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A SLED Type Pulse Compressor with Rectangular Pulse Shape

A. Fiebig and Ch. Schieblich
PS-Division, CERN CH - 1211 Geneva 23, Switzerland

TRACT: Pulse compressors based on the SLED pm.lcxple. ae,
:rfj for electron linacs to reduce RF power [1], [2]. .!n their oni;nal,
form, the output signal is characterized by a steep transient, Jollowed by
an exponential decay. This shape is not very we.II suited for constant
gradient accelerating structures, which are designed fo_r rfctw;gtdar
pulsés. To achieve rectangular output pulses, a .:horl—czrcuxted trans-
mission line has been proposed as a storage device [3]. In the present
contribution an alternative way to produce rectangul.ar pulses will be
suggested, which does not need a different storage (.Iewce. The complete
high power part can be kept, the only modification is the replacemenf of
the phase switch by a continuous phase modulaxor.. The gradient
achieved in a “constant gradient’ structure does not differ very much
from that with the original circuit [2), but the voltage peak at the
beginning of the pulse is avoided.
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Fig. I:  SLED scheme
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1. DESCRIPTION

Fig. 1 shows the layout for the pulse compressor. A 3 dB coupler,
connected to two equal storage cavities, separates the forward and
backward running wave. When switching on the klystron, the empty
cavities form nearly a short circuit, so that the voltage is reflected with
opposite sign. While the cavities are charged, the reflection coefficient
increases, and finally the reflected voltage has the same phase as the
incident wave. In the original device, now the phase of this wave is
inverted, yielding a voltage step of two times the incident amplitude.
From this maximum the output voltage decays exponentially, until
the klystron is switched off (fig. 2).
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Fig. 2:  Waveforms of the conventional SLED
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Fig. 3:  Waveforms of the continuous — phase SLED

If we replace the phase switch by a continuous phase modulator,
we can try to control the phase of the klystron voltage such that the
magnitude of the reflected voltage remains constant. In fact, this can
be done by starting with a phase step smaller than 180° which yields a
smaller reflected voltage, and then raising the phase continuously until
180° are reached (fig. 3). After this, of course, the voltage will decay
as in the former case. The length of this flat top depends on its volt-
age and of course the coupling and Q — value of the storage cavities. If
it is made as long as the filling time, a fully usable rectangular shape is
achieved.

From the energetic viewpoint, it is preferable to admit a certain
decay time, until the reflected voltage equals the incident voltage.
Then the reflected voltage becomes exactly zero after switching off the
klystron, and no energy is left in the system. Because of the quadratic
dependance of the energy versus the voltage, however, this zero volt-
age need not be very exactly adjusted.
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Fig. 4:  Equivalent circuit of the arrangement
2. THEORY

The wave amplitudes on a transmission line of characteristic
impedance Z, are defined as

forward wave: a = -l-( Y _ + i Zo)

f vz, M
backward wave: @ = 3(\/"70 - I\/fo)

with v and / voltage and current on the line. Fig. 4 shows the trans-
mission line terminated by the storage cavity and fed by a generator
(Klystron). The characteristic impedance Z, is normalized to 1, and
the generator voltage is chosen to yield an incident wave amplitude of
v.. The clements representing the cavity are calculated from the



coupling coefficient B and the Q—value 0, We have now to calcu-
late voltage v, and current i, at the cavity. The reflected wave ampli-
tude, which is fed via the coupler to the accelerating structure, is then
v, = i, (eq.(1)). Without losing generality, the length of the transmis-
sion line can be set zero. Then the voltage v, can be shown to follow
the differential equation (dots mean derivatives with respect to time):

29, = LV, + 1+ 0y, + C3, @
or
2
; Wy 7.
av, = —-2—-v‘+ v, + -2-v‘=
25 20 @
= ——o_
where « T+ 5 and 7 (TP o,
The current is i, = 2y, — v, and hence the reflected amplitude
v=—-(v-ic)=v—v‘ 4

