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Abstract

Color/kinematics duality and the double-copy construction have proved to be sys-
tematic tools for gaining new insight into gravitational theories. Extending our ear-
lier work, in this paper we introduce new double-copy constructions for large classes
of spontaneously-broken Yang-Mills-Einstein theories with adjoint Higgs fields. One
gauge-theory copy entering the construction is a spontaneously-broken (super-)Yang-
Mills theory, while the other copy is a bosonic Yang-Mills-scalar theory with trilinear
scalar interactions that display an explicitly-broken global symmetry. We show that
the kinematic numerators of these gauge theories can be made to obey color/kinematics
duality by exhibiting particular additional Lie-algebraic relations. We discuss in detail
explicit examples with N = 2 supersymmetry, focusing on Yang-Mills-Einstein super-
gravity theories belonging to the generic Jordan family in four and five dimensions, and
identify the map between the supergravity and double-copy fields and parameters. We
also briefly discuss the application of our results to N = 4 supergravity theories. The
constructions are illustrated by explicit examples of tree-level and one-loop scattering
amplitudes.
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1 Introduction

Einstein’s theory of gravity and spontaneously-broken gauge theory are two of the pillars of

our current understanding of the known fundamental interactions of Nature. While super-

symmetric field theories that combine gravitational interactions and spontaneous symmetry

breaking have been studied extensively at the Lagrangian level, the perturbative S matrices

of these theories have largely been unexplored.

Modern work on scattering amplitudes in matter-coupled gravitational theories has been

largely focused on pure supergravities and on cases in which additional matter consists of

abelian vectors (i.e. Maxwell-Einstein supergravities) or fermion/scalar fields. A key tool

has been the double-copy construction [1, 2], which has led to a dramatic simplification

of perturbative calculations. For example, explicit expressions of one-, two-, three- and

four-loop amplitudes have been obtained for N = 4, N = 5 and N = 8 supergravities in

refs. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. For the case of N ≤ 4, one-loop four-point

superamplitudes have been obtained for the generic Jordan family ofN = 2Maxwell-Einstein

supergravity (MESG) theories [15, 16, 17], for pure supergravities with N ≤ 4 [15, 18, 17],

and for orbifolds thereof [15, 19].

The double-copy construction assumes the existence of presentations of gauge-theory scat-

tering amplitudes that exhibit color/kinematics duality. The duality states that, in an am-

plitude’s Feynman-like diagrammatic expansion, one can find numerator factors that obey

Lie-algebraic kinematic relations mirroring the relations satisfied by the corresponding gauge-

group color factors. Once found, the numerators may play the role of these color factors in

any gauge theory amplitude, and upon substitution one obtains valid gravitational ampli-

tudes. There is by now extensive evidence for the duality and for the double-copy construc-

tion in wide classes of Yang-Mills (YM) theories and in the associated (super)gravity theories.

Examples where color/kinematics duality has been demonstrated include: pure super-Yang-

Mills (SYM) theories [1, 2, 20, 21, 22], SYM theories with adjoint matter [15, 18, 17], self-dual

Yang-Mills theory [23, 24], QCD and super-QCD [25, 26], YM coupled to φ3 theory [27], and

YM theory extended by a higher-dimensional operator [28]. It has also been observed that

the duality is not limited to YM gauge theories, but it also applies to certain Chern-Simons-

matter theories [29, 30, 31], as well as to the non-linear sigma model/chiral Lagrangian [32]

and to the closed (heterotic) sector of string theory [33].

Amplitudes in Maxwell-Einstein supergravities are obtained by a double-copy construction

of the form (pure SYM)⊗(YM coupled to scalars). Subgroups of the global symmetries

of Maxwell-Einstein supergravities can be gauged.1 In the resulting theories some of the

vector fields become gauge fields of the chosen gauge group and transform in its adjoint

representation. Therefore, the only subgroups of the global symmetry that can be gauged are

1While gauging part of the R-symmetry group is very interesting, here we will focus on gaugings that
only affect the other global symmetries.
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those whose adjoint representation is smaller than the number of vector fields that transform

non-trivially under the global symmetry group. In five dimensions, gauging only a subgroup

of the global symmetry group in N = 2 Maxwell-Einstein supergravity theories does not

introduce a potential for the scalar fields and hence the resulting theory is guaranteed to

have a Minkowski vacuum state.

The double-copy construction of a wide class of Yang-Mills-Einstein supergravity (YMESG)

theories was given in [27], where it was shown that one of the two gauge-theory factors is a

pure SYM theory, and the other is a bosonic YM theory coupled to scalars that transforms

in the adjoint representation of both the gauge group and a global symmetry group. The

latter theory has trilinear φ3 couplings, and hence we refer to it as YM + φ3 theory. Through

the double-copy construction, the global symmetry of the non-supersymmetric gauge-theory

factor becomes a local symmetry, and the trilinear scalar couplings generate the minimal

couplings of the corresponding gauge fields. The gravitational supersymmetry is directly

inherited from the SYM theory, thus accommodating N = 1, 2, 4 YMESG theories and

N = 0 Yang-Mills-Einstein (YME) theories. Earlier work [34] introduced the same type of

construction for single-trace tree-level YME amplitudes. Recent work on YME amplitudes

takes several different approaches, see refs. [35, 36, 37, 38, 39, 40, 41].

It is essential to explore the validity of the double-copy construction away from the origin of

the moduli space. In particular, a natural and physically-motivated extension is to consider

cases in which the supergravity gauge symmetry is spontaneously broken through the Brout-

Englert-Higgs mechanism. We will present such an extension in the present paper. As a key

result, we find that one of the two gauge-theory factors is the spontaneously-broken pure

SYM theory (or, alternatively stated, the Coulomb branch of pure SYM theory), while the

other is a particular massive deformation that explicitly breaks the global symmetries of the

YM + φ3 theory.

Identifying the relation between asymptotic states of the supergravity theory and the

corresponding states of the gauge-theory factors is an important aspect of the double-copy

construction. For gauge theories with only adjoint fields, the double copy gives a super-

gravity state for every tensor product of gauge-theory states (not counting the degeneracy

of the representation). In cases in which the gauge-theory matter transforms in non-adjoint

representations of the gauge group, the double-copy construction allows for better tuning

of the matter content of the gravitational theory, since only certain tensor products of the

gauge-theory matter are allowed.

In ref. [19] color/kinematics duality was extended to non-adjoint representations in the

context of orbifolds ofN = 4 SYM, and the associated double copies were found to be matter-

coupled supergravity theories. The construction required that: (1) the gauge groups of the

two gauge theories should be identified, and (2) supergravity states correspond to gauge-

invariant bilinears that can be formed out of the gauge-theory states. This construction

correlates gauge- and global-group representations appearing in the resulting gauge theories.
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In ref. [17] color/kinematics duality was extended to theories with fields in the fundamental

representation and used to construct pure N ≤ 4 supergravity theories as well as matter-

coupled theories. In this construction, the necessary condition for the double copy to be

valid is that the kinematic matter-dependent numerators obey the same relations as the

corresponding color factors with fundamental representations. Upon replacing the color

factors with kinematic numerator factors one similarly obtains a double copy that correlates

the representations of the states of the two gauge-theory sides.

For the double-copy constructions of supergravity theories with spontaneously-broken

gauge symmetry, the identification of the asymptotic states will follow closely the non-adjoint

or fundamental cases. However, the details of the kinematic algebra obeyed by the numera-

tors will differ substantially compared to previous situations. The kinematic Jacobi identities

and commutation relations will be extended by additional identities which are inherited from

the Jacobi relations of the theory with unbroken gauge symmetry. We stress that our con-

struction works well with – but does not require – supersymmetry, and similarly works in all

dimensions in which the theories are defined, as it is expected for color/kinematics duality.

The paper is organized as follows. In section 2 we review color/kinematics duality, and

identify matter-coupled gauge theories with fields in several different representations of the

gauge group and specific cubic and quartic couplings which obey the duality. We extend

color/kinematics duality and the double-copy construction to massive field theories, as well

as to field theories with spontaneously-broken gauge symmetry, paying close attention to the

construction of asymptotic states. In particular subsection 2.6 discusses extensions of the

double-copy construction and contains our main results of this generalization.

In section 3 we review, from the Lagrangian perspective, the Higgs mechanism in four-

and five-dimensional N = 2 Yang-Mills-Einstein supergravities. Such theories are uniquely

specified by their cubic interactions and provide simple examples of our construction. In

particular, we identify the four-dimensional symplectic frame in which the amplitudes from

the spontaneously-broken Yang-Mills-Einstein supergravity Lagrangian reproduce the ones

from the double-copy construction.

In section 4, we compute tree-level scattering amplitudes in the gauge theories discussed

in section 2 and in the supergravity theories discussed in section 3. We find the constraints

imposed by color/kinematics duality on the cubic and quartic couplings of the gauge theories,

identify the precise map between supergravity states and gauge-invariant billinears of gauge-

theory states, and give the relation between the gauge-theory and supergravity parameters.

In section 5, we discuss loop-level calculations in theories formulated in the earlier sections.

Section 6, discusses briefly spontaneously-broken N = 4 Yang-Mills-Einstein supergravity

theories. We review the bosonic part of their Lagrangians in five dimensions and discuss

how their amplitudes can be obtained through the double-copy construction with a straight-

forward extension of the results obtained for N = 2 theories.
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b̂

â ĉ

⇔ f̃ âb̂ĉ

â

ı̂ ̂

⇔ (tâ) ̂ı̂

Figure 1: The two cubic types of interactions for fields in adjoint representation and a generic
complex representation. We organize the amplitudes around cubic graphs with these two types of
vertices, and the corresponding color factors are contractions of the structure constants and the
generators.

2 Color/kinematics duality and double copy

In this section, we review the color/kinematics duality applied to gauge theories that have

fields in complex representations of the gauge group. Giving concrete examples, we write

down Lagrangians of several gauge theories where the duality should be present. We then

spontaneously (and explicitly) break the symmetries of these theories, and in the process

generalize color/kinematics duality to such situations. Finally, we give the double-copy

prescription for spontaneously- and explicitly-broken theories.

2.1 Review: color/kinematics duality for complex representations

The scattering amplitudes in a gauge theory with fields in both the adjoint representation

and some generic complex representation2 U of a Lie group can be organized in terms of

cubic graphs.3 At L loops and in D dimensions, such amplitude has the following form4

A(L)
n = iL−1gn−2+2L

∑

i∈cubic

∫
dLDℓ

(2π)LD
1

Si

cini

Di

, (2.1)

where ci are color factors, ni are kinematic numerators and Di are denominators encoding

the propagator structure of the cubic graphs. The denominators may contain masses, cor-

responding to massive fields in the representation U . The Si are standard symmetry factors

that also appear in Feynman loop diagrams.

The cubic form (2.1) directly follows the organization of the color factors ci, which are

constructed from two cubic building blocks. These are the structure constants f̃ âb̂ĉ for

2By generic complex representation, we mean a representation that only has quadratic and cubic invariants
UU , and U (Adj)U , respectively. A canonical example of such an U is the fundamental representation.

3Quartic and higher-degree interactions are absorbed into the numerators of the cubic graphs. This
corresponds to having introduced suitably-chosen auxiliary fields to make the Lagrangian cubic.

4We use a different numerator normalization compared to ref. [2]. Relative to that work, we absorb one
factor of i into the numerator, giving a uniform overall iL−1 to the gauge and gravity amplitudes.
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(b)(b)

− =

(a)

− =

Figure 2: Pictorial form of the basic color and kinematic Lie-algebraic relations: (a) the Jacobi
relations for fields in the adjoint representation, and (b) the commutation relation for fields in a
generic complex representation.

vertices linking three adjoint fields and the generators (tâ) ̂
ı̂ for the U -U -adjoint vertices,

as shown in figure 1. When isolating color from kinematics, the crossing symmetry of a

vertex only holds up to signs dependent on the signature of the permutation. These signs

are apparent in the total antisymmetry of f̃ âb̂ĉ and may be made uniform by defining the

generators in the representation U to have a similar antisymmetry:

(tâ)̂ ı̂ ≡ −(tâ) ̂
ı̂ ⇔ f̃ ĉâb̂ = −f̃ b̂âĉ . (2.2)

The effect of such a relabeling is that any color factor picks a minus sign, ci → −ci, under
the permutation of any two graph edges meeting at a vertex.

The color factors obey simple linear relations arising from the Jacobi identities and com-

mutation relations of the gauge group,

f̃ d̂âĉf̃ ĉb̂ê − f̃ d̂b̂ĉf̃ ĉâê = f̃ âb̂ĉf̃ d̂ĉê

(tâ) k̂
ı̂ (tb̂) ̂

k̂
− (tb̂) k̂

ı̂ (tâ) ̂

k̂
= f̃ âb̂ĉ (tĉ) ̂

ı̂

}
⇒ ci − cj = ck ; (2.3)

these relations are shown diagrammatically in figure 2. The identity ci−cj = ck is understood

to hold for triplets of diagrams (i, j, k) that differ only by the subgraphs in figure 2 and

otherwise have common graph structure. The linear relations among the color factors ci
imply that the corresponding kinematic parts of the graphs, ni/Di, are in general not unique.

This should be expected, given that individual (Feynman) diagrams are gauge-dependent

quantities.

It was observed by Bern, Carrasco and one of the current authors (BCJ) [1, 2] that, within

the gauge freedom of individual graphs, there exist particularly nice amplitude presentations

that make the kinematic numerator factors ni obey the same general algebraic identities as

the color factors ci. In the present context, this implies that there is a numerator relation for

every color Jacobi or commutation relation (2.3) and a numerator sign flip for every color

factor sign flip (2.2):

ni − nj = nk ⇔ ci − cj = ck ,

ni → −ni ⇔ ci → −ci . (2.4)
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In a more general context, there could exist color identities beyond the Jacobi or commu-

tation relation, which would justify the introduction of corresponding kinematic numerator

identities. Indeed, we will encounter this in section 2.4 after introducing additional (bi-

fundamental) complex representations of the gauge group.

Amplitudes built out of numerators that satisfy the same general identities as the color

factors are said to exhibit color/kinematics duality manifestly. Theories whose amplitudes

can be presented in a form that exhibits this property are said to obey the color/kinematics

duality.

It is interesting to note that eq. (2.4) defines a kinematic algebra in terms of the numer-

ators, which suggests the existence of an underlying Lie algebra. While not much is known

about this kinematic Lie algebra, it should be infinite-dimensional due to the momentum-

dependence of the numerators. In the restricted case of self-dual YM theory the kinematic

algebra has been shown to be isomorphic to that of the area-preserving diffeomorphisms [23]

(see also ref. [42]).

A central aspect of the color/kinematics duality is that, once numerators have been found

to obey the duality, they can replace the color factors in eq. (2.1). This gives a double-copy

construction for amplitudes of the form

M(L)
n = iL−1

(κ
2

)n−2+2L ∑

i∈cubic

∫
dLDℓ

(2π)LD
1

Si

niñi

Di

, (2.5)

which describe scattering in a gravitational theory.5 The tilde notation is necessary since

the two copies of numerators may not be identical. The two sets of numerators entering

the double-copy construction may belong to different gauge theories, and at most one set is

required to manifestly obey the duality [1, 2].

While the double copy discussed here strictly applies to the construction of a gravitational

amplitude using the scattering amplitudes of two gauge theories as building blocks, it is

often convenient the shorten the description using the notation gravity = gauge ⊗ g̃auge.

This emphasizes the tensor structure of the asymptotic states of the double copy, and at

the same time gives essential information about the theories that enter the construction.

The notation is also motivated by the observations that the double copy appears to have

extensions beyond perturbation theory [23, 43, 44, 45].

As examples of double copies, we note that pure Yang-Mills theory “squares” to gravity

coupled to a dilaton and a two-index anti-symmetric tensor: GR + φ + Bµν = YM ⊗
YM [46, 47]. Pure Einstein gravity may be obtained by removing these extra particles

via a ghost-like double-copy prescription for massless quarks [17]. An asymmetrical double

copy, YM ⊗ (YM + φ3), is needed for the amplitudes that couple Yang-Mills theory to

gravity [27]. For the double copies of YM theories with matter in a complex representation

U , such as described in eq. (2.5), one obtains amplitudes that involve gravitons, dilatons,

5If vector contributions are absent in either ni or ñi, then eq. (2.5) describes a non-gravitational sector.
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two-index antisymmetric tensors and matter fields [17]. In supersymmetric extensions of

these theories, superamplitudes are labeled by the corresponding supermultiplets; the tensor

product of two supermultiplets is typically reducible to a sum of smaller multiplets of the

resulting supersymmetry algebra.

While the color/kinematics duality has a conjectural status at loop level, amplitudes up

to four loops for diverse theories (with and without additional matter) have been explicitly

constructed in forms consistent with the duality and the double copy [2, 3, 4, 6, 15, 24, 10,

48, 18, 49, 19, 17, 11, 50, 51, 52].

