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Abstract

The Time Projection Chamber of the ALICE experiment is a large 3-dimensional tracking device for ultra-high

multiplicity events. It has been operated successfully at the Large Hadron Collider at CERN, recording collisions of

protons (since November 2009) and of heavy-ions (lead nuclei, in November 2010). We describe the detector and the

calibration procedures necessary to guarantee an optimal data quality. We report on the performance, in particular

of tracking and particle identification, and on readout speed. Finally, we summarize the challenges in the design and

the experience in operating the Time Projection Chamber under the extreme conditions of heavy-ion collisions at the

LHC.
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1. Ultrarelativistic heavy ion collisions at the LHC
The basic idea of ultrarelativistic heavy ion (HI) collisions is to compress a large amount of energy in a very small

volume. A “fireball” of hot matter will be produced, with a temperature of the order 1012 K. This is equal to 105 times

the temperature at the center of the sun, and is believed to have been the temperature of the universe about 10 μs after

the Big Bang. Quantum-Chromodynamics predicts that a state of deconfined quarks and gluons is generated in such

collisions (the so called Quark-Gluon Plasma, QGP). In order to find out how this new kind of matter behaves, the

largest available stable nuclei (Pb ions) are accelerated at the Large Hadron Collider (LHC) at CERN in Geneva to

the highest possible center-of-mass energy per nucleon of
√

sNN = 5.5 TeV (currently 2.76 TeV). A comprehensive

HI programme at the LHC focuses on the study of these collisions: one month of beam time per year is devoted to

ions, with ALICE (A Large Ion Collider Experiment [1]) being the dedicated HI experiment.

2. The ALICE experiment at the LHC
The basic idea of a dedicated HI experiment is to use the hadrons, electrons, muons and photons, that are produced

in the collisions, as probes of the QGP [2]. As a consequence, ALICE has not only precise tracking capabilities

over a large momentum range (100 MeV/c< p < 100 GeV/c), but also excellent particle identification (PID). As

compared to proton-proton (pp) collisions the luminosity is rather low (1027 Hz/cm2). With a cross section of 8 barn
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Figure 1: Left: Fish-eye view of the TPC field cage during assemply. The central high voltage electrode is located at the top of the image and

reflects like a mirror. Right: The two endplates of the TPC are divided into 18 sectors holding two readout chambers (ROC) each. The ROCs

and front-end electronics are hidden behind the blue covers.

this gives an interaction rate (minimum bias) of 8 kHz. However, the corresponding charged particle multiplicities are

extraordinary: in central Pb–Pb collisions a charged particle multiplicity per unit of pseudo-rapidity2 η of dNch/dη =
1600 was observed at

√
sNN = 2.76 TeV [3].

3. TPCs are perfect tools in heavy-ion collisions
In general, Time Projection Chambers (TPCs) are perfect detectors for high multiplicity environments like HI colli-

sions and to resolve particle jets. This is because TPCs provide a large volume which may be sampled with very high

granularity and which is filled with a light detecting medium (a gas). Pattern recognition is very robust due to the con-

tinuous track model. Finally there is low multiple scattering due to the large radiation length, since the active material

is gaseous. On top of the tracking information there is also the possibility to use the measured signal amplitudes to

estimate the specific ionization. This is generally known as dE/dx measurement and can provide very powerful PID,

especially in the low energy region (p ≤ 1 GeV/c), where the ionization is ∝ 1/β2, and where the particles are well

separated. For many gas mixtures one makes use of the fact that the transverse diffusion of the drifting electrons is

largely reduced if ωτ > 1 and for a configuration with the magnetic and electric fields aligned. At a given magnetic

field, the plasma frequency ω and the mean time between two collisions τ can be tuned over a wide range by proper

choice of the gas mixture. The maximum possible trigger rate is limited by the electron drift time (typically tens of

μs). This matches well the rather moderate HI luminosities offered by the LHC. Consequently, a TPC was chosen as

the main tracking and PID device of ALICE.

