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Abstract

A search for the standard model Higgs boson produced in association with a vector boson
with the decay H → ττ is presented. The data correspond to 20.3 fb−1 of integrated luminos-
ity from proton-proton collisions at

√
s = 8 TeV recorded by the ATLAS experiment at the

LHC during 2012. The data agree with the background expectation, and 95% confidence-
level upper limits are placed on the cross section of this process. The observed (expected)
limit, expressed in terms of the signal strength µ = σ/σSM for mH = 125 GeV, is µ < 5.6
(3.7). The measured value of the signal strength is µ = 2.3 ± 1.6.
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1 Introduction

The investigation of the origin of electroweak symmetry breaking and the experimental confirmation of
the Brout–Englert–Higgs mechanism [1–6] is one of the primary goals of the physics program at the
Large Hadron Collider (LHC) [7]. With the discovery of a Higgs boson with a mass of 125 GeV by the
ATLAS [8] and CMS [9] collaborations, an important milestone has been reached. To date, measurements
of the couplings of the discovered particle [10–13] as well as tests of the spin–parity quantum numbers
[14–16] are consistent with the predictions for the standard model (SM) Higgs boson.

In this paper, a search for the associated production of the Higgs boson with a vector boson, where the
Higgs boson decays to a pair of tau leptons, is presented. This production mechanism is referred to
in the following as VH, where V is either a W or Z boson. The analysis is part of a comprehensive
program by the ATLAS Collaboration at the LHC to measure the Higgs boson production mechanisms,
its couplings, and other characteristics. Similar studies have been performed with the VH production
mechanism and subsequent decays of the Higgs boson to WW∗ [17, 18] and bb̄ [19, 20] by the ATLAS and
CMS Collaborations and to tau lepton pairs [21] by the CMS Collaboration. The associated production
is particularly useful in the decays of the Higgs boson to tau lepton pairs when both tau leptons decay
hadronically, where the trigger can be a challenge. For VH production and leptonic decays of the W or Z
boson, the W and Z boson decay products satisfy the trigger requirements with high efficiency.

VH → W/Zττ production results in several different final-state signatures, which are exploited by an
event categorization designed to achieve both a good signal-to-background ratio and good resolution for
the reconstructed H → τ+τ− invariant mass. Signatures consistent with ZH and WH production are
exploited, where only the W → `ν and the Z → `` decays are considered, with ` = e, µ. The H → τ+τ−

decay signal is reconstructed in the following two possible final states: both tau leptons decay to hadrons
and a neutrino (τhadτhad), or one tau lepton decays leptonically (τ → `νν̄) and one to hadron(s) and a
neutrino (τlepτhad).

2 ATLAS detector and object reconstruction

The ATLAS detector [22] is a multipurpose detector with a cylindrical geometry.1 It consists of three
subsystems: an inner detector (ID) surrounded by a thin superconducting solenoid, a calorimeter system,
and a muon spectrometer in a toroidal magnetic field.

The ID tracking system reconstructs the trajectory of charged particles in the pseudorapidity range |η| <

2.5. It enables the accurate determination of charged-particle momentum and the position of b-hadron
decay vertices. The inner detector is built from three concentric detector systems surrounded by a solenoid
providing a uniform axial 2 T field. The three detector systems are the pixel detector, the silicon microstrip
detector, and the transition radiation tracker.

The ID tracking system is surrounded by high-granularity lead/liquid-argon (LAr) sampling electromag-
netic calorimeters covering the pseudorapidity range |η| < 3.2. A steel/scintillator tile calorimeter provides

1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the
center of the detector and the z-axis along the beam direction. The x-axis points from the IP to the center of the LHC ring,
and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse (x, y) plane, φ being the azimuthal angle
around the beam direction. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The angular
distance ∆R in the η–φ space is defined as ∆R =

√
(∆η)2 + (∆φ)2.
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hadronic energy measurements in the pseudorapidity region |η| < 1.7. In the regions 1.5 < |η| < 4.9, the
hadronic energy measurements are provided by two endcap LAr calorimeters using copper or tungsten as
absorbers.

The muon spectrometer surrounds the calorimeters. It extends tracking beyond the calorimeter, which
enables the identification of muons and a precision measurement of their properties. It consists of three
large superconducting eight-coil toroids, a system of tracking chambers, and detectors for triggering.
Muon tracking is performed with monitored drift tubes covering |η| < 2.7 and cathode strip chambers
covering |η| > 2.0, while trigger information is collected in the resistive plate chambers in the barrel (|η|
< 1.05) and thin-gap chambers in the endcap regions (1.05 <|η| < 2.4).

