by the American Physical Society under the terms of
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1This explains why ḡ� need not be equal and, in fact, is not
equal to the critical coupling ḡc mentioned above.
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truncated conformal space approach [4,5]. Differences and
similarities between our works will be mentioned through-
out the paper.

II. THE CHANG DUALITY

A. Formulation and consequences

According to Chang [2], the two-dimensional ϕ4 theory
described by the (Euclidean) Lagrangian

L ¼ 1

2
ð∂ϕÞ2 þ 1

2
m2ϕ2 þ gNmðϕ4Þ ð2:1Þ

with m2 > 0, g > 0, admits a dual description in terms of a
Lagrangian with a different, and negative, value of the
squared mass,

L0 ¼ 1

2
ð∂ϕÞ2 − 1

4
M2ϕ2 þ gNMðϕ4Þ: ð2:2Þ

The actual value of the dual mass will be given below.
Note that the duality is between quantum theories in the

continuum limit, and to specify this limit one has to subtract
the logarithmic divergence of the mass parameters. The
divergence is removed by normal ordering the quartic
interaction with respect to the mass indicated in the
subscript of the normal ordering sign N. The potential in
L0 has two minima at ϕ ¼ c ¼ �M=

ffiffiffiffiffi
8g

p
. After the shift

ϕ → ϕþ c the dual Lagrangian becomes2

L0 →
1

2
ð∂ϕÞ2 þ 1

2
M2ϕ2 þ

ffiffiffiffiffi
2g

p
MNMðϕ3Þ þ gNMðϕ4Þ:

ð2:3Þ

In this way of writing, interactions of both L and L0 are
normal ordered with respect to the mass appearing in the
quadratic part of the Lagrangian. In perturbation theory
such normal ordering means that we are simply forbidding
diagrams with the lines starting and ending in the same
vertex.
To find the dual mass M2, one is instructed to solve the

equation

FðXÞ ¼ fðxÞ; ð2:4Þ

where x ¼ g=m2, X ¼ g=M2 are the dimensionless quartic
couplings of the two descriptions (x is given and X is an
unknown) and

fðxÞ≡ log x − π=ð3xÞ; FðXÞ≡ logX þ π=ð6XÞ:
ð2:5Þ

This equation is illustrated in Fig. 1. There is no solution
for

x < x� ¼
π

3Wð2=eÞ ≈ 2.26149; ð2:6Þ

whereWðzÞ is the LambertW function. For x ≥ x� there are
two solution branches. We are particularly interested in the
lower branch X1ðxÞ, which for large x approaches zero,

X1ðxÞ ≈ 6=ðπ log xÞ; x → ∞: ð2:7Þ
The dual description corresponding to this branch becomes
weakly coupled in the limit in which the original descrip-
tion becomes stronger and stronger coupled.We thus have a
weak/strong coupling duality.
Chang [2] used this duality to show that the ϕ4 theory

undergoes a phase transition. Indeed, for small xwe can use
perturbation theory to argue that the theory is in the
symmetric phase, with the Z2 symmetry ϕ → −ϕ unbro-
ken. On the other hand, for large x we use the dual
description. Since in that description the potential is a
double well, and moreover the dual coupling is weak for
x ≫ 1, we conclude that for large x the Z2 symmetry is
spontaneously broken. By continuity, there must be a phase
transition at an intermediate value of x.
This argument does not establish whether the transition is

first or second order. However, as explained in [2], a first
order transition is excluded by rigorous theorems due to
Simon and Griffiths [6]. So the transition must be second
order. This conclusion is supported by Monte Carlo simu-
lations [7–10], as well as by computations using discrete
light cone quantization (DLCQ) [11], density matrix renorm-
alization group [12], matrix product states [13], and the
Hamiltonian truncation [1,14,15].
Nor does the above argument predict the value of x at

which the phase transition must happen. In particular, the
fact that the dual description exists at x ≥ x� does not mean
that the phase transition happens at x ¼ x�. Indeed, at
x ¼ x� both the direct and the dual descriptions are strongly
coupled, and the fate of the Z2 symmetry is not a priori
clear. In fact, calculations indicate a higher phase transition
location at xc ≈ 2.75–3 [1,9,10,13,16].

B. Review of the derivation

Here is a quick derivation of the Chang duality, follow-
ing [2]. We will work in the Hamiltonian formalism and
consider the normal-ordered Hamiltonians corresponding
to L and L0,

H ¼
Z

dxNm

�
1

2
_ϕ2 þ 1

2
ϕ02 þ 1

2
m2ϕ2 þ gϕ4

�
; ð2:8Þ

H0 ¼
Z

dxNM

�
1

2
_ϕ2 þ 1

2
ϕ02 −

1

4
M2ϕ2 þ gϕ4 þ Λ

�
:

ð2:9Þ
2Notice that normal ordering is a linear operation, and thus

commutes with the field shift.
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Notice that we are now normal ordering the full
Hamiltonian, including the quadratic part. This more
careful procedure will allow us to establish the corre-
spondence also for the ground state energy. In the dual
description it will receive an extra constant contribution,
denoted Λ in (2.9).
Recall Coleman [17] relations between normal orderings

with respect to different masses,

Nm

�
1

2
_ϕ2 þ 1

2
ϕ02

�
¼ NM

�
1

2
_ϕ2 þ 1

2
ϕ02

�
þ Y;

Nmðϕ2Þ ¼ NMðϕ2Þ þ Z;

Nmðϕ4Þ ¼ NMðϕ4Þ þ 6ZNMðϕ2Þ þ 3Z2;

ð2:10Þ

where Y ¼ Yðm;MÞ and Z ¼ Zðm;MÞ are the differences
of the normal-ordering constants,3

Yðm;MÞ ¼
Z

dk
8π

�
2k2 þM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p − ðM → mÞ
�

¼ 1

8π
ðM2 −m2Þ;

Zðm;MÞ ¼
Z

dk
4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p − ðM → mÞ

�

¼ 1

4π
log

m2

M2
: ð2:11Þ

Using these relations, one can see that H maps on H0 as
long as

1

2
m2 þ 6Zg ¼ −

1

4
M2; ð2:12Þ

written equivalently as (2.4). We also find a constant
contribution to the ground state energy

Λ ¼ Y þ 1

2
m2Z þ 3gZ2: ð2:13Þ

C. Numerical check of the duality

We will test the Chang duality by comparing the
spectra of the direct and dual theories in a finite
volume—a circle of length L. The spectra will be
computed using the Hamiltonian truncation. We will first
describe the setup for these computations, and then
present the results.