At tree level, the double-copy construction restricted to fields in the adjoint representation

is known [1, 53] to be equivalent to the field-theory limit of the Kawai-Lewellen-Tye (KLT)

relations [46, 47] between open- and closed-string amplitudes. Color/kinematics duality has

been used to derive a number of impressive results for string-theory amplitudes [20, 21, 54,

55, 56, 57, 33]; more generally, the duality combined with string-theory methods provides

powerful new tools for field theory [22, 16, 58, 59, 60, 13, 14, 61, 62]. Recently, the double-

copy construction has been extended to express certain Kerr-Schild-type solutions of general

relativity in terms of classical solutions of the Yang-Mills equations of motion [44, 45]. The

duality implies the BCJ amplitude relations [1] that limit the number of independent tree

amplitudes to (n− 3)! in the purely adjoint case, and otherwise to (n− 3)!(2k− 2)/k! when

k > 1 fundamental-antifundamental pairs are present [25]. The BCJ amplitude relations

have a close connection to the scattering equations and to the associated string-like formulae

for gauge and gravity tree amplitudes [63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Finally, a

formulation of the double copy at the level of off-shell linearized supermultiplets was obtained

in [73, 74, 75, 76].

2.2 Scalar φ3 theories

As a warm-up exercise, consider a simple scalar model that exhibits the properties described

in the previous section where all fields transform either in the adjoint of a group Gc or in a

generic complex representation U of this group (and corresponding conjugate U).

Suppressing all Gc indices, assume we have a family of real massless scalars transforming in

the adjoint representation, labeled as φa. And, similarly, a family of identical-mass complex

scalars transforming in the U (U) representation, labeled as ϕi (ϕ
i). For a scalar theory with

at most cubic interactions the Lagrangian is then6

g2Lscalar = Tr
(1
2
∂µφ

a∂µφa+
i

3!
λF abc[φa, φb]φc

)
+∂µϕ

i∂µϕi−m2ϕiϕi+λ T
a j
i (ϕiφaϕj) . (2.6)

Note that the indices a, b, c, . . . and i, j, . . . are not Gc indices, but rather labels that distin-

guish fields in the same representation (see appendix A for a summary of notation). The

6Scalar and gauge-theory Lagrangians are written in mostly-minus spacetime signature, whereas gravity
Lagrangians use mostly-plus signature.
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coefficients F abc and T a i
j are arbitrary couplings between these fields, and λ is a dimension-

one constant (in four dimensions) such that all terms in Lscalar have uniform dimension. For

later convenience we have also introduced a dimensionless coupling g.

Denoting by (tâ) ̂
ı̂ the generators7 of Gc in the representation U and expressing the adjoint

fields as φa = tâ φaâ, a more explicit form of the Lagrangian can be obtained,

Lscalar =
1

2
∂µφ

aâ∂µφaâ +
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ + ∂µϕ

i∂µϕi − ϕim2ϕi + gλT a j
i φaâ ϕitâϕj .

(2.7)

Here f âb̂ĉ = −iTr([tâ, tb̂]tĉ) are the structure constants of the group Gc, the coupling constant

g has been moved to the cubic interactions via the redefinition φ → gφ, ϕ → gϕ, and the

indices of the complex representation U remain suppressed.

The symmetry Gc can be gauged, as we will do in the next section. Even before gauging,

scattering amplitudes from Lscalar have the same form as eq. (2.1), with the coefficients ci
given in terms of the generators and structure constants of Gc. Anticipating the gauging

of Gc we can constrain the Lagrangian (2.7) such that amplitudes expressed in this form

have numerators ni that obey the duality (2.4), in one-to-one correspondence with those

obeyed by the group-theoretic factors ci. This simple theory has no derivative couplings,

and therefore the numerator factors ni have no momentum dependence, they are only built

out of the couplings F abc and T a j
i . An inspection of the Lagrangian shows that the duality

holds if the couplings are in one-to-one correspondence with the structure constants and

generators of Gc,

F abc ⇔ f âb̂ĉ and T a j
i ⇔ (tâ) ̂

ı̂ , (2.8)

in the sense that the pair (F abc, T a) obeys the same general algebraic relations as (f âb̂ĉ, tâ).

This implies that

1. (T a) j
i ≡ T a j

i are the generators of a generic complex representation U ′ of a “kinematic”

Lie algebra8 of some groupGk. They can be taken to be normalized as Tr(T aT b) = 1
2
δab.

2. F abc are the structure constants of that algebra given by F abc = −2iTr([T a, T b]T c).

3. The ranges of indices a, b, c, . . . and i, j, k, . . . are the dimensions of the adjoint repre-

sentation of Gk and its representation U ′, respectively.

The resulting theory describes aGc⊗Gk invariant scalar field theory, with massless scalars φaâ

in the “bi-adjoint” representation and massive complex scalar fields ϕîı in the representation

U ⊗ U ′. This is one of the simplest realizations of a theory that exhibits a duality of the

type described in section 2.1 which is manifest in the Lagrangian.

7We normalize the generators as Tr(tâtb̂) = 1

2
δâb̂.

8This name is convenient because, once the Gc symmetry is gauged, the Lie algebra of Gk becomes a
subalgebra of the full kinematic algebra obeyed by the numerator factors.
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Note that it is straightforward to modify the mass spectrum of the theory while preserving

the duality. If the Gc representation U and/or the Gk representation U ′ are reducible, the

mass m in eq. (2.7) can carry labels identifying the irreducible components of U and U ′.

Hence, the U ⊗ U ′ representations can be decomposed into irreps of Gc ⊗ Gk, each with a

different mass term in the Lagrangian.

As a concrete example of this generalization, take the kinematic algebra to be Gk =

SU(Nk), and let the representation U ′ be Nf copies of the fundamental representation;

these copies are labeled by the flavor indices m,n = 1, . . . , Nf . Next take Gc = SU(Nc), and

let the representation U be its fundamental representation. With these choices, the scalar

theory takes the form

L′
scalar =

1

2
∂µφ

aâ∂µφaâ +
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ

+ ∂µϕ
im∂µϕim − (m2) n

mϕ
imϕin + gλT a j

i φaâϕimtâϕjm , (2.9)

where tâ and T a are generators in the fundamental representation of respective group. The

fundamental SU(Nc) indices ı̂, ̂ are not shown explicitly. The mass matrix is assumed to

be diagonalized, m n
m = δ n

m mn (no sum), corresponding to the mass eigenstates: ϕîın and

ϕîın. In the limit that mn → 0 (or mn → m) this theory has SU(Nc) × SU(Nk)× SU(Nf)

symmetry, where SU(Nf) is the flavor group. For generic mn the flavor group is explicitly

broken to SU(Nf ) → U(1)Nf . The case Nf = 0 is that of the pure bi-adjoint φ3 theory,

Lφ3 =
1

2
∂µφ

aâ∂µφaâ +
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ , (2.10)

which was identified in refs. [34, 27] to be useful for obtaining amplitudes in gravity theories

coupled to non-abelian gauge fields with SU(Nk) symmetry.9 See also refs. [77, 78] for other

applications of this theory in the context of color/kinematics duality.

2.3 Yang-Mills-scalar theories: gauging Gc

Let us now gauge the symmetry group Gc and include the self-interactions of the corre-

sponding non-abelian gauge fields. In eq. (2.6) we may replace all derivatives by covariant

derivatives in the representation U , ∂µ → Dµ, and add the standard pure-Yang-Mills La-

grangian with gauge group Gc.

Gauging theGc symmetry is not sufficient for the resulting theory to obey color/kinematics

duality; indeed, it is known from the Nf = 0 case [27, 79] as well as from the case of

fundamental and orbifold field theories [19, 17] that quartic scalar terms like φ4, φ2ϕϕ and

(ϕϕ)2 are required. For the particular theories discussed in this subsection, color/kinematics

duality will uniquely dictate the φ4 and φ2ϕϕ terms, whereas all terms of (ϕϕ)2 type will be

9Compared to the notation used in ref. [27], we have renamed the two couplings: g → g, g′ → λ.
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unconstrained. However, if ϕ and ϕ are in special complex representations for which the color

factors obey extra identities, then the (ϕϕ)2 terms may be constrained by color/kinematics

duality. We will see that these special representations include the ones arising from the

spontaneous symmetry breaking of a larger gauge group.

In ref. [27] we showed that the specific φ4 term that is consistent with color/kinematics

duality is

Lφ4 = −g
2

4
f âb̂êf êĉd̂φaâφbb̂φaĉφbd̂ . (2.11)

In section 4 we will compute four-point amplitudes in the YM-scalar theories and see that

they obey color/kinematics duality only if the Lagrangian also contains the term

Lφ2ϕϕ = −g2φaâφab̂ϕitâtb̂ϕi . (2.12)

There are several terms involving four fields in complex representations that can in principle

be freely added; we find that the combination

L(ϕϕ)2 = −g2ϕitâϕj ϕ
jtâϕi +

g2

2
ϕitâϕi ϕ

jtâϕj (2.13)

is particularly natural as it is in a certain sense (discussed in section 2.5.1) the complex

generalization of the adjoint contact term (2.11).

Thus, the Lagrangian with local symmetry Gc and global symmetry Gk, giving Yang-Mills

theory coupled to scalar fields, takes the following form:

LYM+scalar = −1

4
F â
µνF

µνâ + Lscalar

∣∣∣
∂→D

+ Lφ4 + Lφ2ϕϕ + L(ϕϕ)2 . (2.14)

For the particular choices of groups and representations that led to the theory (2.9), the

Lagrangian is

L′
YM+scalar = −1

4
F â
µνF

µνâ +
1

2
(Dµφ

a)â(Dµφa)â +
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ

+DµϕimDµϕim − (m2) n
m ϕimϕin + gλT a j

i φ
aâϕimtâϕjm

+
g2

4
f âb̂êf êĉd̂φaâφbb̂φaĉφbd̂ − g2φaâφab̂ϕimtâtb̂ϕim

− g2ϕimtâϕjn ϕ
jntâϕim +

g2

2
ϕimtâϕim ϕ

jntâϕjn . (2.15)

This theory has a local symmetry SU(Nc), a global symmetry SU(Nk), and a broken flavor

symmetry SU(Nf ) → U(1)Nf generically (for special choices of mass matrix, it is broken

to some subgroup SU(Nf)). We will derive the Lagrangian (2.15) in section 2.5.1 as a

particular truncation of a gauge theory with broken global symmetry. We expect that it

obeys color/kinematics duality, at least at tree level, as it should inherit this property from

the broken theory considered in section 2.5. The corresponding BCJ relations for tree-level
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amplitudes in the theories (2.14) and (2.15) should be the same as those of QCD [25]. Note

that theories (2.14) and (2.15) do not admit obvious supersymmetric extensions unless λ = 0.

In the next two sections we consider spontaneous symmetry breaking for dimensionally-

reduced YM theories (obtained by setting λ = 0 and Nf = 0) including supersymmetric

extensions, and, similarly, explicit symmetry breaking in a YM + φ3 theory (obtained by

setting Nf = 0).

2.4 Adjoint Higgs mechanism: breaking Gc

Here we briefly review Yang-Mills theories for which the gauge symmetry is spontaneously

broken by an adjoint Higgs field, and introduce the color/kinematics duality in this set-

ting. This a necessary ingredient in the double-copy construction of Yang-Mills-Einstein

supergravity theories with spontaneously-broken gauge symmetry. While supersymmetry is

not required by the construction, its presence facilitates the identification of gravitational

theories generated by the double-copy prescription.

Consider a YM-scalar theory that is the dimensional reduction of pure YM theory,

LYMDR
= −1

4
F Â

µνFµνÂ +
1

2
(Dµφ

a)Â(Dµφa)Â − g2

4
f ÂB̂Êf ĈD̂ÊφaÂφbB̂φaĈφbD̂ , (2.16)

where Â, B̂, . . . are adjoint gauge indices, and a, b, . . . are global symmetry indices. The

indices a, b = 0, 1, . . .N ′
φ − 1 run over the different real scalar fields in the theory. For

example, considering the particular cases N ′
φ = 2 or N ′

φ = 6 in D = 4 dimensions, we obtain

the bosonic part of the N = 2 or N = 4 SYM Lagrangians, respectively. In the N = 4 case,

the scalars transform in the anti-symmetric tensor representation of the R-symmetry group

SU(4), and in N = 2 theories the scalars carry a charge only under the U(1) part of the full

R-symmetry group SU(2)× U(1).

It is well-known that the Coulomb-branch vacua of this theory are described by constant

scalar fields solving

[φa, φb] = 0 , φa ≡ φÂatÂ , (2.17)

where tÂ are the generators of the gauge group. We choose a vacuum with scale V such that

the vacuum expectation value (VEV) of the field φ0 is proportional to a single gauge group

generator t0,

〈φa〉 = V t0 δa0 . (2.18)

With this choice, we can interpret the theory with N ′
φ = 2 as the dimensional reduction of

a spontaneously-broken half-maximal SYM theory in five dimensions where φ0 is the scalar

of the vector multiplet. The fact that our construction uplifts to D = 5 dimensions will be

useful when identifying the corresponding supergravity Lagrangian obtained by the double-

copy construction. Similarly, for N ′
φ = 6, the theory can be uplifted to the spontaneously-

broken maximally-supersymmetric YM theory in D ≤ 9. For convenience of presentation, in

the following we will ignore terms containing fermions in the supersymmetric Lagrangians.
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α̂

γ̂ β̂

⇔ f̃ α̂β̂
γ̂

â

γ̂ β̂

⇔ f̃ âβ̂
γ̂

α̂

γ̂ β̂

⇔ f̃ β̂
γ̂α

Figure 3: Additional types of cubic interactions that are obtained after the gauge symmetry is
spontaneously-broken in a purely adjoint theory. The resulting amplitudes are organized around
cubic graphs where these vertices are included. The corresponding color factors are contractions of
the various types of structure constants.

The Higgsed Lagrangian corresponding to (2.16) is obtained by splitting the scalar and

vector fields as

AÂ
µ =

(
Aâ

µ,Wµα̂,W
α̂

µ

)
, φÂa =

(
φaâ, ϕa

α̂, ϕ
aα̂
)
, (2.19)

so that the index â runs over the adjoint representation of the unbroken part of the gauge

group and the index α̂ runs over the matter-like non-adjoint complex representations. Under

this split, the only non-zero entries of the structure constants f ÂB̂Ĉ are10

f âb̂ĉ = −iTr([tâ, tb̂]tĉ) , f â α̂

β̂
= −iTr([tâ, (tβ̂)†]tα̂) , f α̂ γ̂

β̂
= (f β̂

γ̂ α̂)
† = −iTr([tα̂, (tβ̂)†]tγ̂) ,

(2.20)

which are the structure constants of the unbroken part of the gauge group, the generators

and Clebsch-Gordan coefficients for the matter-like representations. Since the scalar VEV

has been taken along the gauge group generator t0, the mass matrix has the expression

m β̂
α̂ = igV f 0 β̂

α̂ . (2.21)

Expanding the original covariant derivative (Dµφ
a)Â = ∂µφ

Âa + gf ÂB̂ĈAB̂
µ φ

Ĉa and the

covariant field strengths around the scalar VEV, and decomposing these objects in represen-

tations of the unbroken part of the gauge group leads to11

(Dµφ
a)Â=




(Dµφ
a)â + gW µf

âϕa − gϕaf âWµ

(Dµϕ
a)α̂ − iδa0(mWµ)α̂ + gφaâ(f âWµ)α̂ + gW µfα̂ϕ

a − gϕafα̂Wµ + gϕafα̂Wµ

(Dµϕa)α̂+ iδa0(W µm)
α̂− gφaâ(W µf

â)α̂+ gW µf
α̂ϕa− gϕaf α̂Wµ− gW µf

α̂ϕa


 ,

(2.22)

10Note that we may freely cyclicly permute the indices, e.g. f α̂ γ̂

β̂
= f γ̂α̂

β̂
= f γ̂α̂

β̂
.

11 We use the shorthand notation

V
β̂
f â γ̂

β̂
Uγ̂ → V f âU , V

β̂
f α̂ γ̂

β̂
Uγ̂ → V f α̂U , V

β̂
f β̂ γ̂

α̂ Uγ̂ → V fα̂U , V
β̂
f α̂

β̂ γ̂
U

γ̂ → V f α̂U .

15



− = − =

− = − =

(a) (b)

(c) (d)

Figure 4: Pictorial representation of additional color Lie-algebra relations that are obtained after
the gauge symmetry spontaneously-broken in a purely adjoint theory. These are also pictorial
representations of the kinematic algebra that should be imposed on diagram numerators in the
context of color/kinematics duality. The relations are generalizations of the Jacobi identity. Curly
lines represent unbroken adjoint states (massless fields) and double lines represent broken non-
hermitian states (massive fields). Solid fat lines in (d) represent sums over all three types of states
(the massless and two conjugates of the massive ones), giving seven terms in the (d) identity.