A three-level trigger system [23] is used to select events. A hardware-based level-1 trigger uses a subset
of detector information to reduce the event rate to a value of 75 kHz or less. The rate of accepted events
is then reduced to about 400 Hz by two software-based trigger levels, level-2 and the event filter.

A primary vertex is identified for each event. The reconstructed primary vertex position [24] is required
to be consistent with the interaction region and to have at least five associated tracks with transverse
momentum pT > 400 MeV; when more than one such vertex is found, the vertex with the largest summed
p2

T of the associated tracks is chosen.

The tau leptons that decay to hadron(s) and a neutrino, or τhad, are reconstructed using clusters of energy
deposited in the electromagnetic and hadronic calorimeters that are matched to tracks in the inner detector.
The identification algorithm separates τhad candidates from jets using τhad decay characteristics, namely
the number of tracks, the collimation of energy deposits in the calorimeter, and the mass of the τhad
candidate. The analysis presented here utilizes τhad candidates seeded by an anti-kt jet algorithm with
radius parameter R=0.4 [25, 26], with jet pT > 20 GeV and |η| < 2.5. The τhad candidates must have only
one or three associated tracks in a cone of size ∆R = 0.2. All τhad candidates are required to have charge
±1, calculated by summing the charges of the associated tracks. The τhad decay products are identified by
a boosted decision tree (BDT) [27], which returns a number between zero and one depending on how jet-
like or tau-like the reconstructed object is. The BDT selects taus with a 55–60% efficiency (medium τhad
identification) depending on the τhad number of tracks, η, and pT. Dedicated algorithms reject candidates
originating from electrons and muons.

Electron candidates are reconstructed from clusters of energy deposited in the electromagnetic calorimeter
that are matched to tracks in the inner detector. They are required to be within the pseudorapidity range |η|

< 2.47 and must have shower shape and track measurements that fulfill the set of medium quality criteria
[28], which provides electron identification efficiencies of 80-90% depending on the transverse energy
ET, and η of the electron candidate. Electrons are considered isolated based on tracking and calorimeter
information. The calorimeter isolation requires the sum of the transverse energy in the calorimeter in a
cone of size ∆R = 0.4 around the electron cluster, divided by the ET of the electron cluster, to be less than
8% of the electron cluster ET. The track-based isolation requires the sum of the transverse momenta of
tracks within a cone of ∆R = 0.2 around the electron, divided by the ET of the electron cluster, to be less
than 8% of the electron cluster ET.

Muon candidates are reconstructed from tracks in the inner detector matched to tracks in the muon spec-
trometer. A requirement on the distance between the primary vertex and the point where the muon can-
didate track crosses the beamline reduces the background from cosmic rays and beam-induced back-
grounds. Muon candidates are required to be within the pseudorapidity range |η| < 2.5 and must satisfy a
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set of quality criteria [29], which provides muon identification efficiencies above 95%. Muons are con-
sidered isolated based on tracking and calorimeter information with similar requirements as are used for
electrons, with the muon track pT in place of the electron cluster ET.

Jets are reconstructed from clusters in the calorimeter using the anti-kt R = 0.4 jet algorithm. Corrections
for the detector response are applied [30, 31]. To reduce the contamination of jets by additional inter-
actions in the same or neighboring bunch crossings (pileup), tracks originating from the primary vertex
must contribute at least 50% of the total scalar sum of track pT within the jets. This requirement is only
applied to jets with pT < 50 GeV and |η| < 2.4.

A b-tagging algorithm that relies on tracking information and b-hadron characteristics, such as the pres-
ence of a decay that can be separated from the primary vertex, is used to identify b-jets [32]. The operating
point for b-tagging chosen for this analysis has a 70% efficiency for b-jets in simulated tt̄ events with a
corresponding misidentification probability for light-quark jets of 1%.

Missing transverse momentum, with magnitude Emiss
T , is reconstructed using the energy deposits in

calorimeter cells calibrated according to the reconstructed physics objects (e, µ, τhad, jets) with which
they are associated. Energy deposits not associated with a physics object tend to have low pT and are
scaled by a dedicated algorithm tuned to improve the resolution in high-pileup conditions [33].