1. Direct theory

By the direct theory we mean (2.8) put on a circle of
length L. This is precisely the theory we were studying in
[1], and we will be following the same method. Here we will
give just a brief reminder. The finite volume Hamiltonian
corresponding to the infinite-volume Hamiltonian (2.8) is
given in [1], Eq. (2.19), and has the form

HðLÞ ¼ H0 þ g½V4 þ 6ζV2� þ ½E0 þ 3ζ2gL�: ð2:14Þ

Here H0 is the Hamiltonian of the free scalar field on the
circle,

H0ðL;mÞ ¼
X
k

ωðkÞa†kak;

k ¼ ð2π=LÞn; n ∈ Z;

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
; ð2:15Þ

where a, a† are the ladder operators appearing in the field
mode expansion,

ϕðxÞ ¼
X
k

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LωðkÞp ðakeikx þ a†ke

−ikxÞ: ð2:16Þ

f x
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FIG. 1. Left panel: Equation FðXÞ ¼ fðxÞ has two solutions for x > x�. Right panel: The two solution branches X1;2ðxÞ. We are
mostly interested in the lower branch X1ðxÞ which becomes weakly coupled as x → ∞.

3The expression for Z can also be equivalently derived in the
Lagrangian language as the difference of one-loop massive
diagrams: Z ¼ R

d2k
ð2πÞ2 ð 1

k2þM2 − 1
k2þm2Þ.
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The V4 term is the normal ordered quartic interaction,

V4ðL;mÞ ¼ 1

L

X
P

ki¼0

1Q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkiÞ

p
× ½ðak1ak2ak3ak4 þ 4a†−k1ak2ak3ak4 þ H:c:Þ
þ 6a†−k1a

†
−k2ak3ak4 �: ð2:17Þ

The other terms in (2.14) are all exponentially suppressed for
Lm ≫ 1. In particular,

E0ðL;mÞ ¼ −
1

πL

Z
∞

0

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2L2 þ x2
p 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2þx2

p
− 1

ð2:18Þ

is the Casimir energy of the free scalar field in finite volume.
Corrections involving

ζðL;mÞ ¼ 1

π

Z
∞

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2 þ x2

p 1

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2L2þx2

p
− 1

ð2:19Þ

are due to a mismatch between the normal ordering counter-
terms needed to define the ϕ4 operator in infinite space and
on the circle. One of them contributes to the vacuum energy
density, and the other is a correction proportional to the mass
operator V2,

V2ðL;mÞ ¼
X
k

1

2ωk
ðaka−k þ a†ka

†
−k þ 2a†kakÞ: ð2:20Þ

In [1] we worked at circle sizes up to L ¼ 10m−1, and it was
justified to neglect the exponentially small terms propor-
tional to E0 and z. Here, in some cases, we will work at
smaller circle sizes. In this paper we will always keep these
terms, which is actually straightforward in our algorithm.
The Hilbert space H of the theory is the Fock space of

the ladder eigenstates. As in [1], we will restrict our
attention to the subsector of the Hilbert space consisting
of the states of zero total momentum P ¼ 0 and of the
positive spatial parity P ¼ 1. The Hamiltonian (2.14) does
not mix states of positive and negative field parity Z2∶ϕ →
−ϕ (i.e. the states containing an even and odd number of
particles). Thus the Z2-even and Z2-odd sectors can be
studied separately. We will study both of them. Finally, we
will truncate the Hilbert space to the subspace of states
HðEmaxÞ which have H0 energy below a certain cutoff
Emax. Typically, we choose our cutoff so that the dimension
of HðEmaxÞ is ∼10000 per Z2 sector. The Hamiltonian
HðLÞ restricted to the truncated Hilbert space is called the
truncated Hamiltonian HðLÞtrunc.
We evaluate the matrix elements of Htrunc, and the

eigenvalues of the resulting finite matrix are then computed
numerically. This gives what in [1] is called a “raw”

spectrum. It converges to the true nonperturbative spectrum
with a rate which asymptotically goes as 1=E2

max.
Convergence of the method can be improved by renorm-

alizing the couplings. We refer the reader to [1] for a
detailed explanation of the renormalization procedure.4

In the present work we will use an identical procedure,
apart from a technicality that we now explain.
In [1], the leading renormalization coefficients were

calculated by extracting the leading nonanalytic behavior
for τ → 0 of the quantities

IkðτÞ ¼
Z

L=2

−L=2
dzGLðz; τÞk; ð2:21Þ

where GLðz; τÞ is the two point function in finite volume,
which can be expressed through periodization via the two
point function in infinite volume,

GLðz; τÞ ¼
X
n∈Z

G
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzþ nLÞ2 þ τ2
q �

; ð2:22Þ

GðρÞ≡ 1

2π
K0ðmρÞ; ρ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ τ2

p
: ð2:23Þ

Here K0ðmρÞ is a modified Bessel function of the second
kind. Since GðρÞ is exponentially suppressed for mρ ≫ 1,
the contributions from n ≠ 0 in (2.22) can be neglected as
long as mL ≫ 1. This is what we did in [1]. However, in
the present work we will encounter also the situation
mL ¼ Oð1Þ. Our procedure will be to approximate

GLðz; τÞ≃GðρÞ þ 2
X∞
n¼1

GðnLÞ; ð2:24Þ

which simply adds a constant to the infinite-volume two
point function. This approximation is justified because the
higher order Taylor expansion terms of GðρÞ around ρ ¼
nL would result in renormalization terms suppressed by
powers ofm2=E2

max ≪ 1. The short-distance asymptotics of
GL used to calculate (2.21) is modified as [cf. (3.23) in [1]]

GLðz; τÞ ≈ −
1

2π
log

�
eγ

2
m0ρ

�
;

m0 ≡m exp

	
−4π

X∞
n¼1

GðnLÞ


: ð2:25Þ

It is then straightforward to generalize the renormaliza-
tion procedure of [1] to the case mL ¼ Oð1Þ. For example,
the Hamiltonian renormalized by local counterterms is
given by

4Similar renormalization procedures were developed in the
truncated conformal space approach literature [18–21]. The con-
crete version used by us shares a lot in common with the one in
[22]; the small differences that exist were stressed in [1].
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HðLÞren ¼ HtruncðLÞ þ
Z

dxNmðκ0 þ κ2ϕ
2 þ κ4ϕ

4Þ;

ð2:26Þ

where κi are given in [1], (3.34) where one has to put
g4 ¼ g, g2 ¼ 6zðLÞg, and replace m → m0 in the expres-
sions for the μ-functions in [1], (3.31). This Hamiltonian
allows one to calculate the spectrum with the convergence
rate of 1=E3

max. In the numerical computations in Sec. II C 3
we will also include subleading, nonlocal corrections
improving the convergence rate up to 1=E4

max, for which
we refer the reader to [1].