4. Description of the ALICE TPC
The ALICE TPC [4] (see Fig. 1) has 5 m diameter and 5 m length, divided into two halves by an aluminised mylar foil

acting as the central drift electrode. It has an active volume of ∼ 92 m3 and is filled with a gas mixture based on Ne

with an admixture of around 10% CO2. This gas mixture has a rather small ωτ of 0.32, so that the mentioned effect

of the magnetic field on the diffusion is negligible. However, it has very low diffusion to start with (“cold gas”). Due

to the low Z of Ne, multiple scattering (total material budget is 3% X0 around pseudo-rapidity η = 0) and primary

2ALICE was optimized for charged particle densities of up to dNch/dη = 8000.
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Figure 2: Left: 3D view of the tracks reconstructed from a central Pb–Pb collision in the TPC. Right: Relative variation of the gain per readout

pad for the ROCs on one side (C side) of the TPC. The data is extracted from the decay spectrum of radioactive 83Kr in the TPC gas mixture.

ionization are both low. The latter minimizes the space charge in the drift volume. The electron drift time for the

full drift length of 250 cm is around 92 μs. Since the drift velocity for this gas mixture is not saturated any change

in temperature, pressure or gas composition immediately reflects in a change of the drift velocity. As a consequence

the temperature has to be well homogenized (variations on the level 10−4 in the gas volume) and precise drift velocity

calibration is fundamental.

The readout chambers (ROCs) are Multi Wire Proportional Chambers with cathode pad readout and a gated wire

grid to block the passage of drifting charges when the TPC is untriggered. The field cage, ROCs and gas system are

very leak tight (1 ppm O2). For stability of operation 50 ppm of water vapor are added to the gas mixture.

The TPC has 557 568 readout pads and front-end electronics (FEE) channels. Each channel can be sampled into

up to 1023 time bins, which means that the active volume is sampled in 557 million voxels. The PreAmplifier ShAper

(PASA) chips with 12 mV/fC gain and a shaping time of 190 ns (FWHM) feed the signals into the digital ALTRO [5]

chip with 10 bit digitization, 10 MHz sampling, two baseline restoration circuits, tail cancellation, zero suppression

with glitch filter and multi event buffering (MEB). The mean noise measured on the detector is ∼ 0.7 ADC (700 e−),

much better than the design value of 1000 e−. The signal processing in the ALTRO is designed to remove systematic

baseline shifts due to the pile-up of the ion tails of the electronic signals from the ROCs even at the highest charged

particle multiplicities.

The TPC field cage was assembled at CERN during the years 2002 to 2004. The ROC and electronics installations

were finished in 2005 and 2006, respecively. The fully integrated TPC was then installed inside the ALICE solenoid

magnet in 2007. Commissioning and calibration activities took place in the years 2007 to 2009, before data taking

with LHC beams started at the end of 2009. While the LHC delivers pp collisions, the TPC is in continuous data

taking mode. In November 2010 the first Pb–Pb collisions were delivered. A central Pb–Pb collision recorded with

the TPC is shown in the left panel of Fig. 2.

5. Calibration: gain, drift velocity and field distortions
The precision of the tracking and PID information from the TPC depends crucially on a precise calibration of the ROC

and FEE gain and of the electron drift properties. For the gain calibration a short-lived radioactive isotope (83Kr) is

injected into the TPC gas mixture about once per year. The decay produces an electron spectrum in the keV range

and can be used for a precise gain determination for each pad to within 1%. The resulting gain map for one side of

the TPC is shown in the right panel of Fig. 2.

Three dimensional coordinate measurements require precise knowledge of the electron drift properties inside the

TPC volume. Sources for drift distortions are inhomogenieties of the magnetic field, misalignment of electric and

magnetic fields (E × B-effect, see left panel of Fig. 3), field cage imperfections (see right panel of Fig. 3) and space
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Figure 3: Left: Schematic image of the TPC inside the ALICE L3 solenoid magnet, indicating the possibility of slight misalignments between

the electric drift field inside the TPC and the magnetic field. Right: Schematic image of the TPC field cage. It consists of the Inner and Outer

Field Cage (IFC and OFC), the Central Electrode (CE), the ROCs and the voltage divider strips, which are held by several field cage rods.

Imperfections in the field cage (like shifts or rotations of individual components) may lead to a deflection of the drifting electrons from the

ideal trajectory.

Figure 4: Both panels show the rφ-component (as shown in the inlay) of the drift distortions at a fixed position along the drift direction (close to

the CE, z = 1 cm) on one side (A side) of the TPC. Left: The effect of misalignment (as shown in the left panel of Fig. 3) and inhomogenieties

of the magnetic field. Right: Distortions due to field cage imperfections. The maximum distortion is localised close to the IFC. All distortions

can be corrected using the shown calibration data.
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Figure 5: Two components (δr and δrφ) of the expected space charge distortions at a fixed position along the drift direction close to the CE

(z = 1 cm) at one side of the TPC (A side). The data is based on an expected charge density for Pb–Pb collisions with an interaction rate of

8 kHz and a minimum bias multiplicity (top 80%) of dNch/dη = 950. Some leaking gating grid wires are added as an additional source of space

charge.