F Â
µν=




F â
µν + 2gW [µf

âWν]

2(D[µWν])α̂ + 2gW [µfα̂Wν] − gWµfα̂Wν

2(D[µWν])
α̂ + 2gW [µf

α̂Wν] − gW µf
α̂W ν


 . (2.23)

In general, the matrix m β̂
α̂ is block diagonal, with each block corresponding to different

irreducible representations. As usual, the mass of the scalar fields in the matter-like repre-

sentation corresponding to the generator t0 (ϕ0α̂) depends on the choice of gauge. In the

unitary gauge its mass is infinite and this field decouples. In this gauge the Lagrangian is

L✟✟YMDR
= −1

4
F Â

µν FµνÂ +
1

2
(Dµφ

a) Â (Dµφa)Â − g2

4
f âb̂êf ĉd̂êφaâφbb̂φaĉφbd̂ − ϕaα̂(m2) β̂

α̂ ϕ
a

β̂

− 2igf â γ̂
α̂ m β̂

γ̂ φ
0âϕaα̂ϕa

β̂
+ V4

(
φ, ϕ

)
, (2.24)

where we have written explicitly the cubic term in the scalar potential of eq. (2.16).

Focusing on the N ′
φ = 2 case (corresponding to the bosonic part of N = 2 SYM) in the

unitary gauge, we have only one family of massive real scalars ϕα̂ ≡ ϕ1
α̂; the other family,

ϕ0
α̂, becomes the longitudinal component of the W bosons.

The structure constants, generators and Clebsch-Gordan coefficients obey relations inher-
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ited from the Jacobi relations of the original gauge group. A first set of relations is

f d̂âĉf ĉb̂ê − f d̂b̂ĉf ĉâê = f âb̂ĉf d̂ĉê ,

f â β̂
γ̂ f b̂ γ̂

α̂ − f b̂ β̂
γ̂ f â γ̂

α̂ = f âb̂ĉf ĉ β̂
α̂ ,

f â γ̂
ǫ̂ f ǫ̂ β̂

δ̂
− f â β̂

ǫ̂ f ǫ̂ γ̂

δ̂
= f â ǫ̂

δ̂
f γ̂ β̂

ǫ̂ . (2.25)

These relations are necessary to ensure gauge invariance in any gauge theory (with or without

massive vectors). Since they are components of the structure constants of a larger group, and

since they control the gauge invariance of massive vector interactions, the Clebsch-Gordan

coefficients f γ̂ β̂
ǫ̂ need to obey two further identities:

f α̂ γ̂
ǫ̂ f ǫ̂ β̂

δ̂
− f α̂ β̂

ǫ̂ f ǫ̂ γ̂

δ̂
= f α̂ ǫ̂

δ̂
f γ̂ β̂

ǫ̂ ,
(
f β̂ ǫ̂

γ̂ f
α̂

ǫ̂ δ̂
+ f α̂ ǫ̂

δ̂
f β̂
ǫ̂ γ̂ + f â β̂

γ̂ f â α̂

δ̂

)
− (α̂ ↔ β̂) = f α̂ β̂

ǫ̂ f ǫ̂

δ̂ γ̂
. (2.26)

It is important to note that, for a given assignment of external masses, at most three terms

of the above seven-term identity can be non-zero. Hence, the seven-term identity can be

thought of as a compact notation for a set of distinct three-term identities. These three-

term identities will be the ones imposed on the numerator factors in a duality-satisfying

amplitude presentation.

We should also note that, depending on the field content, the relations in eq. (2.26) could

be relaxed, in the sense of replacing f γ̂ β̂
ǫ̂ by another (more general) solution to eq. (2.25).

This is the case when the fields transforming in the matter representations are scalars or/and

fermions. However, if massive vectors transform in matter representations of the unbroken

gauge group, then these extra relations are required by the consistency of the theory (as the

massive vectors can arise only through a Higgs mechanism).

Color/kinematics duality for YM theories with gauge symmetry spontaneously broken by

an adjoint Higgs field is implemented by requiring that the kinematic numerators of scattering

amplitudes in these theories obeys identities that mirror the color identities in eq. (2.25) and

(2.26). Except for the Jacobi identity, these kinematic identities are pictorially shown in

figure 4. Note that since these identities always break up into three-term identities, they

can in practice be mapped to the usual three-term numerator identities considered in the

framework of color/kinematics duality. Indeed, as it is well known (e.g. see refs. [80, 81]),

amplitudes in SYM theory on the Coulomb branch can be reinterpreted as amplitudes in a

(D + 1) dimensional unbroken SYM theory (see appendix B.1 for a Lagrangian derivation

of this). For a SYM theory on the Coulomb branch the kinematic identities in figure 4

are simply obtained through a decomposition of the usual (D + 1) dimensional kinematic

Jacobi identity into states with zero (massless states) and positive/negative (massive states)

momentum in the (D + 1) direction.12

12Note that the type of kinematic algebra introduced here is more general; it need not be inherited from
(D+1) dimensions. For example, it applies to the explicitly broken YM + φ3 theory considered in section 2.5.
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An important consideration for color/kinematics duality to give well-behaved double

copies, is that that we construct amplitude presentations valid for arbitrary gauge groups

and arbitrary breaking patterns. This is to prevent the color factors from obeying accidental

algebraic relations beyond those of eqs. (2.25) and (2.26), as it might happen for particular

choices of gauge groups and gauge-symmetry breakings.

It is useful to note that in the basis in which the mass matrix is diagonal, mβ̂
α̂ = δβ̂α̂mα̂

(no sum), there is a direct correspondence between the masses of the complex fields and the

non-vanishing structure constants involving the broken generators,

f α̂ γ̂

β̂
6= 0 ⇔ mα̂ +mγ̂ = mβ̂ ,

f â γ̂

β̂
6= 0 ⇔ mγ̂ = mβ̂ . (2.27)

Such relations arise from the proportionality relation between the mass and the charge with

respect to the preferred U(1) generator in (2.21). As a trivial consequence of (2.21), mass

and charge obey the same three-term identities

qα̂ + qγ̂ = qβ̂ ⇔ mα̂ +mγ̂ = mβ̂ ,

qγ̂ = qβ̂ ⇔ mγ̂ = mβ̂ , (2.28)

which can be seen as charge/mass conservation for the trilinear interactions. The double-copy

construction that we will spell out in section 2.6 requires the masses in the (super)gravity

theory to be equal to the ones in the two gauge-theory factors and relies on the charge/mass

conservation at each vertex. Interestingly, the close relationship between masses and charges

is similar to the double copy framework discovered in refs. [44, 45], where charges of gauge-

theory classical solutions were interchanged with masses of classical gravitational solutions.

In sections 4 and 5, we present tree- and loop-level amplitudes in spontaneously-broken

SYM that exhibit color/kinematics duality.

2.4.1 SU(N) Examples

For the purpose of illustration, in this subsection we include two simple examples of spon-

taneous symmetry breaking. The simplest breaking pattern is

SU(N1 +N2) → SU(N1)× SU(N2)× U(1) . (2.29)

This pattern can be obtained by giving a VEV

〈φ0〉 = V

( 1
N1
IN1 0

0 − 1
N2
IN2

)
, (2.30)

where we have absorbed a normalization constant in the VEV. As discussed, we denote the

corresponding generator as t0 (with a proper normalization factor) and the generators of
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the unbroken subgroup that commutes with t0 as tâ, with a = 1, 2, . . . , N2
1 + N2

2 − 2. The

remaining “non-hermitian” generators can be divided into two conjugate sets,

(t(kl)) ̂
ı̂ = δkı̂ δ

̂
l and (t(kl))

̂
ı̂ = δlı̂δ

̂
k , (2.31)

where we introduced the composite index α = (kl) with k = 1, . . . , N1 and l = N1 +

1, . . . , N1 +N2. With this choice, the mass matrix is diagonal and has a single eigenvalue:

m = gV
( 1

N1
+

1

N2

)
. (2.32)

The theory can be represented by a quiver diagram with two nodes and two lines with

opposite orientations connecting them. In the supersymmetric case each node corresponds

to a massless adjoint vector multiplet and each link corresponds to a massive bifundamental

vector multiplet.

The simplest example with several masses involves the breaking pattern

SU(N1 +N2 +N3) → SU(N1)× SU(N2)× SU(N3)× U(1)2 . (2.33)

It can be realized by choosing a scalar VEV with three diagonal blocks

〈φ0〉 = V




v1
N1
IN1 0 0

0 v2
N2
IN2 0

0 0 −v1+v2
N3

IN3


 . (2.34)

In this case, the broken generators can be divided into six sets. The three upper-diagonal

sets of generators are

(t(kl)) ̂
ı̂ = δkı̂ δ

̂
l , (t(kr)) ̂

ı̂ = δkı̂ δ
̂
r , (t(lr)) ̂

ı̂ = δlı̂δ
̂
r , (2.35)

with k = 1, . . . , N1; l = 1 + N1, . . . , N1 + N2; r = 1 + N1 + N2, . . . , N1 + N2 + N3, and the

corresponding eigenvalues are

m1 = gV
( v1
N1

− v2
N2

)
, m2 = gV

( v1
N1

+
v1 + v2
N3

)
, m3 = gV

( v2
N2

+
v1 + v2
N3

)
, (2.36)

with m2 = m1 +m3. In this case, the quiver diagram has three nodes and six links pairwise

connecting the nodes.

2.5 Explicit breaking of the global group Gk

Returning to the YM-scalar theories, in ref. [27] amplitudes in the generic Jordan family

YMESG theories were constructed by double-copying the pure N = 2 SYM theory with a

bosonic YM + φ3 theory (setting Nf = 0), where the latter is described by the Lagrangian:

LYM+φ3 = −1

4
F â
µνF

µνâ +
1

2
(Dµφ

A)â(DµφA)â +
1

3!
λgFABCf âb̂ĉφAâφBb̂φCĉ

− g2

4
f âb̂êf êĉd̂φAâφBb̂φAĉφBd̂ . (2.37)
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The global Gk symmetry acting on the A,B,C indices becomes, through the double copy,

a local (gauge) symmetry in the resulting supergravity theory. Since our goal is to describe

the latter theory with broken gauge symmetry, it is natural to discuss the breaking of the

Gk symmetry before the double copy is taken.

To reduce the global symmetry, Gk → Gred.
k , while preserving the Gk symmetry at high

energies,13 we shall follow a pattern similar to the adjoint Higgs mechanism discussed in the

previous section and break the symmetry by adding to the Lagrangian terms with dimension

smaller than four (in D = 4) – i.e. quadratic and cubic terms. To this end, we single out

one generator, T 0, define Gred.
k to be spanned by the generators of Gk that commute with

T 0, and decompose the adjoint representation of Gk in representations of Gred.
k ,

φAâ = (φaâ, ϕαâ, ϕâ
α) . (2.38)

The first field transforms in the adjoint representation of Gred.
k and the latter two transform

in conjugate complex representations of Gred.
k . Note that these latter fields carry an adjoint

index of the Gc gauge group and an index of a complex representation of Gred.
k and are thus

different from the fields ϕîı which appeared in section 2.3.

With this decomposition, the symmetry-breaking terms we introduce are

δ1L = −(m2) β
α ϕαâϕ â

β , δ2L ∝ F 0 α
β f b̂âĉφ0âϕαb̂ϕ ĉ

β . (2.39)

We take the mass matrix to be

m β
α =

i

2
ρλF 0 α

β , (2.40)

where ρ is a free real parameter, F 0 β
α = −iTr([T 0, (T α)†]T β), and T α are (non-hermitian)

generators of Gk that do not commute with the T 0.14 For the normalization of the cubic

term, it is convenient to introduce the diagonal matrix

∆ab = δab + (
√

1 + ρ2 − 1)δa0δ0b . (2.41)

13This is necessary as, on the one hand, the unbroken and the spontaneously-broken phases of a super-
gravity theory (or any theory) are, from the perspective of the integrand, the same at high energy and on the
other the high-energy limit of the supergravity integrand is given by the high-energy limit of the integrands
of the two gauge theories.

14This pattern is akin to that in which a symmetry is spontaneously broken; the main difference here is
that none of the fields in eq. (2.37), including the one corresponding to T 0, have a vacuum expectation value.
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With this notation, the Lagrangian with broken Gk symmetry that we will use is

L
YM+��φ

3 = −1

4
F â
µνF

µνâ +
1

2
(Dµφ

a)â(Dµφa)â + (Dµϕα)â(Dµϕα)
â − (m2) β

α ϕαâϕ â
β

+
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ + gλ∆abF a β

α f b̂âĉφbâϕαb̂ϕ ĉ
β

+
1

2
gλF α γ

β f âb̂ĉϕ â
α ϕ

βb̂ϕ ĉ
γ +

1

2
gλF β

α γf
âb̂ĉϕαâϕ b̂

β ϕ
γĉ

− g2

4
f âb̂êf êĉd̂

(
φaâφaĉ + 2ϕαâϕ ĉ

α

)(
φbb̂φbd̂ + 2ϕβb̂ϕ d̂

β

)

+
g2

2
f âb̂êf êĉd̂ϕαâϕ b̂

α ϕ
βĉϕ d̂

β , (2.42)

where the structure constants F a β
α and F α γ

β are defined in the usual way,

F a β
α = −iTr([T a, (T α)†]T β) F α γ

β = (F β
γ α)

† = −iTr([T α, (T β)†]T γ) , (2.43)

with T a being hermitian generators of Gred
k .

We will motivate the symmetry-breaking terms through calculations in section 4 and

appendix B.2. In section 4 we calculate amplitudes and show that color/kinematics duality

requires that these terms be present. Moreover, in appendix B.2 this Lagrangian is derived as

the dimensional compactification/reduction and truncation of the unbroken (D + 1) theory.

This does not imply that the amplitudes of the explicitly broken theory are equivalent to

(D+1)-dimensional amplitudes; indeed, they are not, as there are no massive vectors in the

Lagrangian (2.42). See appendix B.2 for more details.

Returning to the color/kinematics duality, we expect that it should be possible find am-

plitude presentations such that for each three-term Jacobi identity of Gc there exists a

three-term numerator identity. The latter requires Gk relations which are decompositions

of the Jacobi identity (decomposed following eq. (2.38)). Thus we have the following corre-

spondences:

ci − cj = ck ⇔ ni − nj = nk ,

f̃ d̂âĉf̃ ĉb̂ê − f̃ d̂b̂ĉf̃ ĉâê = f̃ âb̂ĉf̃ d̂ĉê ⇔





F dacF cbe − F dbcF cae = F abcF dce

F a β
γ F b γ

α − F b β
γ F a γ

α = F abcF c β
α

F a γ
ǫ F ǫ β

δ − F a β
ǫ F ǫ γ

δ = F a ǫ
δ F

γ β
ǫ

F α γ
ǫ F ǫ β

δ − F α β
ǫ F ǫ γ

δ = F α ǫ
δ F γ β

ǫ

4F
ǫ [α
[δ F

β]
γ] ǫ

+ 2F a α
[δ F

a β

γ] = F α β
ǫ F ǫ

δ γ





. (2.44)

The last identity for the F ’s has seven terms, but given fixed assignments of the free indices

at most three terms contribute (the integer factors in the seven-term relation compensates

for the antisymmetrization over indices).15

15The fact that the seven-term identity is not affected by the symmetry-breaking terms when insisting on
color/kinematics duality is a rather non-trivial fact, as we shall see in section 4.
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The Lagrangian in eq. (2.42) can be generalized to fields ϕα
â that transform in a complex

representation of the gauge group while preserving the numerator relations and, simulta-

neously, replacing the color Jacobi relations by the five identities in eqs. (2.25) and (2.26).