2. Dual theory

The Hamiltonian for the dual theory in finite volume is
easiest to derive as follows. Let us rewrite H0 in (2.9) by
adding and subtracting 1

2
M2ϕ2,

H0 ¼
Z

dxNM

�
1

2
_ϕ2 þ 1

2
ϕ02 þ 1

2
M2ϕ2

�

þ NM

�
−
3

4
M2ϕ2 þ gϕ4 þ Λ

�
: ð2:27Þ

This looks like the direct Hamiltonian with m → M and an
extra negative mass squared perturbation. The passage to a
finite volume is then analogous to the direct theory. We get

H0ðLÞ ¼ H0 þ
	
−
3

4
M2 þ 6ζg



V2 þ gV4 þ h; ð2:28Þ

h ¼ ΛLþ E0 þ 3ζ2gL −
3

4
M2ζL: ð2:29Þ

The building blocks have the same meaning as in
Sec. II C 1, except that we have to use M instead of m
in all expressions: H0 ¼ H0ðL;MÞ, ζ ¼ ζðL;MÞ, etc.

3. Comparison

In Fig. 2 we show the ground state energy E0 and the
spectrum of excitations EI − E0 for m ¼ 1, L ¼ 5. We plot
them as a function of the direct coupling g ¼ 0–3. The
results for the direct theory are given in the full range of g,
whereas for the dual theory only for g ≥ gc ≈ 2.26, where
the dual description exists. As in [1], the error (shaded
region) is estimated as the variation of the results upon using
the “local” and “subleading” renormalization prescriptions.
We see that in the overlapping region the numerical

predictions from the two descriptions agree very well. This is
an explicit check of the Chang duality. This check is
nontrivial, as in both descriptions the Hamiltonian is strongly
coupled. To illustrate this, the black dashed lines in the plots
represent the tree-level prediction for the vacuum energy and
the lightest excitation in the dual description.
Computational details.—The computation in the direct

theory is carried out as described in Sec. II C 1. The dual
mass M for a given g ≥ gc is determined by solving
Eq. (2.4) numerically. We use the solution with the smaller
X (and thus the larger M). The computation in the dual
theory is then done using the Hamiltonian (2.28) with two
couplings g2 ¼ − 3

4
M2 þ 6zðLÞg and g4 ¼ g, i.e. by includ-

ing − 3
4
M2 in the perturbation. The renormalization pro-

cedure in [1] is applicable for such a general perturbation.
It is not a problem for the method that g2 is negative and
comparable in size to the positive mass square term in H0.
There is, in fact, a great deal of arbitrariness in how to split
the ϕ2 coefficient between the zeroth-order Hamiltonian
and the perturbation. What we do here is just the fastest
possibility, which turns out to be sufficient for the purposes
of this section. More sophisticated ways of dealing with the
dual theory will be developed in Sec. III.

III. THE Z2-BROKEN PHASE

In Sec. II we reviewed the Chang duality and tested it
numerically in the strongly coupled region by comparing
the results obtained from the dual and the direct

FIG. 2. The ground state energy (left) and the spectrum of excitations (right) for the direct and the dual theory as a function of g for
m ¼ 1, L ¼ 5. The excitation plot shows the energies of the Z2 odd and Z2 even energy levels. See the text for the details.
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descriptions. We will now focus on the region g=m2 ≫
g�=m2, where the theory is in the Z2-broken phase. In this
range of couplings the direct description is very strongly
coupled, and it is difficult to achieve good numerical
accuracy. On the other hand, the dual Hamiltonian becomes
weakly coupled (g=M2 ≪ 1). Therefore, we will use the
dual Hamiltonian (2.9) as the starting point for the
numerical calculations. It will be convenient to replace
the value of Λ given in (2.13) by Λ ¼ M2=ð64gÞ, which
corresponds to having zero classical vacuum energy density
of the dual Hamiltonian.

A. Modified zero mode treatment

In II C 1 we reviewed the method of [1] which treats all
field modes on equal footing. This method is adequate in
the Z2-unbroken phase and in the Z2-broken phase in
moderate volumes, as in Sec. II C 3. However, it becomes
inefficient in the Z2-broken phase in large volume. The
physical reason is that the zero mode then has very different
dynamics from the rest of the modes, acquiring a vacuum
expectation value (VEV). It makes sense to take this into
account and to treat the zero mode separately from the rest.
We will now explain how this can be done.
First of all we will rewrite (2.28) making explicit the

dependence on the zero mode. We will revert for the zero
mode from using the oscillators a0, a

†
0 to the field variable

ϕ0 ¼ ða0 þ a†0Þ=
ffiffiffiffiffiffiffiffiffiffi
2LM

p
ð3:1Þ

and the corresponding conjugate momentum π0,

π0 ¼ iða†0 − a0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LM=2

p
: ð3:2Þ

Denoting by bar (hat) all quantities involving only the
nonzero (zero) modes, we have

H0 ¼ H̄0 þ
∶π20∶
2L

þ LM2

2
∶ϕ2

0∶; ð3:3Þ

V2 ¼ V̄2 þ L∶ϕ2
0∶;

V4 ¼ V̄4 þ 4V̄3ϕ0 þ 6V̄2∶ϕ2
0∶þ L∶ϕ4

0∶: ð3:4Þ

Gathering everything we get

H0ðLÞ ¼ H̄0 þ Ĥ þW; ð3:5Þ

where Ĥ depends only on the zero mode,

Ĥ ≡ ∶π20∶
2L

þ L

	
−
1

4
M2 þ 6ζg



∶ϕ2

0∶þ Lg∶ϕ4
0∶þ h;

ð3:6Þ
while W involves the interactions between the zero and the
nonzero modes, and among the latter,

W ≡
	
6g∶ϕ2

0∶ −
3

4
M2 þ 6ζg



V̄2 þ 4gϕ0V̄3 þ gV̄4: ð3:7Þ

In a large volume and for g ≪ M2, the quantum
mechanics of (3.6) predicts that the wave function of
ϕ0 is peaked around the minima of the potential at
ϕ2
0 ≈ M2=ð8gÞ, with a width scaling asymptotically as

hðΔϕ0Þ2i ∼ 1=ðLMÞ. For this ϕ0 the coefficient of V̄2 in
W vanishes. Intuitively this implies that, up to small
perturbative corrections induced by the V̄3 and V̄4 terms,
the nonzero modes of the field will stay in their vacuum
state. This is true in a very large volume, and it provides a
good starting point for a quantitative description in finite
volume.
The idea of the method will therefore be to first solve the

quantum mechanics of the zero modes by neglecting its
interaction with the nonzero modes. Having done so, the
full Hamiltonian will be diagonalized in a Hilbert space
whose basis wave functions are products of the exact zero
mode wave functions and the harmonic oscillator wave
functions for the nonzero modes. This is expected to be
more efficient than the original method which would use
harmonic oscillator wave functions also for the zero mode.
Concretely, the procedure goes as follows. The full

Hilbert space can be written as a direct product,

H ¼ Ĥ ⊗ H̄; ð3:8Þ

where Ĥ and H̄ are the Hilbert spaces of the zero modes
and nonzero modes, respectively. The truncated Hilbert
space is then (l for low)

Hl ¼ Ĥl ⊗ H̄l; ð3:9Þ

where the basis of H̄l is formed by the harmonic oscillator
states for the nonzero modes with energy Ē ≤ Ēmax,
while Ĥl is spanned by the first few low-lying eigenfunc-
tions of Ĥ,

Ĥjψαi ¼ Êαjψαi; α ¼ 1;…; s: ð3:10Þ

In practice, it will be sufficient to fix s ¼ 4 or 5.
A separate computation has to be done to find the jψαi.