3 Data and simulation samples

The analysis uses those data collected when the detector systems were certified as functioning properly.
The resulting data sample corresponds to an integrated luminosity of 20.3 fb−1 of pp collisions at

√
s =

8 TeV. Samples of signal and background events are simulated using a number of Monte Carlo (MC)
generators, listed in Table 1. The cross-section values to which the simulation is normalized and the
perturbative order in quantum chromodynamics (QCD) for each calculation are also provided. For the
signal samples, the central value of the factorization scale equals the sum of the Higgs boson mass and
the vector boson mass.

The generated events are combined with minimum-bias events simulated using the AU2 [34] parameter
tuning of Pythia8 [35] to take into account multiple interactions. All simulated events undergo full simu-
lation of the ATLAS detector response [36] using the Geant4 [37] simulation program before being pro-
cessed through the same reconstruction algorithms as the data. The signal samples use the CTEQ6L1 [38]
PDF set.

4 Event categorization and selection

A characteristic of VH production is the presence of a W or Z boson in each signal event. The analysis
categories are optimized to exploit the leptonic decays of the vector bosons that provide a candidate for
the electron or muon triggers and to reduce the backgrounds from multijet processes. The presence of
additional leptonic and/or hadronic tau decays from the Higgs boson allows for the event selection to
include a requirement on three or four objects, depending on the channel, to define the final state.
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Table 1: Monte Carlo generators used to model the signal and the background processes at
√

s = 8 TeV. The cross
sections times branching fractions (σ × B) used for the normalization of some processes are included in the last
column together with the perturbative order of the QCD calculation. For the signal process only the H → ττ SM
branching fraction is included. For the W and Z/γ∗ background processes the branching ratios for leptonic decays
(l = e, µ, τ) are included. For all other background processes, inclusive cross sections are quoted (marked with a †).

Signal (Higgs boson mass mH = 125 GeV) MC generator σ × B [pb] at
√

s = 8 TeV
WH, H → ττ Pythia8 0.0445 NNLO [39, 40]
ZH, H → ττ Pythia8 0.0262 NNLO [39, 40]
Background
W(→ lν), (l = e, µ, τ) Alpgen [41]+Pythia8 36800 NNLO [42, 43]
Z/γ∗(→ ll), Alpgen+Pythia8 3910 NNLO [42, 43]
60 GeV< mll < 2 TeV

Z/γ∗(→ ll), Alpgen+Herwig [44] 13000 NNLO [42, 43]
10 GeV< mll < 60 GeV

tt̄ MC@NLO [45] + Jimmy [46] 238† NLO [45]
qq̄→ WW Alpgen+Herwig 54† NLO [47]
gg→ WW gg2WW [48]+Herwig 1.4† NLO [48]
WZ,ZZ Herwig 30† NLO [47]

The single-lepton and dilepton triggers used to select the events in this analysis are listed in Table 2. The
pT requirements on the particle candidates in the analysis are 2 GeV higher than the trigger thresholds, to
ensure that the trigger is maximally efficient.

Table 2: Summary of the triggers used to select events for the various channels. The transverse momentum thresh-
olds applied at trigger level are listed.

Trigger Trigger threshold(s) [GeV]
Single electron pe

T > 24
Single muon pµT > 24
Combined electron and muon pe

T > 12 pµT > 8
Symmetric dielectron pe1

T > 12 pe2
T > 12

Asymmetric dielectron pe1
T > 24 pe2

T > 7
Symmetric dimuon pµ1

T > 13 pµ2
T > 13

Asymmetric dimuon pµ1
T > 18 pµ2

T > 8

The four analysis event categories are determined by the type of associated vector boson and the topology
of the H → ττ decay. These are summarized in Table 3 and described below.