This can be done in several different ways, all leading to the same formal expression for

the Lagrangian but each emphasizing different properties. For example, labeling by Greek

hatted indices a complex potentially reducible representation of Gc, one may simply replace

ϕα
â → ϕα

α̂ and ϕ̄αâ → ϕ̄α
α̂ while making the corresponding replacements of indices on the

f âb̂ĉ structure constants and requiring that the resulting coefficients obey the relations in

eqs. (2.25) and (2.26). This construction, which is quite general, does not require any corre-

lation between the representation of the gauge and global symmetry groups. One may also

decompose the adjoint color indices into adjoint and complex representations of a subgroup

(the latter being denoted by hatted Greek letters), assign to complex gauge and global in-

dices, α̂ and α, the U(1) charge corresponding to the diagonal of the preferred generators f 0
β̂
α̂

and F 0
β
α and project onto the fields with vanishing charge. This restricts the gauge group

to the chosen subgroup and introduces a correlation between the irreducible representations

under this and global group, i.e. the fields carry only certain combinations of the irreducible

components of the representations denoted by the α̂ and α indices. By construction, the

remaining components of the f âb̂ĉ structure constants obey the relations in eqs. (2.25) and

(2.26). Due to the closer similarity between the gauge and global symmetry representations

carried by fields one may interpret the resulting Lagrangian16 as a more refined example of

color/kinematics duality:

L′
YM+��φ

3 = −1

4
F â
µνF

µνâ +
1

2
(Dµφ

a)â(Dµφa)â + (Dµϕα)α̂(D
µϕα)

α̂ − (m2) β
α ϕα

α̂ϕ
α̂
β

+
1

3!
gλF abcf âb̂ĉφaâφbb̂φcĉ + gλ∆abF a β

α f â β̂
γ̂ φbâϕα

β̂
ϕ γ̂
β

+
1

2
gλF α γ

β f β̂
α̂ γ̂ϕ

α̂
α ϕ

β

β̂
ϕ γ̂
γ +

1

2
gλF β

α γf
α̂ γ̂

β̂
ϕα

α̂ϕ
β̂
β ϕ

γ
γ̂

− g2

4
f âb̂êf êĉd̂φaâφaĉφbb̂φbd̂ − g2f â γ̂

α̂ f b̂ β̂
γ̂ φaâφab̂ϕα

β̂
ϕ α̂
α

− g2f α̂ β̂
ǫ̂ f ǫ̂

γ̂ δ̂
ϕα

α̂ϕ
γ̂
α ϕ

β

β̂
ϕ δ̂
β +

g2

2
f ê α̂

β̂
f ê γ̂

δ̂
ϕα

α̂ϕ
β̂
α ϕ

β
γ̂ϕ

δ̂
β , (2.45)

Indeed, explicit calculations summarized in section 4 confirm that the tree-level scattering

amplitudes following from this Lagrangian obey color/kinematics duality. Note that the

kinematic numerators of the amplitudes coming from the theory (2.45) can be chosen to be

16Alternatively, we could have constructed this Lagrangian directly as a YM-scalar Lagrangian which (1)
has the same gauge group as the unbroken gauge group of a spontaneously-broken theory of the form (2.24),
(2) contains additional scalar fields with the same masses as the fields in eq (2.24) and conjugate gauge-group
representations, (3) has cubic couplings analogous to the ones of (2.37), and (4) has the cubic and quartic
couplings selected by requiring relations between kinematic numerators that mirror relations between color
factors.
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the same as those of the theory (2.42), since the change of Gc representations only affects

the color factors of the amplitudes.17

It is important to note that the introduction of the Lagrangian (2.45) together with a

specific correlation between the irreducible components of the complex gauge and global

indices can be motivated from the double-copy construction between a spontaneously broken

SYM and the current theory that we will define in section 2.6. To guarantee the required

properties of the fields ϕ, that they are double-copied with N = 2 SYM fields with the same

mass, it is necessary to impose the condition

2V f 0 α̂

β̂
ϕ β̂
α = λρF 0 β

α ϕ α̂
β . (2.46)

The general solution to this equation is that the fields ϕ α̂
α have a block structure in the space

of irreducible components of the α and α̂ indices and all fields inside each block have equal

mass. Identifying the gauge groups of the YM+��φ
3 and N = 2 SYM theories, eq. (2.46)

together with eqs. (2.21) and (2.40), implies that fields in the same representation of the

gauge group have equal masses.

2.5.1 SU(N) Example

An interesting example involves the generation of several different (flavored) massive scalars.

The global symmetry group is broken as

SU(Nk +Nf) → SU(Nk)× U(1)Nf . (2.47)

Different flavors carry different charges under the U(1) factors. Such a breaking can be

obtained by choosing T 0 to be

T 0 =




v1 · · · 0 0
...

. . .
...

...
0 · · · vNf

0
0 · · · 0 v0INk


 ; (2.48)

tracelessness requires that v0 = −∑Nf

n=1 vn/Nk and the vi are normalized as Tr(T 0T 0) = 1.

The symmetry generators of the original SU(Nk + Nf) symmetry group can be divided

into six sets (the generators in the second through fifth sets are broken):

SU(Nk) adjoint T a , (a = 1, . . . , N2
k − 1)

SU(Nk) fund.&flavored (T (kn)) j
i = δki δ

j
n ,

SU(Nk) fund.&flavored (T(kn))
j
i = δni δ

j
k ,

U(1)Nf bi-flavored (T (nm)) j
i = δni δ

j
m , (n < m)

U(1)Nf bi-flavored (T(nm))
j
i = δmi δ

j
n , (n < m)

U(1)Nf un-flavored (T (nn)) j
i = δni δ

j
n − 1

Nk
INk

, (no sum)

(2.49)

17This is particularly clear in the construction of (2.45) through projection.
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where k = Nf + 1, . . . , Nf + Nk are fundamental indices, and n,m = 1, . . . , Nf are flavor

indices. The eigenvalues of the corresponding mass matrix are

m(kn) = ρλ(v0 − vn) , m(nm) = ρλ(vn − vm) , (2.50)

where we use the convention that conjugate representations have masses of opposite signs

just like the charges (all physical quantities depend only on the squared masses).

Lagrangians discussed in earlier sections may be obtained from the Lagrangian (2.42) and

the generators (2.49) by restricting to a subset of its fields. While this truncation is not

always technically consistent (in the sense that the equations of motion of the fields that are

truncated away contain sources depending only on the remaining fields) we may nevertheless

define such a restricted theory. Its tree-level S matrix however cannot be obtained from that

of the parent by simply restricting the external states to those of the daughter theory; rather,

it is necessary to also eliminate all the (Feynman) graphs with truncated fields appearing on

the internal lines.

By truncating away the U(1)-flavored modes corresponding to the generators T (nm), T(nm),

T (nn) and T 0 we can recover a theory that is very similar to the one in eq. (2.15). Under

this truncation the only surviving structure constants are

F abc and F
a (jn)
(im) = (T a) j

i δ
n
m − (T a) n

m δji → (T a) j
i δ

n
m , (2.51)

where in the second structure constant the term, −(T a) n
m δji , has been dropped due to the

truncation. The only difference between this theory and the one described by the Lagrangian

in eq. (2.15) is that while there the complex scalars in eq. (2.15) transform in the fundamental

representation of the gauge group, here the complex scalars are in the adjoint. The two

Lagrangians may nevertheless be mapped into each other by identifying the gauge group

generators in the adjoint representation and replacing them with the ones in the fundamental

representation,18 e.g. ϕαâf̃ âĉb̂ϕb̂
β → ϕαtĉϕβ. This is straightforward except for the quartic

terms for which the color/kinematics-satisfying result is obtained as:

g2

4
f âb̂êf êĉd̂

[(
φaâφaĉ + 2ϕαâϕ ĉ

α

)(
φbb̂φbd̂ + 2ϕβb̂ϕ d̂

β

)
− 2ϕαâϕ b̂

α ϕ
βĉϕ d̂

β

]
(2.52)

=
g2

4
f âb̂êf êĉd̂

[
φaâφaĉφbb̂φbd̂ − 4ϕαâφab̂φaĉϕ d̂

α − 4ϕαâϕ b̂
β ϕ

βĉϕ d̂
α + 2ϕαâϕ b̂

α ϕ
βĉϕ d̂

β

]

→ g2

4
f âb̂êf êĉd̂φaâφaĉφbb̂φbd̂ − g2ϕαφaφaϕα − g2ϕαtêϕβϕ

βtêϕα +
g2

2
ϕαtêϕαϕ

βtêϕβ .

On the second line, a Jacobi relation was used to reorganize the (ϕϕ)2 terms. Using α = (im),

β = (jn), the manipulations above lead exactly to the Lagrangian in eq. (2.15) with massive

fundamental scalars and symmetry SU(Nc)× SU(Nk)× U(1)Nf .

18Such a replacement can also be done at the level of (Feynman) graphs.
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2.6 The double copy for spontaneously-broken theories

Here we spell out a double-copy construction which combines the ingredients introduced

in the previous sections to produce amplitudes in Yang-Mills-Einstein supergravities, some

of which have spontaneously-broken gauge symmetry. The case of unbroken Yang-Mills-

Einstein supergravities is a review of ref. [27].

Let us assume that expressions for gauge-theory scattering amplitudes are available such

that the kinematic numerators ñi satisfy the same general Lie-algebraic relations as the

corresponding color factors ci. By general Lie-algebraic relations we mean relations that are

not specific to a given gauge group or symmetry-breaking pattern, but are more generally

valid, such as the Jacobi identity and commutation relation in figure 2, and the kinematic

relations for theories with broken symmetry in figure 4. The double-copy construction states

that, regardless of the spacetime dimension, a valid (super)gravity amplitude is obtained by

replacing color factors with numerators in a gauge-theory amplitude, and by replacing the

gauge coupling with its gravitational counterpart:

ci → ñi and g → κ

2
. (2.53)

This statement can be taken as a conjecture to which we will give non-trivial supporting

evidence in the case of spontaneously-broken Yang-Mills-Einstein supergravities.

We note that if two different gauge theories are considered, and the numerators of the first

theory are replacing the color factors of the second theory,19 then it is convenient to take

the two gauge groups, and thus the color factors, to be identical. Since the double copy does

not depend on the details of the color factors, there is no loss of generality.

A familiar property of the double copy, which also holds for spontaneously-broken theories,

is that it is sufficient for one set of numerators ñi to be manifestly duality-satisfying, while

the other needs not to obey the duality manifestly. This is because, once color factors

are replaced by kinematic factors with the same algebraic properties, the second kinematic

numerators can in principle [27] be brought to a duality-satisfying form through generalized

gauge transformations [1, 2].

Using eq. (2.53) gravity scattering amplitude will take the same general form already given

in eq. (2.5); however, the details will differ depending on the gauge theory and whether it is

unbroken or (spontaneously) broken. To understand the precise outcome of this prescription,

it is essential to identify the proper tensor products of the asymptotic states that appear in

the various theories introduced.

Before we discuss the explicit theories introduced in previous sections let us look at the

asymptotic states from a uniform formal perspective. In particular, we have introduced gauge

19As indicated by their common graph label, if ñi and ci belong to different theories they still need to
dress the same cubic-diagram specified by the poles 1/Di in their respective amplitudes, thus ensuring that
the mass spectra of the two theories are aligned.
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theories where fields transform in massless adjoint representations and massive complex

(conjugate) representations. Let us assemble the fields into sets, or multiplets, corresponding

to these three types:
(
V, V (m2), V (m2)

)
, (2.54)

where V is the set of massless fields and m2 labels the massive ones. By this notation it

is understood that there are distinct massive multiplets V (m2) and V (m2) for each allowed

mass m in the spectrum. The gauge-group indices of the fields have been suppressed, and

since they are asymptotic fields for all practical purposes we may think of them as having

been stripped of their color dependence.

The asymptotic fields produced by the double copy (2.53) are then given by the gauge-

invariant subset of tensor products of gauge-theory fields of the left (L) and right (R) theories.

We obtain the supergravity states

(
VL ⊗ VR, VL(m

2)⊗ VR(m
2), V L(m

2)⊗ V R(m
2)
)∣∣∣

gauge invariant
, (2.55)

where for each allowed m2 there is a distinct pair of tensor products that contribute to the

supergravity spectrum. It is important to note that the tensor-product structure of eq. (2.55)

is not an independent prescription but rather follows from eq. (2.53). This is because the

gauge-theory asymptotic states already have a double-copy structure, between the kinematic

and color wave functions (e.g. Aµâ ∼ εµcâ and W µ
α̂ ∼ εµcα̂). After the replacement (2.53)

the gravitational theory inherits such a structure.

Connecting to previous work, one can associate to each field a charge that is uniform

within the multiplets V, V (m2), V (m2) but otherwise distinct, as was explicitly done in

theories constructed through orbifold projections in ref. [15, 19]. For example, in our case

this charge may be given in terms of the t0 generator. From this point of view it is convenient

to take the fields of the left and right theory to have opposite charges. The consistency of

the construction through orbifold projection then requires the set of supergravity states to

be given by the set of zero-charge bilinears constructed from the states of the two gauge

theories, as in eq. (2.55).

Let us now be concrete and describe the asymptotic states that enter the double copy

(2.55) for each of the theories of interest.

2.6.1 GR + YM = YM ⊗ (YM + φ3)

The case of Yang-Mills-Einstein supergravities was first treated in [27], here we give a sum-

mary of that construction. The massive multiplets V (m2) are absent in the unbroken case.

Following the discussion above, the massless multiplets of the pure-adjoint unbroken left
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Gravity coupled to YM Left gauge theory Right gauge theory

N = 4 YMESG theory N = 4 SYM YM + φ3

N = 2 YMESG theory (gen.Jordan) N = 2 SYM YM + φ3

N = 1 YMESG theory N = 1 SYM YM + φ3

N = 0 YME + dilaton + Bµν YM YM + φ3

N = 0 YMDR-E + dilaton + Bµν YMDR YM + φ3

Table 1: The double-copy constructions that appeared in ref. [27]. These give amplitudes in YME
gravity theories for various amounts of supersymmetry, corresponding to different choices of the
left gauge theory. The right theory labeled by YM + φ3 corresponds to the YM + scalar theory
with Nf → 0. The N = 1 YMESG theory is a particular truncation of a generic Jordan family
N = 2 YMESG theory in which the scalar and one fermion is dropped from every nonabelian
vector multiplet together with the vector field and one of the gravitini in the graviton multiplet.
The last row corresponds to dimensional reductions of a higher-dimensional left gauge theory; this
row has the same bosonic content as the previous cases, given that the original theory lived in
D = 10, 6, 4, 4 dimensions, respectively.

gauge theories,

N = 4 SYM : VL = Aµ ⊕ λ1,2,3,4 ⊕ φ0,1,2,3,4,5 ,
N = 2 SYM : VL = Aµ ⊕ λ1,2 ⊕ φ0,1 ,
N = 1 SYM : VL = Aµ ⊕ λ ,
pure YM : VL = Aµ ,
YMDR : VL = Aµ ⊕ φa′ ,

(2.56)

are to be double copied (2.55) with the right theory

YM+ φ3 : VR = Aµ ⊕ φa . . (2.57)

We recall that YMDR stands for the dimensional reduction of some higher-dimensional pure

YM theory. As explained in ref. [27] the double copy of these left and right theories gives

rise to amplitudes in (super)gravity coupled to pure Yang-Mills theory. The supersymmetric

N = 4, 2 theories can be uplifted to D = 10, 6 dimensions, respectively, without spoiling the

construction. Similarly the bosonic theories can be considered in any dimension.

The tensor product between VL corresponding to YMDR (for some higher dimension) and

VR corresponding to YM + φ3 is part of all of these gravitational theories; it is given by

VL ⊗ VR →
(
hµν , φ, Bµν , Aµa, Aµa′ , φaa′

)
, (2.58)

where a is an Gk index and a′ is either a R-symmetry index or an additional global index.

The construction is summarized in table 1.
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Gravity coupled to ✟✟✟YM Left gauge theory Right gauge theory

N = 4 ✟✟✟YMESG N = 4 S✟✟✟YM YM + ��φ
3

N = 2 ✟✟✟YMESG (gen.Jordan) N = 2 S✟✟✟YM YM + ��φ
3

N = 0 ✟✟✟YMDR-E + dilaton + Bµν
✟✟✟YMDR YM + ��φ

3

Table 2: New double-copy constructions corresponding to spontaneously-broken YME gravity
theories for different amounts of supersymmetry. The dimensionally-reduced YMDR theory must
have at least one scalar to provide the VEV responsible for spontaneous symmetry breaking. See
the caption of table 1 for further details.

2.6.2 GR + ✘✘✘YM = ✘✘✘YM ⊗ (YM + ��φ
3)

The multiplets of the pure-adjoint spontaneously-broken left gauge theories are as follows:

N = 4 S✟✟✟YM : VL = Aµ ⊕ λ1,2,3,4 ⊕ φ0,1,2,3,4,5 , VL(m
2) = W µ ⊕ Λ1,2,3,4 ⊕ ϕ1,2,3,4,5 ,

N = 2 S✟✟✟YM : VL = Aµ ⊕ λ1,2 ⊕ φ0,1 , VL(m
2) = W µ ⊕ Λ1,2 ⊕ ϕ1 ,

✟✟✟YMDR : VL = Aµ ⊕ φ0,a , VL(m
2) = W µ ⊕ ϕa′ ,

(2.59)

where for brevity have suppressed the mass dependence of the component fields in VL(m
2).

Similarly, for brevity, we do not display the set of conjugate fields V L(m
2) since it gives no

additional information.