We do this using the standard Rayleigh-Ritz method,
working in the S-dimensional subspace of Ĥ spanned by
the original harmonic oscillator wave functions ða†0Þij0i,
i ¼ 0;…; S − 1. The parameter S ≫ s can be chosen so
large that the numerical error accumulated in this step is
insignificant; in practice we choose S ¼ 500. The eigen-
states jψαi are thus found expanding them in the harmonic
oscillator wave functions. This facilitates the subsequent
computations of the matrix elements involving these states.
One can now compute the matrix elements ofH0ðLÞ in the

truncated Hilbert space and diagonalize it, finding the “raw”
spectrum. As usual, we will employ a renormalization
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procedure to improve the precision. The necessary mod-
ifications are described in Appendix A.
Comparison with prior work.—The Z2-broken phase of

the ϕ4 model has previously been studied via a Hamiltonian
truncation method in Ref. [3]. There are many similarities
between our works, and some differences. The main
difference lies in the treatment of the zero mode (see also
the discussion in [1], Sec. 4.5). Reference [3] compactifies
the zero mode on a circle of large radius and uses plane
waves on this target space circle as the basis of trial wave
functions. Instead, we resolve the zero mode dynamics and
pick trial wave functions adapted to the quartic potential.
Another difference is that they use conformal, massless,
basis for the nonzero modes, while we use a massive basis.
Matrix elements are easier to compute in the conformal
basis, while a massive basis gives, we believe, a better
initial approximation.
Notice that Ref. [3] uses a different parametrization of

the Hamiltonian, corresponding to a different normal-
ordering prescription. Translation to our parametrization
will be given in Sec. III C 3.

B. Varying the normal-ordering mass

It turns out that in the regime we will be considering, the
most important term inducing the interactions between Ĥl
and H̄l is the V̄2 term in (3.7). This is because for the
volumes that we will be able to consider, the localization of
the ϕ0 wave functions near the potential minimum is not very
sharp, and the coefficient of V̄2, viewed as a matrix in the
space of the ϕ0 eigenstates, has significant matrix elements.
The V̄3 and V̄4 terms will be suppressed at weak coupling.
Empirically, we concluded that the one-loop renormali-

zation procedure, including themodifications to be described
in Appendix A, is insufficient to fully describe the truncation
effects arising from the big V̄2 term. Moreover, estimating
the accuracy as the difference between the “local” and
“subleading” renormalized answers was found inadequate in
such a situation. Notice that the V2 term renormalizes at
quadratic order only the unit operator coefficient and this
correction does not affect the spectrum of excitations [1,22]
(this statement remains approximately true in the scheme
with the separated zero mode discussed here). Ideally, to
estimate the error one would have to compute the renorm-
alization effects of cubic order in the problematic operator.
Herewewill resort to an interim alternative technique, which
we now describe.5

In themodifiedmethod as described in the previous section,
the trial wave functions of the nonzero modes are taken to be
those of the free massive boson of massM, i.e. the bare mass
appearing in the Lagrangian. We will now consider the

formalism in which one can vary the mass parameter μ of
the trial wave functions. As in [14], this will then be used to
control the accuracy of our computations, since the exact
spectrum should be independent of μ. Apart from the accuracy
issues, varying μ is also natural from the point of view of
searching for an optimal zeroth order approximation to the
ground state, in the spirit of variational methods.
So we rewrite the infinite-volume Hamiltonian (2.27) by

using the Coleman relations (2.10),

H0 ¼
Z

dxNμ

�
1

2
_ϕ2 þ 1

2
ϕ02

þ
�
−
1

4
M2 þ 6gZ

�
ϕ2 þ gϕ4 þ Λμ

�
; ð3:11Þ

Λμ ¼ Λ −
1

4
M2Z þ 3gZ2 þ Y; ð3:12Þ

where Z ¼ ZðM; μÞ, Y ¼ YðM; μÞ are defined in (2.11)
with the replacement M → μ, m → M. We then pass to
finite volume as in Sec. II C 2,

H0ðLÞ ¼ H0 þ
	
−
1

4
M2 −

1

2
μ2 þ 6ðZ þ ζÞg



V2

þ gV4 þ hμ; ð3:13Þ

hμ ¼ ΛμLþ E0 þ 3ζ2gLþ
�
−
1

4
M2 −

1

2
μ2 þ 6gZ

�
ζL;

ð3:14Þ
where H0, V2, V4, E0, ζ are defined with respect to μ.
Finally, we separate the zero mode as in Sec. III A. The
final Hamiltonian has the form (3.5) where H̄0 ¼ H̄0ðL; μÞ
while Ĥ and W are given by

Ĥ ¼ ∶π20∶
2L

þ L

	
−
1

4
M2 þ 6ðZ þ ζÞg



∶ϕ2

0∶

þ Lg∶ϕ4
0∶þ hμ; ð3:15Þ

W ¼
	
6g∶ϕ2

0∶ −
1

4
M2 −

1

2
μ2 þ 6ðZ þ ζÞg



V̄2

þ 4gϕ0V̄3 þ gV̄4: ð3:16Þ
This is the Hamiltonian which we use for numerical
calculations, varying μ in the range 0.9–1.1M. This will
give an idea of the systematic error due to the truncation.

C. Results

From previous estimates, we know that the critical point
lies at g=m2 ≈ 2.97ð14Þ [1],6 which by making use of the
Chang duality corresponds to g=M2 ≈ 0.26. Here we will5Another interesting possibility is to incorporate the coefficient

of V̄2 into the mass of nonzero modes, making it ϕ0-dependent.
This creates technical difficulties of its own and was not tried in
this work.

6For more precise estimates by different methods see
[9,10,13,16].
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limit ourselves to values g=M2 ≤ 0.2, as beyond this value
it appears difficult to reach the limit L → ∞ and get a stable
spectrum.M will be set to 1 throughout this section, unless
stated otherwise.
We are now going to present the results for the two

sectors of excitations of the theory. First, we will discuss the
perturbative sector, which in the L → ∞ consists of two
decoupled towers of excitations around the two vacua with
the opposite-sign VEV for the field. We will then turn to the
nonperturbative sector of kink states which have topologi-
cal charge, interpolating between the two vacua. Given the
periodic boundary conditions imposed in our method, the
kink sector will be studied here only indirectly, through
the splitting of quasidegenerate perturbative states in finite
volume.