Eq.(3) shall now be solved for a modulated generator voltage. Des-
ignating the (complex) amplitude values with uppercase letters, we get

= Re{ v, ejw"’}

= Re{(V, + joov) "} )

v = Re{(f}‘ +jw,V, - w:V) ejw"'} .
v, and its derivatives have the same form. Now we insert the expres-
sions of eq.(5) into the differential equation (3). To make this equa-
tion valid for any value of jwt, it must also hold for the complex
amplitudes. The result is
1 y T 5

Lz —_ v .

jw°V+aV V+(jw°+t)V‘+j2wo g (6)
For high Q —values of the cavity, 1/w, can be neglected against 7. The
further interpretation of eq.(6) depends on the variation of the volt-
ages.- If ¥, is constant or varies only smoothly (ie. ¥, << w,), also
the resonator voltage will vary smoothly, so that all terms in eq.(6)
with w, in the denominator can be neglected. This leads to

aV‘=V‘+1V‘. ©)
which is formally equivalent to eq.(1) in [4], but generalized for com-
plex amplitudes. For the reflected wave ¥, = V, — V, we get the dif-

ferential equation
v, +1:V —l‘V -tV

- 8
-H the reflection coefficient. @
The other limiting case is a step function of V,. The resonator volt-
age cannot change discontinuously, and only its slope varies by an
amount which can be found by integrating eq.(6). The change of the
reflected voltage is

)

AV, = - AV‘

Now we are in a position to calculate the reflected waveform com-
pletely. The generator signal is shown in fig. 3. The process can be
divided into the following phases:

where I =

phase I: -, <t<0 V‘(:)-lejo
, 100
phase 2 0 <t <y V‘(:)=le L ¢‘(t)-¢°..‘n(w)
phase 3 f<t<t  V()=1le"
phase 4: t>1 V‘(l) =0

Phase 1 is known from the original SLED circuit. The reflected
voltage is the solution of eq.(8) with V, = 0, and rises in an exponen-
tial function
-(e+ )

V(=T = (1+T)e 1y
until it reaches
V(-0 =T =(+D)e " av (12)
The step in ¥ to phase 2 is reflected (eq.(9)), so that
YO0y = V= (! - 1)
_m¢o .
Vo exp [jm(m)] (13)

Vig+ 2(V_ o+ (I + cospy) -

where Vo -

During phase 2, the ansatz

1,0 . - 14,0
v = ¢ VA0 = b e "
Je0 , . Je 0
V) = Ve Ve =jemv,e

which takes into account that the magnitude ¥, of the reflected wave
shall be constant, is put into eq.(8), and we get the following system
of differential equations:

Vo= 3~ + (1-T)costg

. [)
a¢ = 7 sinA¢
. =V, + TcosAg -
Sy

where A¢ = ¢, — ¢,
This ecquation is integrated numerically from ¢, = ¢, and
A¢ = arg{VP(+0)} - ¢, (eq.(13)) until ¢, = = is reached at the time
¢ = {,. This is the transition to phase 3. During this phase the reflect-
ed voltage decays exponentially. As in phase 1, it is given as a solu-
tion of eq.(8) with V = (:

VA= =T + (T + V,e (16)
Switching off the generator at ¢ = ¢, means a voltage step of
AV, = 1, which is subtracted from V,. Later on the voltage continues

to decay:
V) -1 )

(4)
Vi) =
In contrary to the original SLED, the phase of the voltage runs
through values which deviate from 0° or 180°, so that the integration
over the section to get the available accelerating voltage must be done
vectorially. For a constant gradient structure, the group velocity
decreases linearly with the length coordinate z (normalized to section
length):
v(2) = —In ( )(1 - 9 (18)

T, is the filling time of the secuon The slope g is chosen such that
the decrease of group velocity exactly compensates for the loss, so
that the amplitude of the travelling wave is constant over the section,
and there is only a retardation between the field at different points on

the section:
.'[ 2 >
° v ()

(13

J o,(r,)) e (t=1)/+

) e‘("',)/' .