The above fields are to be double copied with the right theory asymptotic fields

YM +��φ
3 : VR = Aµ ⊕ φa , VR(m

2) = ϕα . (2.60)

This construction gives rise to amplitudes in (super)gravity coupled to pure spontaneously-

broken Yang-Mills theory. The supersymmetric N = 4, 2 theories can be uplifted to D = 9, 5

dimensions without spoiling the construction, and similarly the bosonic theories can be

considered in any dimension. The various supergravity theories constructed in this section

are collected in table 2.

The spectra of the above supergravity theories share their bosonic part of the spectrum

with the double-copy between the spontaneously-broken dimensionally-reduced YM theory

and the YM theory coupled to φ3 scalar theory with broken global symmetry. The result,

(✟✟✟YMDR)⊗ (YM +��φ
3), is shown in table 3.

3 Spontaneously-broken Yang-Mills-Einstein

supergravity theories

The double-copy construction described in the previous section should give amplitudes of

large classes of Yang-Mills-Einstein theories, with or without supersymmetry, and with or

without spontaneously-broken gauge symmetry. Given a procedure to compute all the tree-

level scattering amplitudes of a field theory, it is in principle possible to reconstruct its
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VR VR(m
2) V R(m

2)

VL hµν , φ, Bµν, Aµa, Aµa′ , φaa′ ∅ ∅
VL(m

2) ∅ W µ
α , ϕ

a′
α ∅

V L(m
2) ∅ ∅ W

µα
, ϕa′α

Table 3: The spectrum of the double-copy of ✟✟✟YMDR and YM +��φ
3. The bosonic spectra of the

N = 4, 2 YMESG theories are similar. Here a, α are Gk indices and a′ is an R-symmetry index.

Lagrangian order by order in the number of fields. However, since gravitational Lagrangians

of the type discussed here involve quantities depending non-polynomially on the scalar fields,

this procedure can be impractical.

However, there exist a very special class of N = 2 supergravity theories in four and five

dimensions for which the full non-polynomial Lagrangian can be reconstructed from the

three-point interactions. Such theories provide the simplest examples of our construction

and are reviewed in this section.

3.1 Higgs mechanism in five-dimensional N = 2 YMESG theories

N = 2 Maxwell-Einstein supergravity theories describe the coupling of an arbitrary number

ñ of vector multiplets to N = 2 supergravity. An N = 2 vector multiplet in five dimensions

consists of a vector field Aµ, a symplectic Majorana spinor λi and a real scalar φ. The

bosonic part of the N = 2 MESG theory in five dimensions can be written in the form [82]

e−1L = −1

2
R− 1

4

◦
aIJF

I
µνF

µνJ − 1

2
gxy(∂µφ

x)(∂µφy) +
e−1

6
√
6
CIJKε

µνρσλF I
µνF

J
ρσA

K
λ , (3.1)

where AI
µ (I = 0, 1, ...ñ) denote the vector fields of the theory including the bare graviphoton

A0
µ, and F

I
µν are the corresponding abelian field strengths. The scalar fields are labeled as φx

(x, y, .. = 1, .., ñ), and gxy is the metric of the scalar manifold. The Lagrangian is completely

determined by the constant symmetric tensor CIJK . Using this tensor one defines a cubic

form

V(ξ) ≡ CIJKξ
IξJξK , (3.2)

in the ambient space coordinates ξI . The (ñ+1)-dimensional ambient space spanned by the

ξI has the metric

aIJ(ξ) ≡ −1

3

∂

∂ξI
∂

∂ξJ
lnV(ξ) , (3.3)

while the ñ-dimensional scalar manifold M5 is the co-dimension one hypersurface given by

the condition [82]:

V(h) = CIJKh
IhJhK = 1 with hI =

√
2

3
ξI (3.4)
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and is parameterized by the coordinates ϕx. The metric gxy is the induced metric on the

hypersurface M5, whereas the “metric”
◦
aIJ(φ) in the kinetic-energy term of the vector fields

is given by the restriction of aIJ to the hypersurface M5,

gxy(φ) =
3

2

∂ξI

∂φx

∂ξJ

∂φy
aIJ

∣∣∣∣
V=1

,
◦
aIJ(φ) = aIJ |V=1 . (3.5)

The ambient space indices are lowered and raised with the metric
◦
aIJ(φ) and its inverse.

Defining

hIx ≡ −
√

3

2

∂hI

∂φx
, (3.6)

one finds the following identities:

hIhI = 1 , (3.7)

hIxhI = hIxh
I = 0 , (3.8)

◦
aIJ = hIhJ + hxIh

y
Jgxy . (3.9)

Next, we consider a group G of symmetry transformations acting on the ambient space as

δαξ
I = (Mr)

I
Jξ

Jαr , (3.10)

where Mr satisfy the commutation relations

[Mr,Ms] = f t
rs Mt . (3.11)

If G is a symmetry of the Lagrangian of the five-dimensional MESG theory, then its C-tensor

is invariant under it, and it satisfies the relation

(Mr)
L
(I CJK)L = 0 . (3.12)

The vector fields of the theory transform linearly under the action of G,

δαA
I
µ = (Mr)

I
JA

J
µα

r , (3.13)

and G acts as isometries of the scalar manifold M5

δαϕ
x = Kx

r α
r , (3.14)

where Kx
r is a Killing vector of M5 given by

Kx
r = −

√
3

2
(Mr)

J
IhJh

Ix . (3.15)

The hI(ϕx) transform linearly under G just like the vector fields,

δαh
I(ϕx) = (Mr)

I
Jh

J (ϕx)αr . (3.16)
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Spin-1/2 fields undergo rotations under the maximal compact subgroup of the global sym-

metry group G,

δαλ
a
ı̂ = Lab

r λ
b
ı̂α

r , with Lab
r = (Mr)

J
Ih

[a|
J h

I|b] − Ωab
x K

x
r , (3.17)

where Ωab
x is the spin connection of M5 and a, b, .. = 1, 2, ..ñ denote the flat tangent space

indices. The remaining fields (gravitini and graviton) are inert under the action of G.
We should note that using the identity (3.9) one can write the kinetic term of the vector

fields as

e−1L̂vec = −1

4

◦
aIJ F I

µνFµνJ = −1

4
F0

µνFµν0 − 1

4
gxyFx

µνFµνy , (3.18)

where

A0
µ ≡ hIA

I
µ, Ax

µ ≡ hxIA
I
µ . (3.19)

Supersymmetry rotates A0
µ into the gravitini and Ax

µ into gaugini. Therefore in a given

background the physical graviphoton and the physical gaugini are given by the linear com-

binations 〈hI〉AI
µ and 〈hxI 〉AI

µ, respectively.

Yang-Mills-Einstein supergravity theories are obtained by gauging a subgroup K of full

global symmetry group G of the corresponding MESG theories [83, 84, 85]. A subset of the

vector fields, denoted as Ar
µ must then transform in the adjoint representation of K. We

consider only gaugings of compact groups K such that the other non-gauge vector fields are

spectator fields, i.e. they are inert under K. In this case the non-zero entries of the matrices

Mr are simply

(Mr)
s
t = f rst . (3.20)

Throughout the paper it will be convenient to formally introduce group structure constants in

which the indices can assume values outside the range corresponding to the adjoint vectors

Ar
µ, i.e. f IJK . Such structure constants will always vanish if one or more of the indices

correspond to a spectator vector field.

The bosonic sector of the N = 2 YMESG theory in five dimensions has the Lagrangian

e−1L = −R
2
− 1

4
åIJF I

µνFJµν − 1

2
gxyDµϕ

xDµϕy +
e−1

6
√
6
CIJKǫ

µνρσλ

{
F I
µνF

J
ρσA

K
λ

+
3

2
gsf

K
J ′K ′F I

µνA
J
ρA

J ′

σ A
K ′

λ +
3

5
g2sA

I
µf

J
I′J ′AI′

ν A
J ′

ρ f
K

K ′L′AK ′

σ AL′

λ

}
, (3.21)

where

Dµϕ
x = ∂µϕ

x + gsA
r
µK

x
r , (3.22)

F I
µν = 2∂[µA

I
ν] + gsf

I
JKA

J
µA

K
ν . (3.23)

To preserve supersymmetry, gauging also requires the introduction of a Yukawa-like term

L′ = − i

2
gsλ̄

iaλbiKr[ah
r
b] , (3.24)
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into the Lagrangian. However, in five dimensions, N = 2 YMESG theories without tensor

fields do not have any scalar potential terms, and therefore all their vacua are Minkowskian.

One can break the non-abelian gauge symmetry to a subgroup by giving a VEV to some of

the scalars while preserving full N = 2 supersymmetry. In this paper we study the double-

copy construction of the amplitudes of spontaneously-broken YMESG theories obtained by

gauging the compact isometries of the N = 2 MESG theories belonging to the generic Jordan

family. Their cubic forms are of the form

N(ξ) = CIJKξ
IξJξK =

√
2ξ0
(
(ξ1)2 − (ξ2)2 − · · · − (ξñ)2

)
, (3.25)

corresponding to the C-tensor

C011 =

√
3

2
, C0rs = −

√
3

2
δrs, r, s = 2, · · · , ñ , (3.26)

and the base point20

cI = (
1√
2
, 1, 0, · · · , 0) . (3.27)

The global symmetry group of the MESG theories belonging to the generic Jordan family is

SO(1, 1)×SO(ñ, 1). Since one can embed the adjoint representation of any simple group into

the fundamental representation of an orthogonal group, SO(ñ), one can obtain a YMESG

theory with an arbitrary simple gauge group by gauging of the generic Jordan family of

MESG theories. We should note however that in five dimensions these YMESG theories will

have at least one spectator vector field in addition to the graviphoton.

Starting from a YMESG theory belonging to the generic Jordan family with gauge group

K we will spontaneously break the gauge symmetry by giving a VEV to the scalar partner of

a gauge field in the adjoint of K following [86, 87], where the breaking of SU(2) gauge group

down to its U(1) subgroup was studied. This can be achieved by expanding the Lagrangian

around the VEV shifted base point

cIVs
=
( 1√

2
, 1, Vs, 0, 0

)
, (3.28)

corresponding to giving a VEV to h2. The resulting theory describes YMESG theory coupled

to some massive BPS vector multiplets. The vector fields acquire their masses, via the Higgs

mechanism, from the term that is quadratic in the vector fields in the covariantized kinetic-

energy term for the scalar fields,

−1

2
gxyDµϕ

xDµϕy = −1

2
gxy∂µφ

x∂µφy − gsgxyA
µrKx

r ∂µφ
y − g2s

2
gxyK

x
rK

y
sA

r
µA

µs , (3.29)

20The base point is the point where the scalar metric as well as the “metric” of the kinetic energy term of
the vector fields become the Kronecker delta symbol.
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and the gaugini acquire their masses through the Yukawa-like term (3.24). To preserve

N = 2 Poincaré supersymmetry the masses of the gauge fields and gaugini must be equal.

At first glance the mass terms appear different. However, as was pointed out in [86], the

mass term for the gauge fields can be written in the form

g2s
2
gxyK

x
rK

y
sA

r
µA

µs =
1

2
Ax

µA
µygsWxzgsWwyg

wz , Wxy = hr[xKry] . (3.30)

Comparing this with the mass term for the gaugini,

i

2
(λ̄ixλyi )(gsWxy) , (3.31)

one sees that they have the same mass as required by supersymmetry. Therefore under this

Higgs phenomenon, the gauge field corresponding to each broken generator “eats” one scalar

field, and we end up with a massive BPS vector supermultiplet consisting of a massive vector

and two massive spinor fields.

3.2 Higgs mechanism in four-dimensional N = 2 YMESG theories

Dimensional reduction of the five-dimensional N = 2 YMESG theory of the previous subsec-

tion leads to a four-dimensional YMESG theory with an additional abelian spectator vector

multiplet. Hence the spectrum of the resulting four-dimensional N = 2 Yang-Mills-Einstein

supergravity with gauge group K includes one graviton multiplet and ñ+1 vector multiplets.

Each four-dimensional vector multiplet consists of a vector AI
µ, two spin-1/2 fields λIî and

a complex scalar zI . In addition to dim(K) vector multiplets in the adjoint representation

of K, we have (ñ − dim(K) + 1) spectator vector multiplets that do not partake in the

gauging. As in the previous subsection the vectors furnishing the adjoint representation will

be denoted as Ar
µ.

The bosonic part of the four-dimensional N = 2 Yang-Mills-Einstein Lagrangian can be

written in the form [88, 89, 90, 91, 92, 93]21

e−1L = −1

2
R−gIJ̄Dµz

IDµz̄J +
1

4
ImNABFA

µνFBµν− e−1

8
ǫµνρσReNABFA

µνFB
ρσ+g

2
sP4 , (3.32)

where the gauge covariant derivatives and the four-dimensional potential term P4 are given

by

Dµz
I ≡ ∂µz

I + gsA
J
µf

I
JKz

K , (3.33)

F I
µν ≡ 2∂[µA

I
ν] + gsf

I
JKA

J
µA

K
ν , (3.34)

P4 ≡ −1

2
eKgIJf

IKLfJMNzK z̄LzM z̄N . (3.35)

21 For further references on the subject we refer to the excellent book by Freedman and Van Proeyen [94].
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In the symplectic formulation, the target-space metric gIJ̄ and the period matrix NAB are

obtained from an holomorphic prepotential F , which depends on ñ + 2 complex variables.

For YMESG theories obtained by dimensional reduction, the prepotential is expressed in

terms of the five-dimensional C-tensor as

F (ZA) = − 2

3
√
3
CIJK

ZIZJZK

Z−1
, (3.36)

where Z−1 ≡ ZA=−1. The construction goes as follows. The prepotential is associated to a

(holomorphic) symplectic vector

v(z) =

(
ZA(z)
∂F
∂ZA (z)

)
, (3.37)

where the ZA(z) are ñ + 2 arbitrary holomorphic functions of ñ + 1 complex variables zI ,

which need to satisfy a non-degeneracy condition. The specific choice for such holomorphic

functions is related to the choice of the physical scalars and will be discussed shortly. The

symplectic vector v(z) defines a Kähler potential K(z, z̄),

e−K = −i〈v, v̄〉 = −i
(
ZA ∂F̄

∂Z̄A
− Z̄A ∂F

∂ZA

)
. (3.38)

One then introduces a second (non-holomorphic) symplectic vector,

V (z, z̄) =

(
XA

FA

)
= e

K
2 v(z) , (3.39)

and its target-space covariant derivatives,

DĪX̄
A = ∂ĪX̄

I +
1

2
(∂ĪK)X̄A ,

DĪF̄A = ∂Ī F̄A +
1

2
(∂ĪK)F̄A . (3.40)

The scalar metric and the period matrix are expressed in terms of the quantities above as

gIJ̄ = ∂I∂J̄K , (3.41)

NAB =
(
FA DĪF̄A

)(
XB DĪX̄

B
)−1

. (3.42)

As in the previous subsection, we will focus on the generic Jordan family of Yang-Mills-

Einstein supergravities whose C-tensor was given in eq. (3.26) and only consider compact

gaugings of the isometry group SO(1, 1)×SO(ñ−1, 1). It is important to note that, thanks to

their five-dimensional origin, the Lagrangians of the theories we are considering are uniquely

specified by the choice of C-tensor and by the compact gauge group K that is a subgroup of

the global symmetry of the five-dimensional theory. This fact allows us to identify a theory
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simply by its three-point interactions as both the C-tensor and the gauge group appear

explicitly in the expressions for the three-point amplitudes.

The choice of five-dimensional base-point (3.28) is equivalent to specifying the set of non-

degenerate functions entering the symplectic vector ZA(z) as follows

ZA(z) =
(
1,

i

2
+ z0,

i√
2
+ z1,

i√
2
Vs + z2, z3, . . . , zñ

)
, (3.43)

with real Vs. We have chosen to label z0 and z1 the scalars belonging to the two universal

spectator vector multiplets and z2, z3, . . ., zdim(K)+1 the scalars transforming in the adjoint

of compact gauge group K.

It should be noted that for theories in the generic Jordan family all base points can be

brought into this form with a SO(dim(K)) transformation.22

For Vs = 0 we obtain a Yang-Mills-Einstein supergravity with unbroken gauge group. In

contrast, a non-zero Vs breaks the gauge symmetry group K down to an unbroken subgroup

K̃. In general K̃ will have at least a U(1) factor since the choice of base point corresponds to

an adjoint scalar acquiring an expectation value, i.e. a non-zero value of Vs takes us on the

Coulomb branch of the theory, similarly to the gauge theory case discussed in section 2.4.

To write explicitly the Lagrangian of the spontaneously-broken theory we split the indices

running over the vectors of the theory A,B = −1, 1, . . . , ñ as

A =
(
a, α, ᾱ

)
, (3.44)

so that the index a runs over the gluons of the unbroken gauge-group K̃ as well as the

spectator vectors, while α and ᾱ run over two conjugate representations of the unbroken

gauge group. Consequently, the vector fields are written as23

AA
µ =

(
Aa

µ, Wαµ, W
α

µ

)
. (3.45)

In general, the unbroken gauge group will not necessarily be semisimple and the indices α, ᾱ

may give a reducible representation. Similarly, the scalars zI = xI + iyI are split as24

xI =
(
xi, ϕxα, ϕα

x

)
, yI =

(
yi, ϕyα, ϕα

y

)
. (3.46)

22 This SO(dim(K)) transformation will in general not belong to K and can be thought of as a redefinition
of the Lie algebra generators.