The W → µν/eν, H → τlepτhad channel: These events are required to have one isolated electron,
one isolated muon, and one τhad candidate. The electron and muon candidates are required to have an
electric charge of the same sign to reduce the backgrounds from Z/γ∗ → ττ+jets events, WW events,
and tt̄ events where both W bosons decay leptonically. The electron or muon candidate with the higher
pT is assumed to arise from the W boson decay, which is correct 75% of the time in the MC simulation.
The τhad candidate is required to have pT > 25 GeV and to have opposite electric charge to the leptons.
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Table 3: Summary of the selection criteria for each of the four analysis channels.
Channel Selections
W → µν/eν, H → τlepτhad Exactly one isolated electron and one isolated muon

Exactly one τhad passing medium BDT ID
pT(τhad) > 25 GeV
Same-charge e and µ, oppositely charged τhad
Events containing b-tagged jets with pT > 30 GeV are vetoed
|pT(τhad)| + |pT(µ)| + |pT(e)| > 80 GeV
∆R(τhad, τlep) < 3.2

W → µν/eν, H → τhadτhad Exactly one isolated electron or one isolated muon
Exactly two τhad passing medium BDT ID of opposite charge
pT(τhad) > 20 GeV
|pT(τ1

had)| + |pT(τ2
had)| > 100 GeV

mT(`, Emiss
T ) > 20 GeV

0.8 < ∆R(τ1
had, τ

2
had) < 2.8

Events containing b-tagged jets with pT > 30 GeV are vetoed
Z → µµ/ee, H → τlepτhad Exactly three electrons or muons,

One opposite-charge and same-flavor lepton pair
with invariant mass 80 < m`` < 100 GeV
Exactly one τhad passing medium BDT ID, with opposite charge
to the lepton assigned to the Higgs boson
pT(τhad) > 20 GeV
|pT(τhad)| + |pT(τlep)| > 60 GeV

Z → µµ/ee, H → τhadτhad Exactly two electrons or two muons of opposite charge
Exactly two τhad passing medium BDT ID of opposite charge
pT(τhad) > 20 GeV
60 < m`` < 120 GeV
|pT(τ1

had)| + |pT(τ2
had)| > 88 GeV

Events containing b-tagged jets with pT > 30 GeV are vetoed to further reduce the background from tt̄
events. The scalar sum of the pT of the electron, muon, and τhad candidates must be greater than 80 GeV
to reduce the backgrounds from multijet and Z/γ∗+jets events. To reduce backgrounds from quark- or
gluon-initiated jets misidentified as τhad when these jets are produced back-to-back, the angle between
the τhad and τlep candidates associated with the Higgs boson is required to satisfy ∆R(τhad, τlep) < 3.2.

The W → µν/eν, H → τhadτhad channel: These events are required to have one isolated electron or
muon candidate and two τhad candidates. The two τhad candidates are required to have pT > 20 GeV and
to have opposite charge. The lepton is assumed to come from the W boson. Events containing b-tagged
jets with pT > 30 GeV are vetoed to reduce the background from tt̄ events. The scalar sum of the pT of
the lepton and two τhad candidates must be greater than 100 GeV in order to reduce the background from
multijet events. The transverse mass2 of the lepton and Emiss

T must be greater than 20 GeV. To reduce the
background from events with jets misidentified as τhad candidates, 0.8 < ∆R(τ1

had, τ
2
had) < 2.8 is required,

which results in a reduction of the background from misidentified jets by almost a factor of two while

2 The transverse mass, mT =

√
2p`TEmiss

T · (1 − cos ∆φ) where ∆φ is the azimuthal separation between the directions of the
lepton and the missing transverse momentum.
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losing less than a third of the signal events.

The Z → µµ/ee, H → τlepτhad channel: Events containing one τhad candidate and three light lepton
candidates are in this category. The two light lepton candidates with invariant mass closest to 91 GeV,
opposite electric charge, and the same flavor are assumed to be the Z boson decay products. The invariant
mass of the leptons assumed to come from the Z must be between 80 and 100 GeV. The remaining light
lepton and the τhad candidate are assumed to originate from the Higgs boson decay. They are thus required
to have opposite charge and the scalar sum of their pT values must be greater than 60 GeV.

The Z → µµ/ee, H → τhadτhad channel: Signal candidates are selected by requiring exactly two
electron (muon) candidates and two τhad candidates. The two light leptons are assigned to the Z boson
decay, are required to have the same flavor, and are required to have opposite electric charge. The invariant
mass of the two lepton candidates assigned to the Z boson must be between 60 and 120 GeV. The two
τhad candidates are assumed to originate from the Higgs boson decay and are required to have opposite
electric charge. A minimum requirement of 88 GeV is placed on the scalar sum of the transverse momenta
of the τhad pair to reduce the Z/γ∗+jets background.