1. Perturbative sector

In Fig. 3 we plot the ground state energy density and the
low-energy excitation spectrum for M ¼ 1, L ¼ 12. For the
ground state energy density we show both the raw and
renormalized7 results, while for the spectrum only the

renormalized results, because the raw/renormalized differ-
ence is negligible. As explained above, we do not think this
difference gives a fair idea of the truncation error in the
situation at hand. Instead, we estimate the error for the
spectrum by varying the normal-ordering mass μ ¼ 0.9–1.1.
In making these plots we fixed s ¼ 4, while the cutoff Ēmax

was chosen so thatHl has dimension around 10000–15000.
We checked that increasing s does not change the results
significantly.
1We see that the first excited level is almost degenerate

with the ground state. The splittings for the higher-energy
levels are larger. This is because for the higher energy states
it is easier to tunnel through the potential barrier separating
the two infinite-volume vacua, which has a finite height for
a finite L.
In Fig. 4 we show the same plots for L ¼ 20. One can see

that the energy splitting reduces but the truncation error
increases (as one has to reduce Ēmax in order to keep the
total number of states the same).
Finally, in Fig. 5 we plot the vacuum energy density and

the spectrum for g ¼ 0.1 as a function of L. One can see
how the renormalization procedure is effective for the
vacuum energy density, as its renormalized value reaches
a constant for sufficiently large L, while its raw value does

FIG. 3. The ground state energy density and the low-energy excitation spectrum as a function of g for L ¼ 12; see the text. Results
extracted from [3] are shown by crosses (whose size does not reflect the uncertainty); see Sec. III C 3.

FIG. 4. Same as in Fig. 4 but for L ¼ 20.

7In this section only local renormalization, in the terminology
of [1], was used. Subleading nonlocal corrections were found to
be totally negligible.
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not. In the spectrum also the physical mass reaches a

constant as expected.
Notice that for sufficiently small g the interaction in the

considered model is attractive (the cubic vertex squared
attraction overcomes the quartic vertex repulsion) [3,23].
Therefore the second energy level pair in the spectrum in
Fig. 5 is expected to asymptote tom2 < 2mph (wheremph is
the single particle mass) as L → ∞; i.e. it represents a
bound state. The numerical results seem consistent with
this expectation, although the precision is insufficient to
extract m2 accurately. In general, it is hard to extract the
perturbative bound state mass from the infinite-volume
limit, as the asymptotic convergence sets in at L ≈ ðm2

ph −
m2

2=4Þ−1=2 [24], which diverges as g → 0.
In Appendix B we compare the numerical results for Λ

and mph with the predictions from perturbation theory,
showing very good agreement at small couplings.
It is also interesting to analyze the higher-energy states in

the spectrum. In Fig. 6 we redo the previous plot for
g ¼ 0.05, including a few more eigenvalues. Above the
stable particle mass and the bound state, one can see the
multiparticle states whose energy depends on L according
to the dispersion relations in finite volume.8 Furthermore,

the horizontal line with energy ≈2.5 < 3mph represents a
resonance. Because of the nonintegrability of the theory,
that state is not stable, as its energy is larger than 2mph.
Indeed, the horizontal line does not cross the multiparticle
states as could seem at first glance, thanks to the phe-
nomenon of avoided crossing. See [25] for a discussion
of how resonances should appear in the finite volume
spectrum.

2. Nonperturbative sector

As already mentioned, in finite volume nonperturbative
effects lift the spectrum degeneracy both for the ground
state and for all the excited states. For small coupling, these
effects can be interpreted as tunneling due to the semi-
classical field configurations interpolating between the two
vacua (kinks). The splitting depends on the mass of the
kink. Here we will need the semiclassical prediction for the
splitting of the first two energy levels (the ground state,
which lives in the Z2 even sector, and the Z2 odd state just
above it). Including the leading semiclassical results and
the one-loop determinant fluctuations around it, the split-
ting for small g=M2 is given by (see Appendix C)

ΔE ¼ E1 − E0 ≈

ffiffiffiffiffiffiffiffiffiffiffi
M3

6πgL

s
e−LMkink−fðMLÞ;

Mkink ¼
M3

12g
þM

�
1

4
ffiffiffi
3

p −
3

2π

�
; ð3:17Þ

where Mkink is the kink mass in the one-loop approxima-
tion, first computed in [26]. Corrections are suppressed by
g=M2 and by 1=ðLMkinkÞ. The function fðxÞ, given in
(C24), approaches zero exponentially fast for LM ≫ 1.
Our numerical method allows us to extract ΔE with high

precision and to compare with this formula. In Fig. 7 we
present as an example the renormalized numerical results9

for M ¼ 1, g ¼ 0.05. We used s ¼ 5, checking that its

FIG. 5. Results for g ¼ 0.1 plotted as a function of L.

FIG. 6. Same as in the right-hand side of Fig. 5 but for
g ¼ 0.05.

8See e.g. the discussion in [3], Appendix B.

9The difference between raw and renormalized is negligible in
the present analysis.
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increase does not change significantly the numerics, while
Ēmax was fixed such as to have a basis dimension ∼10000
for each L. We plot

ffiffiffiffi
L

p
efðMLÞΔE as a function of L in

logarithmic scale in order to observe a linear trend, as
expected from (3.17), and we perform a fit in a region
chosen by eye such that the data look close to a straight
line,

log½
ffiffiffiffi
L

p
efðMLÞΔE� ≈ α −M�L: ð3:18Þ

The value of L must not be too low so that the exponential
law decay sets in and not too high so that ΔE becomes
smaller than the precision of our method. We then compare
the fitted values of α and M� with the expectations
from (3.17).
We carried out this analysis for several values of the

coupling between 0.01 and 0.1, finding both α andM� very
close to the expected values. The comparison of M� with
Mkink is plotted in Fig. 8 as a function of g. It turns out that
in the range of points where the fit is made fðMLÞ is very
small and does not influence the fit, except a little for the
smallest considered values of g. On the other hand,

including
ffiffiffiffi
L

p
is crucial for reaching the agreement. One

can see that the accord with the semiclassical prediction
Mkink (black line) is very good.