23An alternative notation is to introduce projectors acting in the space spanned by the A,B indices and
to define spectators, unbroken gauge fields and massive vectors accordingly as,

ÃA
µ = (P0)

A
BA

B
µ , WA

µ = (PW )ABA
B
µ , W

A

µ = (PW )ABA
B
µ .

This approach is closer to the paper [19].

24 Indices x, y, .. in ϕxα etc. are not to be confused with the labels of D = 5 scalar fields.
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Under this split, the only non-zero entries of the structure constants fABC are

fABC → (fabc, faᾱβ, fαβ̄γ, f ᾱβγ̄) , (3.47)

and yield the structure constants of the unbroken gauge group, the representation matrices

for the massive fields and tensors with three representation indices which will give multi-

flavor couplings involving three massive fields.25 It should be noted that, as in the case of

the gauge theories of the previous section, these objects all obey Jacobi-like relations.

Among the vector multiplets providing the adjoint representation of the unbroken gauge

group K̃, there is always a preferred multiplet. The abelian vector of this multiplet, denoted

with A2
µ, gives the U(1) factor which is always part of the unbroken gauge group K̃. One

of the scalar fields of the preferred multiplet, y2, can be thought of as the Higgs field. Note

that this field is the imaginary part of a four-dimensional complex scalar, z2 = x2 + iy2,

because the gauge symmetry breaking has a five-dimensional origin.

The next step is to rewrite the covariant derivatives appearing in the Lagrangian before

symmetry breaking as

Dµy
I =




Dµy
i + gsW µf

iϕy − gsϕyf
iWµ

Dµϕyα − i(m̃Wµ)α + gsy
i(f iWµ)α + gsW µfαϕy − gsϕyfαWµ + gsϕyfαWµ

Dµϕ
α
y + i(W µm̃)

α − gsy
i(W µf

i)α + gsW µf
αϕy − gsϕyf

αWµ + gsϕyf
αW µ


 ,

(3.48)

where Dµ is the covariant derivative for the unbroken gauge group. We have introduced the

Hermitian matrix m̃, which is proportional to the mass matrix m for the massive fields, and

is defined as follows,

m̃ α
β = igsVs(f

2 α
β ) =

√
1− Vs

2 m α
β . (3.49)

Without any loss of generality we will take m to be block-diagonal. The derivative Dµx
I of

the real part of zI has an analogous expression with the terms proportional to m missing.

The covariant field strengths are rewritten as

FA
µν =




Fa
µν + 2gsW [µf

aWν]

2D[µWν]α + 2gsW [µfαWν] − gsW µfαWν

2D[µW
α

ν] + 2gsW [µf
αWν] − gsW µf

αW ν


 . (3.50)

According to the above index decomposition, both period matrix and scalar metric are split

into blocks as

NAB =




Nab N β
a Naβ

N α
b 0 N α

β

Nαb N β
α 0


 , gIJ̄ =




gij g β
i giβ

gαj 0 gαβ
gαj g β

α 0


 . (3.51)

25Such couplings can be non-zero only when the mass of one of the fields equals the sum of the other two.
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The full four-dimensional bosonic Lagrangian after dimensional reduction can be obtained

by plugging (3.48), (3.50) and (3.51) into (3.32), and plugging (3.46) and (3.47) into (3.35).

In analogy with our previous paper [27], we then take the following steps after dimensional

reduction to four dimensions:

1. We dualize the graviphoton field F−1
µν . Since this field is a spectator (as long as we

are not considering R-symmetry gaugings), this dualization does not interfere with the

gauging procedure.

2. We employ a linear field redefinition to canonically normalize the bosonic Lagrangian

at the base point and to render the supersymmetry transformations diagonal in the

sense that the indices A,B of the fields are not mixed by supersymmetry. Such a

redefinition involves only spectator fields together with the preferred abelian vector

field A2
µ and takes the following form,

A−1
µ = −

√
1− Vs

2

4

(
A−1

µ

′
+ A0

µ

′
+
√
2A1

µ

′)
,

A0
µ =

1

2
√
1− Vs

2

(
A−1

µ

′
+ A0

µ

′ −
√
2A1

µ

′)
,

A1
µ =

1√
2− 2Vs

2

(
A−1

µ

′ − A0
µ

′
+
√
2VsA

2
µ

′)
,

A2
µ =

1√
2− 2Vs

2

(
VsA

−1
µ

′ − VsA
0
µ

′
+
√
2A2

µ

′)
,

x1 = x1
′
+ Vsx

2′ ,

x2 = Vsx
1′ + x2

′
,

y1 = y1
′
+ Vsy

2′ ,

y2 = Vsy
1′ + y2

′
,

ϕxα =
√

1 + Vs
2ϕ′

xα , ϕyα =
√

1 + Vs
2ϕ′

yα ,

ϕα
x =

√
1 + Vs

2ϕ′α
x , ϕα

y =
√

1 + Vs
2ϕ′α

y . (3.52)

3. We pick the standard Rξ gauge and introduce the gauge-fixing term

Lgf = −1

ξ
GαG

α , Gα = DµW ′
αµ + iξ(mϕ′

y)α . (3.53)

If we choose the unitarity gauge, ξ → ∞, the scalar field ϕ′
yα acquires an infinite mass

and can be integrated out.

The final expansions for the scalar metric and period matrix which will be used in the

Feynman-rule computation can be found in appendix C. For notational simplicity we do not

put a prime on the fields which appear in the final Lagrangian.
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4 Tree-level scattering amplitudes

4.1 Gauge theory amplitudes

In this subsection we evaluate three- and four-point amplitudes in the gauge theories dis-

cussed in section 2. Three-point amplitudes will be the building-blocks used to construct

three-points supergravity amplitudes using the double-copy prescription and, in the N = 2

case, will lead to the identification of the complete supergravity Lagrangian. Four-point

amplitudes will enable us to study the constraints imposed by color/kinematics duality.

Amplitudes in this section will be written using a metric with mostly-minus signature.

4.1.1 Three points

The completely-massless three-point amplitudes that follow from the YM-scalar theory de-

scribed in section 2.5 are, up to field redefinitions, the same as the ones already considered

in [27]. We therefore focus on amplitudes with massive fields.

In the single-flavor case the only non-vanishing amplitudes have two massive and one

massless external states; they are:26

A3

(
1φaâ, 2ϕα̂

α, 3ϕ
β

β̂

)
= − i

2
gλF̃ b α

β ∆abf̃ âβ̂
α̂ , (4.2)

A3

(
1Aâ

µ, 2ϕ
α̂
α, 3ϕ

β

β̂

)
=

√
2ig(k2 · ǫ1)δαβ f̃ âβ̂

α̂ . (4.3)

In the multi-flavor case, we also have a non-zero amplitude with three massive fields; it is:

A3

(
1ϕα̂

α, 2ϕ
β̂
β, 3ϕ

γ
γ̂

)
= − i

2
λgF̃ α β

γ f̃ γ̂

α̂ β̂
. (4.4)

Inspecting the Lagrangian of the spontaneously-broken YM-scalar theory described in

section 2.4, it is easy to see that the three-point amplitudes are:

A3

(
1φâa, 2ϕα̂, 3ϕ

β̂
)

= −
√
2igmδa0f̃ â α̂

β̂
, (4.5)

A3

(
1Aâ, 2ϕα̂, 3ϕ

β̂
)

=
√
2ig(k2 · ε1)f̃ â α̂

β̂
, (4.6)

A3

(
1φâa, 2Wα̂, 3W

β̂)
=

√
2igmδa0(ε2 · ε3)f̃ â α̂

β̂
, (4.7)

A3

(
1Aâ, 2Wα̂, 3W

β̂)
= −

√
2ig
(
(k2 · ε1)(ε2 · ε3) + (k1 · ε3)(ε1 · ε2)− (k1 · ε2)(ε1 · ε3)

)
f̃ â α̂

β̂
.

(4.8)

26 We use the following conversion between structure constants of different normalizations:

f̃ âb̂ĉ =
√
2if âb̂ĉ , F̃ abc =

√
2iF abc . (4.1)
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As for the YM-scalar theory, when more than one flavor is present, there are two additional

non-zero amplitudes,

A3

(
1Wα̂, 2Wβ̂, 3W

γ̂)
= −

√
2ig
(
(k2 · ε1)(ε2 · ε3) + (k1 · ε3)(ε1 · ε2)− (k1 · ε2)(ε1 · ε3)

)
f̃ α̂ β̂

γ̂ ,

A3

(
1Wα̂, 2ϕβ̂, 3ϕ

γ̂
)

=
√
2ig(k2 · ε1)f̃ α̂ β̂

γ̂ . (4.9)

We will see that, in the N = 2 case, these building blocks will be sufficient to identify the

supergravity obtained from the double-copy prescription.

4.1.2 Four points

Using the four-point amplitudes we can study the constraints imposed by color/kinematics

duality on the theories constructed in section 2. We start from the YM-scalar theory with

explicitly-broken global symmetry and Lagrangian given by (2.45) and compute first the

amplitude between two massive and two massless scalars. To have a non-zero amplitude,

the two masses must be equal:

A4

(
1φaâ, 2φbb̂, 3ϕα̂

α, 4ϕ
β

β̂

)
=

− i

2
g2

{
f̃ â

γ̂
β̂ f̃ b̂

α̂
γ̂
( λ2

2
F̃ c γ

β F̃ d α
γ ∆ac∆bd

(k1 + k4)2 −m2
+ δαβ δ

ab
)
+ f̃ b̂β̂

γ̂ f̃
âγ̂
α̂

( λ2

2
F̃ d γ

β F̃ c α
γ ∆ac∆bd

(k1 + k3)2 −m2
+ δαβ δ

ab
)

+
f̃ âb̂ĉf̃ ĉβ̂

α̂

(k1 + k2)2
(λ2
2
F̃ abc∆cdF̃ d α

β + 2(k1 · k3 − k1 · k4)δαβ δab
)}

. (4.10)

The numerator factors are naturally organized by the power of λ. The O(λ0) parts of the

numerator factors are the same as in the massless theory and obey the kinematic Jacobi

relations. Imposing color/kinematics duality at O(λ2) and taking ∆ab to be invertible leads

to the requirement

F a γ
β F b α

γ − F b γ
β F a α

γ + F abcF c α
β = 0 , (4.11)

i.e. the tensors F abc, F a α
β can be seen as the structure constants and representation matrices

of the unbroken global symmetry group, respectively. Similarly, imposing color/kinematics

duality on the amplitude with one massless and three massive scalars leads to the identity,

F a γ
ǫ F ǫ β

δ − F a β
ǫ F ǫ γ

δ = F a ǫ
δ F

γ β
ǫ . (4.12)

We next turn to amplitudes with four massive fields. The terms with four such fields

in eq. (2.42) may appear mysterious; let us assume therefore a generic dependence on such

fields (constrained by symmetries) and see that the coefficients are fixed by color/kinematics

duality as stated in that equation. Thus, we assume that the Lagrangian contains the contact
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terms27

g2

2

(
b2ϕ

αf âϕαϕ
βf âϕβ + b1ϕ

αf âϕβϕ
βf âϕα + b3f

ǫ̂

α̂β̂
ϕ α̂
α ϕ

β̂
β f

γ̂δ̂
ǫ̂ ϕα

γ̂ϕ
β

δ̂
+ b4ϕ

αf ǫ̂ϕβϕ
βfǫ̂ϕα

)
.

(4.13)

The scattering amplitude of four massive scalars can be cast in the form

A4

(
1ϕα̂

α, 2ϕ
β̂
β, 3ϕ

γ
γ̂, 4ϕ

δ

δ̂

)
= −ig2

(
n1c1
D1

+
n2c2
D2

+
n3c3
D3

+
n4c4
D4

+
n5c5
D5

+
n6c6
D6

+
n7c7
D7

)
,

(4.14)

where the terms contributing to the amplitude are shown in figure 5; they correspond to

decomposing each of the s, t and u channels following the representation of the intermediate

state. When more than one mass is present, graphs with different internal mass are regarded

as distinct. The color factors are given by

c1 = f âδ̂
α̂f̃

âγ̂

β̂
, c2 = f̃ δ̂

ǫ̂ α̂f̃
ǫ̂γ̂

β̂
, c3 = f̃ ǫ̂δ̂

α̂f̃
γ̂

ǫ̂ β̂
, c4 = f̃ âγ̂

α̂f̃
âδ̂

β̂
,

c5 = f̃ ǫ̂γ̂
α̂f̃

δ̂

ǫ̂ β̂
, c6 = f̃ γ̂

ǫ̂ α̂f̃
ǫ̂δ̂

β̂
, c7 = f γ̂δ̂

ǫ̂f̃
ǫ̂

α̂β̂
, (4.15)

while the (massless and massive) inverse propagators are

D1 = (k1 + k4)
2 , D2 = D3 = (k1 + k4)

2 − (m1 −m4)
2 ,

D4 = (k1 + k3)
2 , D5 = D6 = (k1 + k3)

2 − (m1 −m3)
2 , D7 = (k1 + k2)

2 − (m1 +m2)
2 .

(4.16)

The numerator factors have the following expressions,

n1 = (k1 · k3 − k1 · k2)δαδ δβγ − i

4
λ2F̃ b α

δ F̃ c β
γ ∆ba∆ac − i

2
(k1 + k4)

2
(
b1δ

α
γ δ

β
δ + b2δ

α
δ δ

β
γ

)
,

n2 =
1

4
λ2F̃ ǫ α

δ F̃ β
ǫγ − i

2
b4
(
(k1 + k4)

2 − (m1 −m4)
2
)
δαγ δ

β
δ ,

n3 =
1

4
λ2F̃ α

ǫδ F̃ ǫ β
γ − i

2
b4
(
(k1 + k4)

2 − (m1 −m4)
2
)
δαγ δ

β
δ ,

n4 = (k1 · k4 − k1 · k2)δαγ δβδ − i

4
λ2F̃ b α

γ F̃ c β
δ ∆ba∆ac − i

2
(k1 + k3)

2
(
b2δ

α
γ δ

β
δ + b1δ

α
δ δ

β
γ

)
,

n5 =
1

4
λ2F̃ α

ǫγ F̃ ǫ β
δ − i

2
b4
(
(k1 + k3)

2 − (m1 −m3)
2
)
δαδ δ

β
γ ,

n6 =
1

4
λ2F̃ ǫ α

γ F̃ β
ǫδ − i

2
b4
(
(k1 + k3)

2 − (m1 −m3)
2
)
δαδ δ

β
γ ,

n7 =
1

4
λ2F̃ αβ

ǫF̃
ǫ
γδ −

i

2
b3
(
(k1 + k2)

2 − (m1 +m2)
2
)
(δαγ δ

β
δ − δαδ δ

β
γ ) . (4.17)

Note that this amplitude vanishes unless the masses of the external scalars are related as28

m1 +m2 = m3 +m4 . (4.18)

27Additionally, we could consider a contact term of the form ϕαf ǫ̂ϕαϕ
βfǫ̂ϕβ , but it is possible to show that

it gives vanishing contribution to all amplitudes entering the double-copy construction in the next section.

28This relation holds because of our choice of masses and gauge-theory representations for the theory with
explicitly-broken global symmetry.
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1, α 4, δ

Figure 5: Seven separate contributions to tree amplitudes with four massive scalars. Dashed
lines with arrows denote complex (massive) scalars. In diagram (1) and (4) the exchanged
particle is a sum of a massless scalar and a gluon.

We start by looking at the kinematic counterpart of the color seven-term relation in eq. (2.26).

As explained before, this color identity is to be thought of as a set of three-term identities.