After all the analysis selection criteria are applied, the number of events migrating from other Higgs
boson channels, in particular from VH production where the Higgs boson decays into WW, is found to be
negligible. This analysis selection has an acceptance of 1.9% for the combined WH channels, where the
denominator requires a light lepton from the W boson decay (W → µν/eν/τe/µν) and for the Higgs boson
to decay through the considered tau decay chains (H → τlepτhad or H → τhadτhad), and the numerator
includes all analysis cuts. The acceptance for the combined ZH channels is 5.3%, where the denominator
requires a light lepton pair from the Z boson decay (Z → µµ/ee/ττµµ/ee) and for the Higgs boson to decay
through the considered tau decay chains (H → τlepτhad or H → τhadτhad), and the numerator includes all
analysis cuts.

5 Background estimation

The number of expected background events and the associated kinematic distributions are derived using
data-driven methods as well as simulation. There are two classes of backgrounds for this analysis: pro-
cesses in which all three or four final-state lepton and τhad candidates are actually produced, and those in
which some lepton or τhad candidates are actually misidentified jets. Jets are most likely to be misidenti-
fied as τhad objects, although the rate at which jets mimic electrons is, in some instances, not negligible.

Backgrounds containing real electrons, muons, and τhad leptons primarily arise from diboson, Z → ττ,
and tt̄ events. These backgrounds are determined from Monte Carlo simulation. The background arising
from jets misidentified as electron or τhad candidates is estimated using a data-driven method, the so-called
fake-factor method. The τhad fake factor is defined as the ratio of the number of τhad candidates identified
with medium τhad criteria to the number satisfying the loosened but not the medium identification criteria.
The electron fake factor is defined as the number of electrons satisfying the identification criteria divided
by the number of those that do not. The fake-factor measurements are described below. For the W →

µν/eν, H → τlepτhad channel both the τhad and electron fake factors are used, while for the other three
channels the τhad fake-factor method alone performs well enough for modeling the background from
misidentified jets. The background from misidentified jets is the dominant background, or comparable to
the background from diboson production, in all channels of the analysis.
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Since the fake rates are sensitive to the underlying physics of the event, the fake factors are measured in
a region with similar kinematics and composition of misidentified objects to the signal region. Applying
the analysis selection to MC simulation reveals that Z/γ∗+jets events are the primary source of the back-
ground from misidentified jets in the analysis. The rate of jets mimicking the τhad selection is therefore
measured using a tag-and-probe method from jets in well-reconstructed Z/γ∗ → µµ+jets events. The
tag here is the di-muon system and the probe is the additional jet(s) that may be suitably tau-like (pass
medium τhad identification) or suitably jet-like (pass a loosened τhad identification but fail the medium
one). The fake factor is measured as a function of the jet pT, η, and number of associated tracks. The fake
rate for electrons is calculated separately, using well-reconstructed Z → µµ events containing additional
jets or photons, using the same procedure as described above.

To estimate the background from misidentified jets for the WH and ZH signal regions, these factors are
then applied to the event combinations that have all selections the same as the signal selection with the
exception that at least one τhad candidate has passed the loosened but failed the medium τhad identification.
For the W → µν/eν, H → τlepτhad channel, a contribution from jets misidentified as the electron candidate
is also taken into account using objects that have failed electron identification. Since many background
events contain multiple jets that could potentially pass the τhad or electron identification, more than one
possible combination of passing and failing objects is allowed to contribute per event. In these cases,
the multiple copies of the events contribute with the various weights calculated for each combination of
objects considered.

The fake-factor method is validated independently in each of the four analysis channels. In each case
a comparison between the data and the background prediction is made with a loosened signal selection,
which provides a test of the method with a large number of events in a dataset that is dominated by the
background from misidentified jets. In addition, a series of orthogonal regions are formed to validate the
method for each of the analysis channels. The definition of the loosened signal selection and validation
regions are given for each channel in Table 4.

Example distributions of the pT of τhad candidates for the loosened signal selection and validation regions
are shown in Figure 1 for the W → µν/eν, H → τlepτhad channel. MC simulation studies show that
this Z → ττ validation region is dominated by Z → ττ events where an additional jet in the event is
misidentified as a τhad candidate. Likewise, MC simulation studies show that this tt̄ validation region is
dominated by tt̄ events where at least one W boson decays leptonically and where a jet is misidentified as
a τhad candidate. The number of expected signal events and estimated total number of background events
for each channel in the signal region are given in Table 5.