charge inside the drift volume. All of these effects can be adequately calibrated (corrected). Two examples are shown

in Fig. 4. The maximum distortions are up to δr = 10 mm and δrφ = 8 mm (these are local coordinates in each TPC

sector, see the inlay in the left panel of Fig. 4) and may be very localized. Fig. 5 shows the expected distortions due

to space charge in the drift volume of the TPC during high luminosity HI running. Such distortions are caused by the

slowly drifting ions from primary ionization in the gas volume, as well as by possible leakage of the ROCs gating grid

wires. So far no such distortions are visible in the pp and Pb–Pb collisions recorded. However, some effect is expected

once the maximum Pb–Pb luminosity is reached. The resulting charge distribution ρ(r, z) is azimutally symmetric in a

first order approximation, whereas it follows 1/r2 in the radial direction. In the drift direction it increases linearly with

z with a maximum close to the CE, because of the random distribution of collisions in time. The slope of this increase

is defined by the interaction rate, the ion mobility and the average multiplicity of individual events. The maximum

expected distortions are δr = 5 mm and δrφ = 0.8 mm (both shown in Fig. 5). All mentioned effects can be corrected

by calibration procedures based on the distortion maps shown exemplary here.

Furthermore, laser tracks are used for drift velocity calibration and for alignment. Not only the laser tracks them-

selves are used as input. Scattered photons extract photoelectrons from the aluminized surface of the CE. These arrive

at the ROCs after traveling the same, precise distance (2.5 m) for all readout pads and produce a substantial signal,

creating a very powerful input for drift velocity calibration. Finally, as a further input for drift velocity calibration an

external drift velocity monitor is used.

Also particle tracks are used for calibration purposes. Cosmic particles are useful for alignment. Tracks from

collisions play an important role during physics data taking for the time-dependent calibration of gain changes, e.g.

due to pressure changes, and for drift velocity calibration. Here the matching of TPC tracks to hits in the Inner

Tracking System (ITS) of ALICE is used.

6. Tracking performance
A low material budget and a rather low magnetic field (0.5 T) are the requirements to optimize the ALICE detector for

tracking and particle identification down to very low momenta (p ≥ 100 MeV/c). Inside the TPC, the track of a particle

with momentum above a few hundred MeV/c consists of up to 159 clusters. This number is given by the maximum

number of pad rows the particle can cross. The space point resolution for such a cluster along the pad row direction

(local rφ coordinate) as a function of the track inclination angle is shown in the left panel of Fig. 6. In a global tracking

procedure the TPC tracks are combined with hits in the ITS. A transverse momentum resolution of σ(pt)/pt = 20%

at pt = 100 GeV/c was achieved in HI collisions (see right panel in Fig. 6) with the calibration available at the time of

the conference (summer 2011). This has to be compared with the values expected from simulations: σ(pt)/pt = 5%.
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Figure 6: Left: Space point resolution of the TPC. This value depends on the drift length (due to diffusion) and on the inclination angle (as

shown in the inlay). The data sample analyzed was collected with a cosmic trigger in the year 2009 and shows a space point resolution of 400

to 800 μm for tracks that are crossing the pad rows almost perpendicularly as high-pt tracks do. Right: Transverse momentum resolution in the

central rapidity region (|η| < 0.8) for TPC tracks combined with hits in the ALICE Inner Tracking System (ITS). The current status yields a

resolution of σ(pt)/pt = 20% at pt = 100 GeV/c.

As work is ongoing to improve the tracking performance, the expected performance is within reach for the year 2011.

By combining the global tracks also with tracklets in the six layers of the Transition Radiation Detector (TRD) that

surrounds the TPC, a resolution of σ(pt)/pt = 3.5% at 100 GeV/c can ultimately be reached [6].

7. Particle identification performance
The ionization produced by each track is sampled on up to 159 pad rows in the TPC and a truncated mean is used

for the calculation of the PID signal. The left panel of Fig. 7 shows the ionization signals of charged particle tracks

in pp collisions at
√

s = 7 TeV. The different characteristic bands for various particles including deuterons are clearly

visible. The use of a 10 bit ADC provides a dynamic range which is sufficient to examine ionization signals of up to

26 times that of a minimum ionizing particle. In order to achieve PID in a certain momentum region, histograms are

filled and fitted with multiple Gaussians. An example is shown in the right panel of Fig. 7. For a given momentum

region one can derive the particle yields, which represent the probabilities for the particle to be a kaon, proton,

pion or electron. One can also extract the resolution of the ionization signal (“energy resolution” σdE/dx), which is

proportional to the ionization signal itself: for the TPC it is σdE/dx = 5% for tracks with the maximum number of

samples (requirement was 5.5% [6]). The dependence on the number of samples Ncl is shown in the left panel of

Fig. 8. In heavy-ion collisions the energy resolution degrades slightly to an average of about 5.3%. For the highest

multiplicity events it falls off to 6%. The degradation is explained by overlapping signals from neighboring tracks,

which have to be removed, thus reducing the number of usable samples Ncl. Part of the deterioration is also explained

by baseline fluctuations in the electronics due to large hit densities in single channels. These fluctuations can in

principle be removed using the tail cancellation and baseline correction features available in the ALTRO chip, but this

feature was not yet enabled in 2010.