Consequently, different three-term numerator identities need to be imposed for the various

possible choices of masses for the external particles.29 We start by taking all masses to be

equal. In this case, the color factors corresponding to massive t− and u−channel exchanges

vanish, and the seven terms relation collapses to

c1 − c4 + c7 = 0 . (4.19)

We proceed to impose the corresponding numerator relation

n1 − n4 + n7 = 0 . (4.20)

At the O(λ0) order we obtain the condition

{
2
(
1− b2 − b1

)
(k1 · k3) +

(
− 1− b2 − b3

)
(k1 · k2)

}
δαδ δ

β
γ − (3 ↔ 4) = 0 , (4.21)

which can be solved by

b3 = −1 − b2 , b1 = 1− b2 . (4.22)

29In principle, imposing several three-term relations on the numerator factors is different from imposing a
single seven-term relation. The former choice is natural in our approach as the various graphs entering the
amplitude presentation have a definite value of the mass for each internal or external line. Hence, graphs with
different external masses are distinct and must be treated separately. Taking into account the possible values
of the external mass, one finds that the color seven-term relation always reduces to three-term relations, and
the corresponding three-term relations need to be imposed on the numerator factors.
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The constraint at O(λ2) is

λ2
(
2F̃ b α

[δ F̃
c β

γ] ∆
ba∆ac + F̃ αβ

ǫ F̃ ǫ
γδ

)
= 8m2δαγ δ

β
δ − (3 ↔ 4) . (4.23)

The mass terms appear in this relation because the masses are chosen to be proportional to

λ. This O(λ2) identity forces us to pick one of the kinematic group generators, F 0 β
α , to be

proportional to the mass matrix; indeed, this has been our choice in section 2.5. In particular,

the proportionality relation between F 0 β
α and the mass, together with the relations (4.12),

implies

F α γ
β 6= 0 ⇔ mα +mγ = mβ ,

F a γ
β 6= 0 ⇔ mγ = mβ . (4.24)

The right-hand side of (4.23) is cancelled by the terms depending on ρ in the matrix ∆ on

the left side and the remainder is just a part of the the last identity for the kinematic algebra

in (2.44),

2F̃ b α
[δ F̃

c β

γ] ∆
ba∆ac + F̃ αβ

ǫ F̃ ǫ
γδ = 0 . (4.25)

Next, we consider the cases in which masses are pairwise equal, m1 = m3 and m2 = m4 with

m1 6= m2. In this case the seven-term identity reduces to30

c2 − c4 + c7 = 0 , c3 − c4 + c7 = 0 . (4.26)

Imposing the corresponding numerator identities and repeating the procedure above lead to

the extra condition on the contact-term parameters

b1 = b4 , (4.27)

together with the relations

−F̃ b α
γ F̃ c β

δ ∆ba∆ac + F̃ ǫ α
δ F̃ β

ǫγ + F̃ αβ
ǫ F̃ ǫ

γδ = 0 ,

−F̃ b α
γ F̃ c β

δ ∆ba∆ac + F̃ ǫ β
γ F̃ α

ǫδ + F̃ αβ
ǫ F̃ ǫ

γδ = 0 . (4.28)

In particular, all numerator relations can be satisfied if we choose b1 = b4 = 0, b2 = 1 and

b3 = −2 as in the Lagrangian (2.45).

Finally, there are several three-term color relations corresponding to the case in which all

external masses are different,

c2 − c5 + c7 = 0 , c3 − c5 + c7 = 0 , c2 − c6 + c7 = 0 , c3 − c6 + c7 = 0 . (4.29)

The corresponding numerator relations, combined with (4.25), (4.28) and (4.24), are equiv-

alent to a seven-term relation for the global (kinematic) group structure constants,

2F̃ b α
[δ F̃

c β

γ] ∆
ba∆ac + 4F̃

ǫ [α
[δ F̃

β]
ǫγ] + F̃ αβ

ǫ F̃ ǫ
γδ = 0 . (4.30)

30There are two distinct cases, according to whether m1 − m4 = +mint or m1 − m4 = −mint for some
possible mass of the t-channel particle.
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There exist one more amplitude with four massive scalars,

A4

(
1ϕα̂

α, 2ϕ
β̂
β, 3ϕ

γ̂
γ, 4ϕ

δ

δ̂

)
. (4.31)

Its numerator factors obey an additional relation provided that

F α γ
ǫ F ǫ β

δ − F α β
ǫ F ǫ γ

δ = F α ǫ
δ F γ β

ǫ . (4.32)

Equations (4.11), (4.12), (4.30) and (4.32) are equivalent to requiring that the F -tensors

can be combined to give the structure constants of a larger global symmetry group, which is

broken by the masses of some of the fields (and by the gauge-group representations). Indeed,

this has been our approach in deriving the Lagrangian (2.42).

Next, we analyze scalar amplitudes in the spontaneously-broken YM-scalar theory re-

viewed in section 2.4. We specialize to the case in which the theory has only two real adjoint

scalars (i.e. it can be seen as the bosonic part of the spontaneously-broken pure N = 2 SYM

theory). There are two non-zero amplitudes with two massive and two massless scalars,

A4

(
1φ0â, 2φ0b̂, 3ϕα̂, 4ϕ

β̂
)
=

−ig2
{
f̃ â γ̂

β̂
f̃ b̂ α̂

γ̂

k1 · k4 + 2m2

(k1 + k4)2 −m2
+ f̃ b̂ γ̂

β̂
f̃ â α̂

γ̂

k1 · k3 + 2m2

(k1 + k3)2 −m2
+ f̃ âb̂ĉf̃ ĉ α̂

β̂

k1 · k3 − k1 · k4
(k1 + k2)2

}
,

A4

(
1φ1â, 2φ1b̂, 3ϕα̂, 4ϕ

β̂
)
=

−ig2
{
f̃ â γ̂

β̂
f̃ b̂ α̂

γ̂

k1 · k4 + 2k1 · k2
(k1 + k4)2 −m2

+ f̃ b̂ γ̂

β̂
f̃ â α̂

γ̂

k1 · k3 + 2k1 · k2
(k1 + k3)2 −m2

+ f̃ âb̂ĉf̃ ĉ α̂

β̂

k1 · k3 − k1 · k4
(k1 + k2)2

}
,

(4.33)

where φ0 is the fluctuation of the field responsible for symmetry breaking (i.e. the fluctuations

of the field which acquires a VEV), φ1 is the other real scalar in the theory and the masses

of the two massive scalars need to be equal to have a non-zero amplitude. These amplitudes

manifestly display color/kinematics duality, as the numerator factors obey the same relations

as the corresponding color factors.

Finally, we consider scalar amplitudes with four massive fields,

A
(
1ϕα̂, 2ϕβ̂, 3ϕ

γ̂ , 4ϕδ̂
)
. (4.34)

The amplitude can be organized in the form (4.14) with inverse propagators (4.16), color

factors

c1 = f â α̂

δ̂
f̃ â β̂

γ̂ , c2 = f̃ ǫ̂ α̂

δ̂
f̃ β̂
ǫ̂γ̂ , c3 = f̃ α̂

ǫ̂δ̂
f̃ ǫ̂ β̂

γ̂ , c4 = f̃ â α̂
γ̂ f̃ â β̂

δ̂
,

c5 = f̃ α̂
ǫ̂γ̂ f̃ ǫ̂ β̂

δ̂
, c6 = f̃ ǫ̂ α̂

γ̂ f̃ β̂

ǫ̂δ̂
, c7 = f ǫ̂

γ̂δ̂
f̃ α̂β̂
ǫ̂ , (4.35)

and numerator factors

ñ1 = ñ2 = ñ3 = −
(
k1 · k2 −m1m2 − k1 · k3 −m1m3

)
,

ñ4 = ñ5 = ñ6 = −
(
2k1 · k2 − 2m1m2 + k1 · k3 +m1m3

)
,

ñ7 =
(
k1 · k2 + 2k1 · k3 −m1m2 + 2m1m3

)
. (4.36)
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It is immediate to verify that these numerators obey the same three-term relations as the

corresponding color factors.

4.2 Supergravity amplitudes

In this section we compare, in explicit examples, the result of the double-copy construction

described in section 2.6 with three- and four-point amplitudes computed from the expected

supergravity Lagrangian derived in section 3 and find the map between the Lagrangian and

double-copy fields.

One of the gauge-theory factors entering the construction is the spontaneously-broken

N = 2 SYM theory. The bosonic part of the Lagrangian is shown in section 2.4. We list

here the bosonic fields in four dimensions:

(
Aâ

µ , φ
âa′ ,Wα̂µ , ϕα̂ ,W

α̂

µ , ϕ
α̂
)
, a′ = 1, 2 . (4.37)

The other gauge-theory factor is the YM-scalar theory discussed in section 2.5. Its field

content is (
Aâ

µ , φ
1â , φaâ , ϕα̂

α , ϕ
α
α̂

)
. (4.38)

We will verify that the double-copy of these theories yields the spontaneously-broken generic

Jordan family YMESG theory with general gauge group.

To identify the result of the double-copy construction as one of the supergravities discussed

in section 3, we want the theory to have an uplift to five dimensions. To this end, we need

to single out a particular adjoint scalar which does not enter the trilinear couplings in

eq. (2.42) and hence can combine with the four-dimensional gluons to produce the gluons

of the five-dimensional theory. We will denote this scalar as φ1â. In contrast, the scalars

corresponding to non-vanishing F abc will be denoted as φaâ, where the index a runs over

the multiplets transforming in the adjoint representation of the unbroken gauge group K̃

(a = 2, 3, . . . , dim(K̃) + 1) and can also include extra spectator fields, when present. With

a slight change of notation from section 2.5, the global-group generator proportional to the

masses will be denoted as F 2 β
α . The corresponding scalar field will be called φ2, while

φ3, φ4, . . . will be the other massless scalars partaking to the trilinear interactions controlled

by the F abc tensors. This shift of indices is necessary to “align” the gauge-theory global

indices with the supergravity gauge adjoint indices, as the supergravity always has at least

two spectator multiplets.

4.2.1 Three-point amplitudes and double-copy field map

We begin by finding the three-point amplitudes of two massive scalars and a massless non-

spectator scalar in a spontaneously-broken generic Jordan family YMESG theory. There are
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two such amplitudes,

M3(1ϕα, 2ϕ
β, 3y2) = −i

(κ
2

) √
2gsm√
1− V 2

s

F̃ 2 α
β , (4.39)

M3(1ϕα, 2ϕ
β, 3ya) = −i

(κ
2

)√
2gsmF̃

a α
β . (4.40)

The first amplitude involves the scalar of the preferred vector multiplet which contains the

fluctuations of the field acquiring a VEV, while the second involves the other massless scalars

transforming in the adjoint representation of the unbroken gauge group. Note that we need

both massive scalars to have the same mass in order for the amplitude to be non-zero.

It is natural to expect that these amplitudes are reproduced by the double copy

A3(1ϕ, 2ϕ, 3φ
0)
∣∣∣
N=2

⊗A3(1ϕ, 2ϕ, 3φ
2)
∣∣∣
N=0

= − i√
2

(κ
2

)
λm
√

1 + ρ2F̃ a α
β , (4.41)

A3(1ϕ, 2ϕ, 3φ
0)
∣∣∣
N=2

⊗A3(1ϕ, 2ϕ, 3φ
a)
∣∣∣
N=0

= − i√
2

(κ
2

)
λmF̃ a α

β , (4.42)

where we have used eqs. (4.2) and (2.41). This double-copy can be constructed because

eq. (2.46) guarantees that the massive fields have equal masses. The massless scalar φ0 in

the N = 2 theory is the fluctuation of the field that acquires the VEV, and the scalar φ2 of

the N = 0 theory is the scalar corresponding to the U(1) generator related to the mass.

The amplitudes (4.39), (4.40) are equal to the amplitudes (4.41), (4.42) provided that we

identify

(κ
2

)
λ = 2gs , ρ =

Vs√
1− V 2

s

, fABC
sugra = FABC . (4.43)

This identification, together with the relation between the gauge-theory mass and preferred

U(1) generator (2.40), leads precisely to the expression for the mass in the spontaneously-
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broken supergravity (3.49). The other supergravity amplitudes with two massive fields are:

M3(1ϕα, 2ϕ
β, 3y0) =

√
2i
(κ
2

)
m2δαβ ,

M3(1ϕα, 2ϕ
β, 3A−) =

i√
2

(κ
2

)
mε3 · (k1 − k2)δ

α
β ,

M3(1ϕα, 2ϕ
β, 3A0) = − i√

2

(κ
2

)
mε3 · (k1 − k2)δ

α
β ,

M3(1ϕα, 2ϕ
β, 3Aa) =

i√
2

(κ
2

)
λ ε3 · (k1 − k2)∆

abF̃ b α
β ,

M3(1ϕα, 2W
β
, 3xa) = − i√

2

(κ
2

)
λ ε2 · (k1 − k3)∆

abF̃ b α
β ,

M3(1ϕ
α, 2Wβ, 3x

a) = − i√
2

(κ
2

)
λ ε2 · (k1 − k3)∆

abF̃ b β
α ,

M3(1Wα, 2W
β
, 3A−) = − i√

2

(κ
2

)
mε3 · (k1 − k2) ε1 · ε2δαβ ,

M3(1Wα, 2W
β
, 3A0) =

i√
2

(κ
2

)
mε3 · (k1 − k2) ε1 · ε2δαβ ,

M3(1Wα, 2W
β
, 3Aa) = − i

2
√
2

(κ
2

)
λ
(
ε3 · (k1 − k2)ε1 · ε2 + cyclic

)
∆abF̃ b α

β ,

M3(1Wα, 2W
β
, 3x0) = −

√
2i
(κ
2

)
ǫ(k1, k2, ε1, ε2)δ

α
β ,

M3(1Wα, 2W
β
, 3y0) = −

√
2i
(κ
2

)
(m2ε1 · ε2 + ε1 · p2 ε2 · p1)δαβ ,

M3(1Wα, 2W
β
, 3ya) =

i√
2

(κ
2

)
mλε2 · ε3∆abF̃ b α

β ,

M3(1ϕα, 2W
β
, 3A−) =

√
2i
(κ
2

)
ǫ(k2, k3, ε2, ε3)δ

α
β ,

M3(1ϕα, 2W
β
, 3A0) =

√
2i
(κ
2

)
ǫ(k2, k3, ε2, ε3)δ

α
β ,

M3(1ϕ
β, 2Wα, 3A

0) =
√
2i
(κ
2

)
ǫ(k2, k3, ε2, ε3)δ

α
β , (4.44)

where the Levi-Civita tensor is normalized as ǫ0123 = −1. These amplitudes can be repro-

duced by the double-copy prescription with the following field identification:
1√
2
(A−1

± −A0
±) = φ0

∣∣
N=2

⊗ A±
∣∣
N=0

, Aa
± = A±

∣∣
N=2

⊗ φa
∣∣
N=0

,

±i 1√
2
(A−1

± + A0
±) = φ1

∣∣
N=2

⊗ A±
∣∣
N=0

, ±αiA1
± = A±

∣∣
N=2

⊗ φ1
∣∣
N=0

,
1√
2
(y0 + ix0) = A+

∣∣
N=2

⊗ A−
∣∣
N=0

, 1√
2
(y0 − ix0) = A−

∣∣
N=2

⊗ A+

∣∣
N=0

,

ϕα = ϕ
∣∣
N=2

⊗ ϕα

∣∣
N=0

, Wα = W
∣∣
N=2

⊗ ϕα

∣∣
N=0

,
ya = φ0

∣∣
N=2

⊗ φa
∣∣
N=0

, xa = −φ1
∣∣
N=2

⊗ φa
∣∣
N=0

,
y1 = φ0

∣∣
N=2

⊗ φ1
∣∣
N=0

, x1 = −φ1
∣∣
N=2

⊗ φ1
∣∣
N=0

.

(4.45)

The field φ1 is a distinguished spectator scalar in the YM-scalar theory which does not enter

the trilinear couplings and is necessary for the theory to have a five-dimensional uplift, and
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the index a runs over the vector multiplets transforming in the adjoint representation of the

unbroken gauge group plus extra spectator fields, when present. The free parameter α = ±1

reflects the symmetry φ1 → −φ1 of the N = 0 gauge-theory factor. Note that the spectator

vectors A−1,0,1
µ and spectator scalars x0,1, y0,1 are always present due to the choice of compact

gauging and to the requirement of a five-dimensional uplift.

In the case in which the supergravity has more than one flavor of massive vectors, addi-

tional multi-flavor amplitudes become possible,

M3(1Wα, 2Wβ, 3W
γ
) =

i

2
√
2

(κ
2

)
λ
(
ε3 · (k1 − k2)ε1 · ε2 + cyclic

)
F̃ αβ

γ ,

M3(1Wα, 2ϕβ, 3ϕ
γ) = − i√

2

(κ
2

)
λε1 · k2F̃ αβ

γ . (4.46)

They are reproduced by a double-copy construction with multi-flavor gauge theories.

4.2.2 Four-point amplitudes

To test the identification of parameters and fields constructed in section 4.2.1 we construct

selected four-point amplitudes with two and four massive fields and compare them with

the double-copy construction. We start with the supergravity amplitude with four massive

scalars. Using the results from the previous sections, it can be expressed in the following

form,

M4

(
1ϕα, 2ϕβ, 3ϕ

γ, 4ϕδ
)
= −i

(κ
2

)2(n1ñ1

D1
+
n2ñ2

D2
+
n3ñ3

D3
+
n4ñ4

D4
+
n5ñ5

D5
+
n6ñ6

D6
+
n7ñ7

D7

)
,

(4.47)

where the numerators are given by (4.17) and (4.36). It is instructive to verify that all poles

in the above amplitude correspond to the exchange of a particle of the theory. Specifically,

for a given assignment of external masses, aside from two massless channels, there are three

massive channels with square masses (m1 +m2)
2, (m1 −m3)

2 and (m1 −m4)
2. One can see

that, thanks to the relations (4.24), the numerators n2, n3, n5, n6, n7 in (4.17) are either zero

or proportional to inverse propagators when the mass of the intermediate channel is not one

of the masses of the particles in the theory (i.e. one the eigenvalues of the matrix m β
α ).