3. Comparison to Ref. [3]

For comparison we included in Figs. 3 and 8 a few data
points extracted from [3]. Reference [3] parametrizes the
theory by two couplings G2, G4 which they denote g2, g4;
we capitalized to avoid confusion with our notation in other
parts of this paper. Their couplings are not identical to ours;
because of the different field normalization g ¼ 2πG4.
More importantly, their ϕ4 operator is normal ordered
differently, by subtracting the normal-ordering constants
for all nonzero massless modes in finite volume L
(¼ theirR). Going to our normal ordering prescription
(in infinite volume),

∶ϕ4∶their → Nmðϕ4Þ − CðmLÞNmðϕ2Þ þ const;

CðmLÞ ¼ −ð3=πÞ log½eγmL=ð4πÞ�; ð3:19Þ

where γ is the Euler-Mascheroni constant. We do not pay
attention to the ground state energy renormalization here.
To put their Hamiltonian into the canonical form (2.8)
[(2.9)] one has to solve the two equations

G2 − 2gCðmLÞ ¼ m2 ½G2 − 2gCðMLÞ ¼ −M2=2�
ð3:20Þ

for m or M, respectively. Keeping G2;4 fixed and varying
L thus induces a logarithmic variation of the infinite-
volume mass parameters. Although for the small quartic
couplings considered in [3] this variation is not huge (order
10%), it may be problematic for extracting the spectrum by
approaching the large L limit. It would seem more
appropriate to vary G2 with L while keeping m orM fixed.
The two data points (crosses) in Fig. 3 were extracted

from Figs. 10(b) and 10(d) of [3], where G2 ¼ −0.1,
G4 ¼ 1.2 × 10−3. This corresponds to g=M2 ≈ 0.035 at
ML ¼ 12. The agreement between their and our results is
good. Their determination of the kink mass for the same
G2;4 is shown in Fig. 8. Here g=M2 ¼ 0.042ð3Þ, varying
within the range of L used in their fit. The large error bars
on Mkink may be due to this variation. Also, they did not
consider the preexponential factor in (3.17).
A remark is in order concerning the discussion in [3,27],

which views the particles in the topologically trivial sector
as bound states of kinks. A semiclassical prediction is given
for their masses [[3], (28)],

msc;n ¼ 2Mkink sinðnπξ=2Þ; n ¼ 1 � � � ½1=ξ�; ð3:21Þ

where

ξ ¼ M=ðπMkinkÞ ð3:22Þ

FIG. 7. Ground state splitting as a function of L for g ¼ 0.05;
see the text.

FIG. 8. Comparison between the fitted and the theoretically
predicted values of the kink mass; see the text. The green cross
represents, with error bars, a result from [3] as discussed in
Sec. III C 3.
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in our notation. The lightest mass msc;1 has to be identified
with our mph, while the second msc;2 with the bound state
mass m2 discussed in Sec. III C 1. The other masses
correspond not to stable particles but to resonances in a
nonintegrable theory like the one we are considering. The
total number of particles is predicted to be ½1=ξ�.
The semiclassical prediction is valid for ξ ≪ 1, but if

one could extrapolate it to ξ ¼ Oð1Þ, one would naively
predict that for ξ > 1 the topologically trivial sector
would be devoid of particles. This would be analogous
to the phase of the sine-Gordon model for 4π < β2 < 8π.
Of course, it is far from clear if such an extrapolation is
trustworthy.
From the kink mass formula (3.17) we have ξ ¼ 1 for

g=M2 ≈ 0.12, just outside the region that we explored,
and well below the critical point at gc=M2 ≈ 0.26. It will
be interesting to study this range in the future. One
minimalistic possibility is that the topologically trivial
particles disappear only at the critical point. Indeed, its
neighborhood is described by the thermally perturbed
two-dimensional Ising model conformal field theory,
which is free massive Majorana fermion theory. In the
low-temperature phase, the fermionic excitations are
naturally identified with the kink states interpolating
between the two vacua. There are no bound states since
the fermions are free.10

IV. CONCLUSIONS

In this paper we followed up on our earlier study [1] of
the Hamiltonian truncation technique applied to the ϕ4

theory in two dimensions. The main results derived in this
work can be summarized as follows:

(i) According to an exact duality, reviewed in Sec. II, the
theory under consideration can be expressed via two
different Lagrangian formulations. We proved that,
even at strong coupling, the Hamiltonian truncation
method correctly predicts the same low-energy
spectrum of excitations in the two cases, despite
the fact that they look totally different at the zeroth
order.
We regard this as a nontrivial check of the method.

(ii) We showed how to modify the method in order to
improve its accuracy in the spontaneously broken
phase. We found very good agreement with the
predictions from perturbation theory and semiclas-
sics in the perturbative and nonperturbative sectors.

To approach the critical region as in [1] will require
further improvements of the method.11

We continue to believe that the potential of “exact
diagonalization” techniques, among which we have imple-
mented a particular realization in the present work, is very
large and has to be explored further. Some other represen-
tative applications to nonintegrable theories to be found in
the literature are [3,25,30–36] in d ¼ 2. In d > 2 the only
work is [22].
In the future it would be interesting to extend the

present analysis, for instance, by studying the topological
spectrum of kink states directly,12 or consider more
complicated theories involving scalar-fermion inter-
actions, which should not be too technically challeng-
ing.13 In the long term, in order to solve numerically
higher dimensional theories, it will be necessary at the
very least to refine the renormalization technique, as the
renormalization group flow becomes more weakly rel-
evant.14 The hope is that exact diagonalization techniques
can evolve into computationally efficient tools to address
difficult problems in quantum field theory.
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APPENDIX A: RENORMALIZATION IN
THE Z2-BROKEN PHASE

We invite the reader to go first through the explanation of
the renormalization procedures for the Z2-symmetric phase
presented in detail in [1], as the notation and logic below
are closely inherited from that discussion.
Let us start from the full eigenvalue problem

H:c ¼ Ec: ðA1Þ

The full Hilbert space can be split into “low” energy and
“high” energy subspaces,

10This ‘minimalistic possibility’ can now be ruled out, in favor
of the original scenario of [27], based on the results of [28] which
appeared a few weeks after our work. As [28] shows, the second
lightest particle m2 in the topologically trivial spectrum becomes
unstable with respect to decay into two kinks for g=M2 ≳ 0.075,
while for the lightest particle mph this happens for g=M2 ≳ 0.125.
The possibility of the first of these decays could be observed
already from our mass plots in Figs. 4 and 8.

11Rapid progress in this direction should be possible thanks to
the technical and conceptual improvements discussed in [28,29],
which appeared a few weeks after our work.

12This has just been achieved in [28]. The authors use a
different truncation scheme and diagonalization routine, and they
are able to calculate the kink mass up to g ∼ 0.2 (in our
conventions).

13See [37] for early work.
14See [29] for recent progress toward the calculation of higher

order renormalization coefficients.
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Hl ¼ Ĥl ⊗ H̄l; ðA2Þ

Hh ¼ ðĤh ⊗ H̄lÞ ⊕ ðĤl ⊗ H̄hÞ ⊕ ðĤh ⊗ H̄hÞ: ðA3Þ

Accordingly, (A1) can be projected onto these subspaces,

Hll:cl þHlh:ch ¼ Ecl; ðA4Þ

Hhl:cl þHhh:ch ¼ Ech: ðA5Þ
“Integrating out” ch via the second equation, we get

ðHll þ ΔHÞcl ¼ Ecl; ðA6Þ

ΔH ¼ −Hlh
1

Hhh − E
Hhl ¼ −Wlh

1

Hhh − E
Whl;

ðA7Þ

where we used that in the Hamiltonian (3.5) only W will
mix the low and high subspaces. At leading order one can
neglect W in the denominator, which gives