The TPC in combination with the ALICE Time-Of-Flight detector is also very well set up for the detection of rare

stable particles, e.g. light anti- or hyper-nuclei. Four anti-alpha candidates created in Pb–Pb collisions were found in

the data collected in November 2011 (see right panel of Fig. 8).

8. Readout speed
Proton collisions at the LHC are recorded in ALICE at interaction rates that depend on the physics observables of

interest. An interaction rate of 10 kHz is optimal for large cross section observables while having almost no event

pile-up in the TPC. Due to the drift time (∼92 μs) collision events from subsequent bunch crossings in the LHC start

to overlap in the TPC drift volume at higher interaction rates. Up to 200 kHz is used for maximizing signatures of rare

processes at an acceptable event pile-up. The event size and thus the readout time depend strongly on the pile-up and
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Figure 7: Left: Ionization signal measured in the TPC with tracks from pp collisions. Especially in the low momentum region at a few hundred

MeV/c kaons and protons and also deuterons can be reliably identified. Right: A histogram of the ionization signal in a momentum window of

50 MeV/c width in the 1/β2 region of the Bethe-Bloch curve. The data can be fitted well by a sum of three Gaussians representing the yields of

kaons, pion and electrons. Protons are completely separated in this momentum slice and are not shown in the plot.

Figure 8: Left: Dependence of the resolution in the ionization signal (σdE/dx) on the number of samples Ncl available for sampling the

ionization along a given track. The maximum number is given by the number of pad rows in a TPC sector (159). Right: Four anti-4He

candidates found in the data recorded in HI collisions in November 2010. They were identified by combining the specific ionization in the TPC

with the Time-Of-Flight information from a separate detector.

thus on the collision rate. The event size of one pp event from the TPC is 380 kBytes (6 MBytes), while the readout

time is 0.5 ms (1.1 ms) without pile-up (with about 16 overlapping events at 150 kHz).

In HI collisions the TPC readout time depends strongly on the centrality of the recorded HI event. The most

central events have a size of 80 MBytes and require 4 ms to be read out. The latter number however depends strongly

on the mixture of triggers used in the data taking. In order to not miss any interesting event, the Multi Event Buffer

(MEB) of the ALTRO digital chip is used. The MEB is particularly useful in the case where the trigger rate is similar

to the inverse of the readout time3, e.g. for a trigger on central Pb–Pb collisions at 250 Hz.

9. Summary: Challenges and experience at ultra-high multiplicities
The high multiplicity that was expected in HI collisions at the LHC was the key ingredient for most design parameters

of the ALICE TPC. Its implications on the detector performance are twofold: on the one hand it has an impact on

the performance (accuracy of tracking and PID); on the other hand the operational stability may be affected. Over-

lapping tracks lead to cluster pile-up which potentially reduces the number of samples available for the calculation

3The times between two triggers are exponentially distributed with a mean τ. 63% of the triggers arrive with times shorter than τ and will be

missed without a MEB. The MEB “derandomises” these events; they are shortly buffered and then sent during larger gaps between two triggers.
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of the ionization signals used for PID. This effect was minimized by choosing a gas mixture with low diffusion and

by minimizing the pad size. As a result an energy resolution of 6% is reached for the most central HI collisions.

This excellent performance is also due to the precise gain calibration using radioactive isotopes in the gas mixture.

Distortions due to space charge are minimized by a drift gas mixture with low Z and thus low primary ionization. A

physical model of the remaining distortions allows their correction and permits the best possible performance. Finally,

baseline fluctuations due to the overlap (in time) of the long ion tail signals of different tracks may be removed online

by the digital processing in the ALTRO chips.

The operational stability may be compromised by ageing problems, but none were observed so far in >4 pb−1

(∼9 μb−1) collected with pp collisions (Pb–Pb collisions). The occurence of high voltage trips4 and of damage to

Front-End Electronics may also impact on the operational stability. As the luminosity increased, such events have

occured and work is currently focussed on resolving these issues, mainly by reducing the energy released in possible

discharges and by modification of the high voltage distribution.
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