6 Mass reconstruction

The result is extracted using a fit to the reconstructed invariant mass or transverse mass spectrum of the
τlep–τhad or τhad–τhad pair. The mass is reconstructed using one of two methods, depending on the signal
category. The Higgs boson mass in ZH events is calculated using the missing mass calculator (MMC)
method described in Ref. [49]. This method takes the x- and y-components of the event missing transverse
momentum as an input as well as the visible mass of the τlep–τhad or τhad–τhad pair. Because the neutrinos
from the tau decays have unknown x-, y- and z-components and there are multiple neutrinos (two for
the τhad–τhad case and three for the τlep–τhad case), the system is underconstrained. A scan is therefore
performed over possible momenta for the neutrinos, and a most-likely di-τ mass is found.
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Table 4: The loosened signal selection and the list of validation regions used to validate the fake-factor method are
given for each of the four analysis channels. MMC and M2T are mass reconstruction techniques defined in Section
6.

Channel Loosened signal selection Validation regions
W → µν/eν, H → τlepτhad one isolated electron Z → ττ: Z mass selection (60–120 GeV)

one isolated muon tt̄: require b-tagged jet
pT(τhad) > 25 GeV

W → µν/eν, H → τhadτhad one isolated electron or muon Z → ττ: Z mass selection (>60 GeV)
two (opposite charge) τhad candidates tt̄: require b-tagged jet

W + jets: mT(`, Emiss
T ) > 60 GeV

same-sign τhad candidates
mass sideband: M2T< 60 GeV
or M2T>120 GeV

Z → µµ/ee, H → τlepτhad three isolated electrons or muons same-sign τlep, τhad candidates
opposite-charge, same-flavor lepton pair mass sideband: MMMC<80 GeV
τhad with opposite charge to the or MMMC>120 GeV
unpaired lepton

Z → µµ/ee, H → τhadτhad two opposite-charge, same-flavor leptons same-sign τhad candidates
two opposite-charge τhad candidates mass sideband: MMMC<80 GeV

or MMMC>120 GeV

Table 5: The yields for the observed and expected background and signal for a 125 GeV Higgs boson in the signal
region for each individual channel. The "other" column consists primarily of background from tt̄ events. The
uncertainties quoted are statistical only.

Channel Obs. Signal Σ Background Fake Factor Diboson Other
W → µν/eν, H → τlepτhad 35 1.95 ± 0.05 32.4 ± 1.9 13.1 ± 1.3 13.54 ± 0.35 5.7 ± 1.4
W → µν/eν, H → τhadτhad 33 1.84 ± 0.04 35.5 ± 2.7 28.1 ± 2.4 7.4 ± 1.2 -
Z → µµ/ee, H → τlepτhad 24 1.14 ± 0.03 24.6 ± 1.5 17.1 ± 1.5 7.28 ± 0.16 0.20 ± 0.01
Z → µµ/ee, H → τhadτhad 7 0.64 ± 0.02 6.8 ± 1.2 4.7 ± 1.2 2.09 ± 0.09 0.012 ± 0.003

In the WH category, the presence of an additional neutrino from the W decay makes the MMC mass
reconstruction not optimal. In this case the M2T variable defined in Ref.[50] is used, which calculates an
event-by-event lower bound (within the detector resolution) of the transverse mass of the τhad-τhad or τlep-
τhad pair by performing a minimization over the allowed phase-space of possible momenta of assumed
neutrinos in the event. In the general case described in Ref. [50] the only constraint on the phase-space is
that the sum of the transverse momenta of all neutrinos equals the observed Emiss

T . For this analysis, the
additional constraint that the invariant mass of the lepton and neutrino assigned to the W boson be equal
to, or as close as possible to, the mass of the W boson is imposed. The mass distributions after all the
selection criteria are applied are shown in Figure 2.
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Figure 1: Distributions of the transverse energy of the τhad candidate, as validation for the fake factor method for
the W → µν/eν, H → τlepτhad channel. The category labeled "Fake Factor BG" consists of events where at least
one τhad or electron candidate does not result from a simulated τhad or electron.