ΔH ≈ −Wlh
1

Ĥ þ H̄0 − E
Whl

¼ −
X
i∈Hh

1

Ei − E
PlWjiihijWPl; ðA8Þ

where a summation over all the states in Hh appears.
It turns out that the effect induced by the truncation

of Ĥ is less significant than for H̄. It is also less
expensive to control. We found that fixing the corre-
sponding cutoff s to 4 or 5 basically stabilizes the
results. For this reason we will only take into account
the renormalization effect coming from the nonzero field
modes. This means that we will restrict the sum in (A8)
to go only over the Ĥl ⊗ H̄h part of Hh. Therefore, we
approximate

ΔH ≈ −
X
ψα∈Ĥl

X
k∈H̄h

1

Êα þ Ēk − E
Wjψα; kihψα; kjW; ðA9Þ

where we dropped the projectors Pl to avoid cluttering.
The potential matrix W can be schematically written as

W ¼
X

a¼2;3;4

m̂a ⊗ V̄a; ðA10Þ

where m̂a and V̄a are matrices in the Ĥ and H̄,
respectively. Therefore

ΔH ≈ −
X
a;b

X
ψα∈Ĥl

ðm̂ajψαihψαjm̂bÞ

⊗
�X

k∈H̄h

1

Êα þ Ēk − E
V̄ajkihkjV̄b

�
: ðA11Þ

The matrix elements ðm̂ajψαihψαjm̂bÞ can be computed
explicitly, while the second factor in (A11) is evaluated
with the same technique developed in [1],

X
k∈H̄h

1

Êα þ Ēk − E
V̄ajkihkjV̄b

¼
Z

∞

Ēmax

dE
1

Êα þ E − E
MabðEÞ; ðA12Þ

MabðEÞijdE≡ X
k∶E≤Ēk≤EþdE

ðV̄aÞikðV̄bÞkj; ðA13Þ

where the matrix elements Mab
ij can be related to the

nonanalytic behavior of two-point functions of the
potential operators,

CabðτÞij ¼ hijV̄aðτ=2ÞV̄bð−τ=2Þjji

¼
Z

∞

0

e−½E−ðEiþEjÞ=2�Mab
ij ðEÞ; ðA14Þ

V̄aðτÞ≡ eH0τV̄ae−H0τ: ðA15Þ

The quantities CabðτÞij are computed as in [1] using the
Wick theorem. The only difference is that the boson two
point function ḠðρÞ in the present case does not include
the contribution from the zero mode,

ḠðρÞ ¼ GðρÞ − 1

2LM
: ðA16Þ

APPENDIX B: PERTURBATION
THEORY CHECKS

We computed the first few perturbative corrections to the
ground state energy density Λ and the physical particle
mass mph for the potential density,

V ¼ 1

2
M2NMðϕ2Þ þ g3NMðϕ3Þ þ g4NMðϕ4Þ: ðB1Þ

The symmetric double-well case of Eq. (2.3) can be
recovered by setting g4 ¼ g, g3 ¼

ffiffiffiffiffiffiffi
2g4

p
M, but we will

keep the couplings independent for the sake of generality.
For comparison with numerics, we will need results for

Δm2 ¼ m2
ph −M2 and Λ up to the second order in g. In

terms of g3, g4, we need to include all diagrams up to order
Oðg24Þ, Oðg23Þ, Oðg23g4Þ, and Oðg43Þ. The results are15

(ḡ3 ≡ g3=M2, ḡ4 ≡ g4=M2)

15We do not report explicitly the symmetry factors for the
diagrams. Most of them were evaluated numerically by
Monte Carlo integration using coordinate space propagators.
We did not invest much effort in analytic results.
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ðB2Þ
and

ðB3Þ

In Fig. 9 we compare the above predictions for g4 ¼ g,
g3 ¼

ffiffiffiffiffiffiffi
2g4

p
M with the numerical spectra obtained with our

method for M ¼ 1, L ¼ 12. We use the zero-mode cutoff
s ¼ 4 and adjust Ēmax so that the basis dimension is
∼10000 in each sector.
In the left plot we show the renormalized results forΔm2,

computed in both the Z2-even and the Z2-odd spectra, with
an error estimate given by variation of the normal ordering
mass. We observe a reasonably good agreement for
g≲ 0.04.16 For larger g, the deviation may be attributed
to higher-order perturbative effects and to the finite-volume
splitting affecting the numerics.

In the right plot we show instead both the raw and
renormalized results for the ground state energy density,
extracted from both Z2-even and Z2-odd spectra. Again,
an error estimate for the renormalized values is attributed
by varying the normal ordering mass. We see a perfect
agreement with the perturbative prediction until the finite-
volume splitting between the eigenvalues kicks in.

APPENDIX C: GROUND STATE SPLITTING

We will review here the derivation of Eq. (3.17).17

We start from the Euclidean action

FIG. 9. Comparing perturbative and numerical predictions; see the text.

16We have not investigated the reasons behind a small residual
deviation visible in this region. One possible reason is that we
may be underestimating the renormalization corrections by
including contributions only from the Ĥl ⊗ H̄h part of the high
energy Hilbert space. See Appendix A.

17See [38] for a pedagogical discussion in quantum mechanics,
and [39] for an analogous computation for the partition function
at finite temperature, which can be interpreted as a computation
of the coefficient κ in (C10).
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S ¼
Z

d2x

	
1

2
ð∂ϕÞ2 þ gðϕ2 − c2Þ2



; ðC1Þ

which entails the perturbative particle mass m2 ¼ 8gc2.
The normal ordering prescription for renormalization
adopted in this work is equivalent to the mass
renormalization,18

S → S −
δm2

4

Z
d2xϕ2; δm2 ¼ 6g

π

Z
∞

−∞
dk

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p :

ðC2Þ
We will compute the matrix elements

A� ¼ hϕ ¼ �cje−Hτ0 jϕ ¼ ci ¼ N
Z

Dϕe−S½ϕ�; ðC3Þ

where the path integral in the right-hand side is
defined with the boundary conditions ϕðx; τ0=2Þ ¼ �c,
ϕðx;−τ0=2Þ ¼ c. The path integral measure normalization
factor N will be fixed below. The results for the matrix
elements will then be translated into the energy splitting.
Consider first the transition amplitude from c to−c in the

one-instanton approximation. The instanton takes the form

ϕ0ðx; τÞ ¼ c tanh
mðτ − τcÞ

2
; ðC4Þ

where the center τc is arbitrary. This solution has action

S0 þ δS0 ¼ L
m3

12g
− Lδm2

c2

4

Z
∞

−∞
dτ

�
tanh2

mτ

2
− 1

�

¼ L
m3

12g
þ L

δm2

8g
m; ðC5Þ

where we included the contribution due to the mass
counterterm. We need S0 ≫ 1 for the validity of the
semiclassical approximation.
At the one-loop order, (C3) can be approximated by