(1-32)-

E(z,t)= E(0,t — cm,) = E(O. t -

(19
- -7 bl =g2)
E (o R
The acccleraung voltage as a function of time is then
- In
V.0 J'E(c 0& = IV -rE=Aha . o

The magmtude of |V, (0 ﬁ'om €q.(20) is the available accelerating

voltage, divided by its value if the section would be fed by a constant
wave of unit amplitude.

@
r $,(0) = ¢(t) — (@, = )t
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Fig. 5:  Relationship between phase and frequency modulation
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There is a little trick to further improve the efficiency. As stated
above, there is a residual phase modulation in the signal, e. g. as
shown in fig. 5. This phase 'modulated voltage with the angular fre-
quency w, can also be regarded as a voltage with a different frequency
w, and a different phase modulation ¢,(¢):

Ve Vet = e M where ¢ (0= (-, —wt.  (21)
Thus we can operate the klystron with a lower frequency than the
accelerating structure, and let a part of the residual phase modulation
care for the frequency shift. As shown in fig. 3, the phase deviations
from 0° can be made smaller, and the voltages add more efficiently.
To calculate V,,, the integrand in eq.(20) must be replaced by
V(?)exp(—j(w,—w,)¢') where ¢ = ¢~ T, In(1-g{)/In(1-g)..
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Fig. 6:  Calculated waveforms of the continuous—phase SLED,
Ve = 1.8
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Fig. 7:

E-field across accelerating section,
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SLED, V,_ = 1.8

3. PERFORMANCE

Some numerical results based on the parameters of the LIPS cavi-
ties of the CERN LIL injector shall be given. The Q of the storage
cavities is 200000, coupling = 13.4, the filling time of the accelerat-
ing structure is 1.2 us, and g = 0.8126. The amplitude of the inci-
dent wave from the klystron is taken as one. It is switched on at
t= —t, with zero phase. From (=0 to =, its phase is changed
according to eq.(15), so that the reflected wave is constant in ampli-
tude. From ¢= ¢, until switch—off at r=¢, the phase is 180°. This is
shown as the solid line in the top diagram of fig. 6. The charging
time has been chosen as f, = 3.8us, and the decharging time as
t,= 1.2us, equal to the accelerating section filling time. The reflected
amplitude from the cavity is shown in the middle diagram. Up to
t= 1, the voltage can be held constant, afterwards there is an exponen-
tial decay. Obviously the flat top can be made the longer the lower
this voltage level is chosen. The broken line in the upper diagram
shows the phase of the pulse. During decharging, it deviates several
10° from zero. The lower diagram shows the accelerating voltage
across the structure, i.c. the momentary voltage multiplication factor.
There is a flat maximum at about 1.55. The broken curve shows the
available voltage if a higher frequency is chosen for acceleration, as
described in Chapter 3. A maximum voltage of 1.6 is reached. With
the phase switched, the maximum voltage is 1.6 as well, but it is
reached earlier in time. Fig. 7 shows the field distribution in the
accelerating structure at different times.

In fig. 8, finally, a lower flat top voltage is chosen (1.6), shaping
the output pulse nearly rectangular. The accelerating voltage is by 0.1
lower than for V., but with the higher operating frequency the value

of 1.6 is reached again.

It can be stated that the continuous phase modulation scheme
does not enhance the available acceleration energy. It causes, however,
a more continuous distribution of the energy over the accelerating
structure, which resembles more a true “constant gradient”.

Further investigations have shown, that neither the value of the
coupling coefficient nor the exact control of the generator phase are
very critical for the circuit behaviour.
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Fig. 8: Calculated waveforms of the continuous— phase SLED,
Vou = 1.6
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