7 Systematic uncertainties

The numbers of expected signal and background events, and the distributions of the discriminating vari-
ables MMMC and M2T, are affected by systematic uncertainties. These uncertainties are discussed below
and are grouped into three categories: experimental uncertainties, background modeling uncertainties,
and theoretical uncertainties. For all uncertainties, the effects on both the total signal and background
yields and on the shape of the mass distributions, MMMC or M2T respectively, are evaluated. Table 6
shows the systematic uncertainties, their impact on the number of expected events for the signal and the
relevant background, and their impact on the post-fit signal strength, µ, where µ = σ/σSM and the value
B(H → τ+τ−) corresponds to the standard model prediction for mH = 125 GeV.
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Figure 2: Mass distributions used to determine the strength of signal in each channel. Upper left: M2T distribution
for the WH → τlepτhad channel. Upper right: M2T distribution for the WH → τhadτhad channel. Lower left: MMMC
distribution for the ZH → τlepτhad channel. Lower right: MMMC distribution for the ZH → τhadτhad channel.

Experimental systematic uncertainties arise from uncertainties on trigger efficiencies, particle reconstruc-
tion and identification, uncertainties on the energy scale and resolution of jets, leptons, and τhad can-
didates. The efficiency-related uncertainties are estimated in data using tag-and-probe techniques. The
MC samples used are corrected for differences in these efficiencies between data and simulation and the
associated uncertainties are propagated through the analysis. The lepton energy scale uncertainties are
measured in data. For τhad candidates, where the uncertainty is dominated by calorimeter response, this is
done by fitting the visible Z → ττ mass [27]. The systematic uncertainties due to energy resolution have
a negligible impact on the result. Systematic effects from electron- and muon-related uncertainties are
smaller in general than those from jets and τhad candidates. The soft-scale Emiss

T resolution accounts for
low-pT energy deposits that do not contribute to the clustered energy of physics objects (e, µ, τ, jet). The
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b-jet tagging efficiency is measured in data with tt̄ events and has an uncertainty of a few percent, which
in turn has a small impact on the prediction of the tt̄ background in the signal region.

The systematic uncertainty on the background from jets misidentified as leptons is estimated for each
type of lepton separately. It is assumed to be uncorrelated with all other uncertainties. The uncertainty
on the contribution to the background from jets misidentified as τhad is dominated by uncertainty in the
fraction of quark- and gluon-initiated jets. This accounts for the potential difference between the fraction
of quark-initiated jets in the fake-factor measurement region and the analysis signal region, where the
fake factor is applied. Because quark- and gluon-initiated jets can fake τhad candidates at different rates, a
difference in their ratio between the fake-factor measurement and signal region would bias the fake factors
themselves. The systematic uncertainty is evaluated by varying the ratio of quark- to gluon-initiated jets
from half to two times the nominal value, as determined in MC simulation. The systematic uncertainty for
the electron fake factor is determined in a way similar to the τhad fake factor, although the compositions
of misidentified candidates from jets and photons are varied as opposed to the relative fractions of quark-
and gluon-initiated jets.

The uncertainty on the luminosity (±2.8%) derived from beam-separation scans performed in 2012 using
the method described in Ref. [51] affects the number of signal and simulated background events.

Theoretical uncertainties are estimated for the signal and for all background contributions derived using
MC simulation. Uncertainties relating to higher order QCD corrections and MC modeling choices are
estimated by varying the renormalization and factorization scales, PDF parameterization and underlying-
event model as described in Ref. [52]. The signal samples, generated in QCD LO with Pythia8, are
normalized using cross sections computed in NNLO in QCD and NLO in electroweak, but kinematic
distributions, such as the Higgs boson pT, are not re-weighted. The HAWK MC program [53], which
calculates NLO QCD and NLO electroweak corrections for all the VH processes, is used to evaluate the
resulting systematic uncertainties due to kinematic differences. The impact of the QCD scale choice on
the signal acceptance is evaluated in MC simulation before the ATLAS detector simulation is performed,
separately for the four analysis channels, by varying the QCD scales in Powheg + Pythia8.
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Table 6: Impact of systematic uncertainties on the expected yields of the signal and/or relevant background(s) as
well as the impact on the signal strength µ. The experimental uncertainties affect the signal prediction and all
backgrounds that are determined with MC simulation. The background model uncertainties affect the prediction
of the backgrounds from fake-factor methods. The theoretical uncertainties affect the signal prediction. Where
ranges are given they indicate the variation of the impact on different channels or differences between one-track and
multi-track τhad candidates. All values are given before the global fit.