N
Z

Dϕe−S½ϕ� ≈ e−S0N
Z

Dηe
−
R

ηδ
2S
δϕ2

η
: ðC6Þ

Taking into account the presence of the zero mode of the
quadratic fluctuation operator δ2S

δϕ2 due to the invariance of S
under a shift of τc, this results inffiffiffiffiffiffi

S0
2π

r
e−S0N ½det0ð−□þ V 00Þ�−1=2τ0; ðC7Þ

where the prime indicates that the zero mode has been
removed from the determinant, and we replaced the integral
over the zero mode with [38]

Z
dc0 ¼

ffiffiffiffiffiffi
S0
2π

r Z
τ0=2

−τ0=2
dτ: ðC8Þ

To fix N , consider the 0 → 0 transition amplitude in the
free massive theory, given simply by

A0 ¼ hϕ ¼ 0je−H0τ0 jϕ ¼ 0i ¼ N ½det ð−□þm2Þ�−1=2:
ðC9Þ

In the ratio of the two amplitudes the normalization factor
cancels

A−=A0 ≈ κτ0;

κ ¼
ffiffiffiffiffiffi
S0
2π

r
e−S0

	
det0ð−□þ V00Þ

m−2 det ð−□þm2Þ


−1=2

m: ðC10Þ

Now, let us calculate the determinant ratio. We need to
solve the eigenvalue equation

�
−

d2

dx2
−

d2

dτ2
þ 12gϕ2

0 − 4gc2
�
ψ

¼
�
−

d2

dx2
−

d2

dτ2
þm2 −

3

2
m2

1

cosh2 mτ
2

�
ψ ¼ ϵψ : ðC11Þ

The eigenstates are of the form ψðx; τÞ ¼ e−iknxψnðτÞ,
where kn ¼ 2πn

L due to periodic boundary condition on
the cylinder, and

�
−

d2

dτ2
þ ω2

n −
3

2
m2

1

cosh2 mτ
2

�
ψn ¼ ϵnψn; ðC12Þ

where we defined ω2
n ≡ k2n þm2. The eigenvalues of (C12)

comprise two bound states,

ϵn;0 ¼ k2n; ϵn;1 ¼
3

4
m2 þ k2n; ðC13Þ

and a continuum (for infinite τ0) of states with ϵn ≥ ω2
n

[40], which can be parametrized by the “momentum,”

p ¼ ffiffiffiffiffi
ϵn

p
− ωn ≥ 0: ðC14Þ

We consider τ0 ≫ m−1 large but finite (but not too
large—see below). Imposing the boundary conditions
ψnð�τ0=2Þ ¼ 0, the p’s take discrete values,

pτ0 − δp ¼ πl ¼ ~plτ0; l ¼ 0; 1;…; ðC15Þ

where the ~pl represent the eigenvalues in the free theory,
and the phase shift is [40]

δp ¼ −2π þ 2 arctan
2p
m

þ 2 arctan
p
m
: ðC16Þ18Let us neglect the cosmological constant renormalization as

it does not affect the energy splitting.
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Here the −2π term is added so that δp vanishes for p → ∞,
corresponding to the fact that the effects of the potential
disappear at high energies. In fact, only l ≥ 2 gives p ≥ 0,
while for ~p we have l ≥ 0. Taking into account the two
bound states, we have the same number of eigenstates with
and without the kink. The determinant ratio in (C7) at large
τ0 evaluates to

det0ð−□þ V 00Þ
m−2 det ð−□þm2Þ

¼
Y∞

n¼−∞

��
k2n
ω2
n

�
1−δn0 k2n þ 3

4
m2

ω2
n

Y∞
l¼2

p2
l þ ω2

n

~p2
l þ ω2

n

�
: ðC17Þ

We took into account that for n ¼ 0 the first bound state of
the kink theory is the zero mode which has already been
factored out.
Performing the product over n by means of the identity

sinh z
z

¼
Y∞
n¼1

�
1þ z2

π2n2

�
; ðC18Þ

we can write the result in the form

det0ð−□þ V 00Þ
m−2 det ð−□þm2Þ ¼ ðmLÞ2emLð

ffiffi
3

p
2
−2ÞþLΣþ2b; ðC19Þ

Σ ¼
X∞
l¼2

ðp2
l þm2Þ1=2 − ð ~p2

l þm2Þ1=2; ðC20Þ

b ¼ log
1 − e−

ffiffi
3

p
2
mL

ð1 − e−mLÞ2 þ
X∞
l¼2

logð1 − e−ðp
2
lþm2Þ1=2LÞ

− logð1 − e−ð ~p
2
lþm2Þ1=2LÞ: ðC21Þ

For τ0m ≫ 1 we can approximate the sums by integrals

Σ ¼
Z

∞

0

dp
π

δp
d
dp

ðp2 þm2Þ1=2

¼ mð2 − 3=π − 1=
ffiffiffi
3

p
Þ þ log :div:; ðC22Þ

where the logarithmic UV divergence is canceled in the
final answer by the counterterm in (C5).
Analogously

b ¼ log
1 − e−

ffiffi
3

p
2
mL

ð1 − e−mLÞ2

þ
Z

∞

0

dp
π

δp
d
dp

logð1 − e−ðp2þm2Þ1=2LÞ

¼ fðmLÞ; ðC23Þ

fðxÞ ¼ log

�
1 − e−

ffiffi
3

p
2
x

�

−
2

π

Z
∞

0

dq

�
1

1þ q2
þ 2

1þ 4q2

�

× logð1 − e−ðq2þ1Þ1=2xÞ: ðC24Þ

The function fðxÞ tends to zero exponentially fast for
x ≫ 1, whereas for intermediate x it has to be computed
numerically; see Fig. 10.
Gathering everything, the coefficient κ in (C10) is given

by [cf. [39], (3.27)]

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m3

24πgL

s
e−LMkink−fðmLÞ;

Mkink ¼
m3

12g
þm

�
1

4
ffiffiffi
3

p −
3

2π

�
: ðC25Þ

Not surprisingly, the leading exponential dependence of
this result is governed by the kink mass Mkink in the one-
loop approximation, first computed in [26].
The one-instanton approximation for A− will break

down for τ0 so large that κτ0 ¼ Oð1Þ. In this extreme τ0 →
∞ limit, both amplitudes A� receive contributions from
multi-instanton configurations in the path integral, which
are approximate solutions of the equation of motion. We
can use the instanton-gas approximations, where the
centers of the instantons are far apart, and resum all these
contributions, to give

Aþ ¼ A0 cosh κτ0; A− ¼ A0 sinh κτ0: ðC26Þ

We did not consider the purely perturbative corrections to
these amplitudes, as they are the same for the quasidegen-
erate states and therefore do not interest us.
Taking the τ0 → ∞ limit in (C26), one can infer the

presence of two exchanged states split in energy by
ΔE ¼ 2κ, which is our final result.

2 4 6 8
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f x

FIG. 10. The function fðxÞ defined in Eq. (C23).
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