Source Impact on event yeild [%] Impact on µ
Experimental
Luminosity ± 2.8 ± 0.30
Tau identification ± 2–6 ± 0.41
Lepton identification and trigger ± 1–1.8 ± 0.15
b-tagging ±2 ± 0.16
τ energy scale ± 0– 2.9 ± 0.57
Jet energy scale and resolution ± 4 -
Emiss

T soft scale & resolution ± 0.1–0.5 -
Background Model
Modeling of BG from misidentified jets ± 15 – 38 ± 0.72
Theoretical
Higher-order QCD corrections ± 2–8 ± 0.26
Underlying event/parton shower modeling ± 1–4 ± 0.07
Generator modeling ± 1.4 ± 0.05
EW corrections ± 2 ± 0.06
PDF ± 3-4 ± 0.18
B (H → ττ) ± 3-7 ± 0.17

8 Results

The observed signal strength µ, is determined from a binned global maximum-likelihood fit to the re-
constructed Higgs boson candidate mass distributions, with nuisance parameters ~θ, corresponding to the
systematic uncertainties. The M2T distribution is used for the WH topologies and the MMMC distribution
for the ZH categories. For each signal and background process, each nuisance parameter is separately
tested to determine whether it affects the M2T or MMMC distributions. For background processes only, the
effect of a nuisance parameter on the shape of the distributions is neglected if the difference between the
up and down variations of the yield in all bins of the distribution is less than 10% of the total background
statistical error. Overall systematic uncertainties that differ from the nominal by less than 0.5% are not
considered. The only exception is the treatment of systematic uncertainties due to theoretical aspects,
which are fully considered even though they have a small overall impact on the fit.

The expected numbers of signal and background events in each bin are functions of ~θ. The test statistic

qµ is then constructed according to the profile likelihood ratio: qµ = −2 ln[L(µ,
ˆ̂
~θ)/L(µ̂, ~̂θ)], where the

numerator L(µ,
ˆ̂
~θ) is the conditional maximum likelihood with

ˆ̂
~θ the value of the nuisance parameters that

maximizeL for a given µ and the denominatorL(µ̂, ~̂θ) is the unconditional maximum likelihood. This test
statistic is used to measure the compatibility of the background-only hypothesis with the observed data
and for setting limits derived with the CLs method [54, 55]. To quantify this compatibility, a significance
is calculated, giving the probability of obtaining qµ if µ = 1 is the true signal strength.

The measured signal strength, normalized to the SM expectation, is µ = 2.3 ± 1.6 for mH = 125 GeV. The
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95% confidence-level (CL) upper limits for each of the four channels and their associated signal strengths
are shown in Figure 3. The expected and observed significances for each of the four channels are shown
in Table 7.
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Figure 3: The combined result for the VH channels. The 95% CL cross section limit is shown for each individual
channel on the left. The right figure shows the signal strength in each individual channel, along with the combina-
tion.

Table 7: The expected and observed significances for the four channels.
Channel Expected significance Observed significance
W → µν/eν, H → τlepτhad 0.36 σ 0.44 σ
W → µν/eν, H → τhadτhad 0.32 σ 0.60 σ
Z → µµ/ee, H → τlepτhad 0.28 σ 0.29 σ
Z → µµ/ee, H → τhadτhad 0.32 σ 1.38 σ

The overall 95% CL limit on the observed ratio of the cross section to the SM prediction is 5.6 at mH =

125 GeV, which is above the expected values of 3.5 if no signal is assumed and 3.7 if signal is included,
but is consistent within the uncertainties of the expected limit. The weaker limit in the data comes mostly
from the slight excesses seen in the two channels with H → τhadτhad.

9 Conclusion

The analysis presented in this paper, a search for the associated production of the SM Higgs boson with a
vector boson where the Higgs boson decays to a pair of tau leptons, is based on 20.3 fb−1 of LHC proton–
proton collisions recorded by the ATLAS experiment at the center-of-mass energy

√
s = 8 TeV. The

overall 95% CL upper limit on the ratio of the observed cross section to the SM predicted cross section,
at 5.6, is higher than the expected values of 3.5 if no signal is assumed and 3.7 if signal is included, but is
consistent within the statistics and uncertainties of the analysis. The measured signal strength, normalized
to the standard model expectation for a Higgs boson of mH = 125 GeV, is µ = 2.3 ± 1.6.
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