We have verified that the expression (4.47) reproduces the one from a Feynman-rule com-

putation, once the field map (4.45) is employed. The expression for the general four massive

scalar amplitude substantially simplifies in the simplest case in which the supergravity has

a SU(2) gauge group which is spontaneously-broken to its U(1) subgroup. In this case only

one flavor of massive fields is present, α, β ≡ 1, and the structure constants become

F α γ
β ≡ 0 , F 2 β

α ≡ i . (4.48)

It is also convenient to absorb the ρ-dependent factor in the definition of λ,

λ̃ =
√
1 + ρ2λ . (4.49)
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The amplitude has a simple expression,

M4(1ϕ, 2ϕ, 3ϕ, 4ϕ) =
i

2

(κ
2

)2
(λ̃2 − 4k1 · k2)

[
1 + 2

k1 · k2 −m2

(k2 + k3)2
+ 2

k1 · k2 −m2

(k2 + k4)2

]
. (4.50)

In this particular case, all non-zero amplitudes with two massive fields have simple expres-

sions, and we list here some of them:

M4(1x
0, 2ϕ, 3x0, 4ϕ) = i

(κ
2

)2 [
−2m2 + 4

k1 · k4k3 · k4
(k1 + k3)2

]
,

M4(1y
0, 2ϕ, 3y0, 4ϕ) = i

(κ
2

)2 [
−2m2 − m4

k2 · k3
− m4

k3 · k4
+ 4

k2 · k3k3 · k4
(k2 + k4)2

]
,

M4(1x
1, 2ϕ, 3x1, 4ϕ) = i

(κ
2

)2 [
−2m2 + 4

k2 · k3k3 · k4
(k2 + k4)2

]
,

M4(1y
0, 2ϕ, 3y2, 4ϕ) =

i√
2

(κ
2

)2
λ̃m

[
2 +

m2

k2 · k3
+

m2

k3 · k4

]
,

M4(1y
1, 2ϕ, 3y1, 4ϕ) = i

(κ
2

)2 [
−(k2 + k4)

2 + 4
k2 · k3k3 · k4
(k2 + k4)2

]
,

M4(1y
2, 2ϕ, 3y2, 4ϕ) = i

(κ
2

)2
[
− λ̃

2

2
− 2m2 − m2λ̃2

2k2 · k3
− m2λ̃2

2k3 · k4
+ 4

k2 · k3k3 · k4
(k2 + k4)2

]
,

M4(1x
2, 2ϕ, 3x2, 4ϕ) = i

(κ
2

)2
(
λ̃2

2
− (k2 + k4)

2 +
λ̃2

2

k3 · k4
k2 · k3

+
λ̃2

2

k2 · k3
k3 · k4

+ 4
k2 · k3k3 · k4
(k2 + k4)2

)
.

(4.51)

There also exist amplitudes which vanish due to non-trivial cancellations. Among them there

are

M4(1x
1, 2ϕ, 3x2, 4ϕ) = 0 ,

M4(1y
0, 2ϕ, 3y1, 4ϕ) = 0 ,

M4(1y
1, 2ϕ, 3y2, 4ϕ) = 0 . (4.52)

We have explicitly checked that the result of the double-copy calculation for the amplitudes

listed above matches the given expressions.

As an interesting aside, we note that the double copy of spontaneously-broken YM theory

with itself, namely✟✟✟YM⊗✟✟✟YM, is a valid construction in the current treatment. To understand

what the result might be, let us take spontaneously-broken gauge theories with all masses

equal and consider the scattering of four massive scalars. The kinematic numerator factor

ñ7 in eq. (4.36) is nonvanishing when (k1 + k2)
2 = (2m)2 and thus the graph 7 in figure 5

exhibits a pole for such momentum configuration. This pole does not contribute to the

gauge-theory amplitude due to the vanishing of the color factor c7 in eq. (4.36). However,

through the double copy, this pole features in the corresponding supergravity amplitude and
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signals the existence of a state of mass 2m in the spectrum. Such state is not part of the

naive spectrum – the gauge invariant part of the tensor product of the two gauge-theory

spectra; unitarity requires it to be included. The argument can be repeated starting from

higher-point gauge-theory amplitudes and leads to the extension of the naive spectrum by an

infinite number of states with equally spaced masses, mn = nm with n integer. These states

also carry maximum spin two. Following from the discussion in appendix B.1 the amplitudes

generated by the double-copy construction S✟✟✟YM⊗S✟✟✟YM should belong to (D+1)-dimensional

Kaluza-Klein supergravity.

5 Loop amplitudes

Here we work out one of the simpler one-loop amplitudes in explicitly broken YM + φ3

in a form that obeys color/kinematics duality. Then, using the corresponding amplitudes

in spontaneously-broken SYM, the double copy gives the one-loop four-vector amplitude in

spontaneously-broken YMESG.

5.1 One-loop massless-scalar amplitude in broken YM + φ3 theory

Consider the one-loop amplitude for four massless external scalars in the explicitly bro-

ken YM + φ3 theory. We write the complete amplitude in the cubic-diagram form (2.1),

decomposed over the massless and massive internal modes,

A1-loop
4 = g4

∑

S4

∑

i∈{box,tri,bub}

∫
dDℓ

(2π)D
1

Si

(
nici
Di

+
∑

α

ni,α ci
Di,α

+
∑

α

ni,α ci
Di,α

)
, (5.1)

where the first sum runs over the permutations S4 of all four external leg labels. The

second sum runs over the three listed integral topologies (box, triangle, internal bubble

diagrams), and the corresponding symmetry factors are Sbox = 8, Stri = 4 and Sbub = 16.

The summation index α labels the massive modes, with mass ±mα, inside the loop diagrams.

The numerator without an α index corresponds to massless modes in the loop.

In the canonical order of the external legs, (1, 2, 3, 4), the color factors are

cbox = f̃ b̂â1ĉf̃ ĉâ2d̂f̃ d̂â3êf̃ êâ4 b̂ ,

ctri = f̃ â1â2ĉf̃ b̂ĉd̂f̃ d̂â3êf̃ êâ4 b̂ ,

cbub = f̃ â1â2ĉf̃ b̂ĉd̂f̃ d̂êb̂f̃ êâ3â4 . (5.2)
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Figure 6: The different types of box diagrams that contribute to the one-loop amplitude with four
massless scalars in explicitly broken YM + φ3 theory. Diagram (a) denotes the sum of all box
diagrams with massless internal states; the contribution (b) is of order λ4, (c) is of order λ2, and
(d) is of order λ0. Additionally, there are two conjugate diagrams (e), (f) with internal scalars of
mass mα. Dashed lines denote scalar fields, double lines of these corresponds to massive scalars,
while curly lines denote vector fields. Note that quartic-scalar interactions are implicitly included
in these diagrams, according to their power in the λ coupling.

The denominator factors in the canonical ordering are given by

Dbox = ℓ21ℓ
2
2ℓ

2
3ℓ

2
4 , Dtri = sℓ22ℓ

2
3ℓ

2
4 , Dbub = s2ℓ22ℓ

2
4 ,

Dbox,α = (ℓ21 −m2
α)(ℓ

2
2 −m2

α)(ℓ
2
3 −m2

α)(ℓ
2
4 −m2

α) ,

Dtri,α = s(ℓ22 −m2
α)(ℓ

2
3 −m2

α)(ℓ
2
4 −m2

α) ,

Dbub,α = s2(ℓ22 −m2
α)(ℓ

2
4 −m2

α) , (5.3)

where ℓi = ℓ− (k1 + . . .+ ki).

In ref. [27] the massless contributions to this amplitude were worked out using the unitarity

method [95]; we quote the result again, in a slightly different form. We write the box

numerator corresponding to massless fields, figure 6(a), as

nbox = n
(4)
box + n

(2)
box + n

(0)
box , (5.4)

where the superscript denotes the order in λ. The O(λ4) contribution of the box numerator,

shown in figure 6(b), is entirely expressed in terms of the structure constants of the global

group,

n
(4)
box(1, 2, 3, 4; ℓ) =

λ4

4
F ba1cF ca2dF da3eF ea4b . (5.5)
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The O(λ2) numerator contributions, shown in figure 6(c), is given by

n
(2)
box(1, 2, 3, 4; ℓ) =

λ2

24

{
(Nφ +D − 2)

(
F a1a4bF ba3a2(ℓ22 + ℓ24) + F a1a2bF ba3a4(ℓ21 + ℓ23)

)

+ 24
(
sF a1a4bF ba3a2 + tF a1a2bF ba3a4

)
+ δa3a4Tr12(6ℓ

2
3 − ℓ22 − ℓ24)

+ δa2a3Tr14(6ℓ
2
2 − ℓ21 − ℓ23) + δa1a4Tr23(6ℓ

2
4 − ℓ21 − ℓ23) (5.6)

+ δa1a2Tr34(6ℓ
2
1 − ℓ22 − ℓ24) + (ℓ21 + ℓ22 + ℓ23 + ℓ24)(δ

a2a4Tr13 + δa1a3Tr24)
}
,

and the O(λ0) numerator contributions, shown in figure 6(d), is

n
(0)
box(1, 2, 3, 4; ℓ) =

1

24

{
δa1a2δa3a4

[
24t(t− 2ℓ21 − 2ℓ23) + 2(Nφ +D − 2)(3ℓ21ℓ

2
3 − ℓ22ℓ

2
4)

+ (Nφ +D + 14)
(
t(ℓ21 + ℓ22 + ℓ23 + ℓ24)− u(ℓ21 + ℓ23)

)]

+ δa2a3δa1a4
[
24s(s− 2ℓ22 − 2ℓ24) + 2(Nφ +D − 2)(3ℓ22ℓ

2
4 − ℓ21ℓ

2
3)

+ (Nφ +D + 14)
(
s(ℓ21 + ℓ22 + ℓ23 + ℓ24)− u(ℓ22 + ℓ24)

)]

+ δa1a3δa2a4
[
2(Nφ +D − 2)(ℓ21ℓ

2
3 + ℓ22ℓ

2
4)

− (Nφ +D + 14)
(
s(ℓ21 + ℓ23) + t(ℓ22 + ℓ24)

)]}
. (5.7)

As before ℓi = ℓ − (k1 + . . . + ki) and in eq. (5.6) we use the shorthand notation Trij =

F baicF cajb. The parameterNφ = δabδab is the number of massless scalars in theD-dimensional

theory.

Finally, the numerators of the massive diagrams, figure 6(e) and figure 6(f), are conjugates

of each other. We explicitly give the one corresponding to figure 6(e),

nbox,α(1, 2, 3, 4; ℓ) =
λ4

4
F̂ a1 β

α F̂ a2 γ
β F̂ a3 δ

γ F̂ a4 α
δ (no sum α)

+
λ2

24

{
Nα

[
F a1a4bF ba3a2(L2 + L4) + F a1a2bF ba3a4(L1 + L3)

]

+ δa3a4 T̂r12;α (6L3 − L2 − L4) + δa2a3 T̂r14;α (6L2 − L1 − L3)

+ δa1a4 T̂r23;α (6L4 − L1 − L3) + δa1a2 T̂r34;α (6L1 − L2 − L4)

+ (L1 + L2 + L3 + L4)(δ
a2a4 T̂r13;α + δa1a3 T̂r24;α)

}

+
Nα

24

{
δa1a2δa3a4

[
2(3L1L3 − L2L4) + t(L1 + L2 + L3 + L4)− u(L1 + L3)

]

+ δa2a3δa1a4
[
2(3L2L4 − L1L3) + s(L1 + L2 + L3 + L4)− u(L2 + L4)

]

+ δa1a3δa2a4
[
2(L1L3 + L2L4)− s(L1 + L3) + t(L2 + L4)

]}
, (5.8)

where Li = ℓ2i − m2
α = (ℓ − (k1 + . . . + ki))

2 − m2
α are the inverse propagators of the box

diagram, F̂ a β
α ≡ ∆abF b β

α and we use the shorthand notation T̂rij;α = F̂ ai β
α F̂

aj α

β .

Since the mass depends on the index α we do not yet sum over this index; the numerator

has to first be combined with the correct denominator factor (this is akin to not integrating
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over the loop momenta in numerators when they are not yet combined with their denomi-

nators). The parameter Nα is introduced to count the degeneracy of massive scalars corre-

sponding to mass mα. By default Nα = 1 since we may formally consider all masses distinct,

but it is useful to keep this parameter around should one choose to do the bookkeeping

differently. As seen, every term in eq. (5.8) depends on the index α.

The conjugated box numerator, corresponding to figure 6(f), can now be obtained by the

identification

nbox,α(1, 2, 3, 4; ℓ) = nbox,α(4, 3, 2, 1;−ℓ) , (5.9)

or, alternatively, by raising/lowering all the gauge-group indices in nbox,α corresponding to

matter representations.

The box numerators have been constructed so to manifestly obey color/kinematics duality

and satisfy all physical unitarity cuts (this includes all cuts that have no contributions from

tadpoles or external bubbles, which are singular diagrams on shell).31 Note that in the

mα → 0 limit, there is a term-by-term map between the numerator in eq. (5.8) and the

terms in eqs. (5.5)–(5.7), after the gluon loop contributions in the latter expressions have

been excluded. This is consistent with the discussion in appendix B.2.

The numerator factors for the remaining contributing diagrams, the triangles and internal

bubbles, are given by the kinematic Lie algebra relations. For the massless numerators we

have

ntri(1, 2, 3, 4; ℓ) = nbox(1, 2, 3, 4; ℓ)− nbox(2, 1, 3, 4; ℓ) ,

nbub(1, 2, 3, 4; ℓ) = ntri(1, 2, 3, 4; ℓ)− ntri(1, 2, 4, 3; ℓ) , (5.10)

and for the massive ones, we have

ntri,α(1, 2, 3, 4; ℓ) = nbox,α(1, 2, 3, 4; ℓ)− nbox,α(2, 1, 3, 4; ℓ) ,

nbub,α(1, 2, 3, 4; ℓ) = ntri,α(1, 2, 3, 4; ℓ)− ntri,α(1, 2, 4, 3; ℓ) , (5.11)

and similarly for the conjugate ones, ni,α.

31 Unlike massless theories, in massive theories bubbles on external lines and tadpoles do not automat-
ically vanish in dimensional regularization. For the current purpose, one may nonetheless ignore them by
considering renormalized gauge-theory amplitudes in a particular scheme (and defining the double copy in
this renormalization scheme).
Graphs with a massive bubble on a massless external leg have the same color structure as the correspond-

ing tree-level graphs (with the bubble removed) and as such they receive contributions from counterterms
that renormalize the gauge-theory action. Since these bubbles integrate to constants, one may choose coun-
terterms that completely cancel them (this is different from the MS scheme).
Cubic tadpole graphs typically vanish in a gauge theory because of the color factors, but the kinematic

part of them is not automatically zero for massive tadpoles, and thus can potentially contribute to the
gravity amplitude through the double copy. The existence of such a tadpole would indicate the instability
of Minkowski vacuum, and thus we remove them by choosing appropriate gravity counterterms (for the
gauge-theory numerators this implies that we simply drop all tadpoles).
The resulting gravity amplitude inherits the momentum dependence of the underlying gauge-theory ampli-

tude while dropping certain renormalization-dependent constant factors, which from the gravity perspective
are absorbed into the definition of the gravity action.

52



×
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(c)

mα mα

Figure 7: The three types of box diagrams in the one-loop four-vector spontaneously-broken
YMESG amplitude. The contributions are, (a) the graviton and massless vector, (b) the massiveWα

vectors, and (c) the massive W
α
vectors. These are given by double copies between spontaneously-

broken SYM (left factors) and explicitly broken YM + φ3 theory (right factors). The remaining
triangle and bubble contributions are obtained from the boxes through the Jacobi and commutation
relations of color/kinematics duality. See figure 6 for notation.

5.2 One-loop four-vector Yang-Mills-gravity amplitudes

The double-copy procedure, inherent in color/kinematics duality, provides a straightforward

way to construct loop amplitudes in spontaneously-broken YMESG theory. For example,

figure 7 illustrates how to obtain the different types of contributions – massless graviton and

vector multiplets, massive Wα and W
α
multiplets – as double copies between spontaneously-

broken SYM numerators and the explicitly broken YM + φ3 numerators computed in the

previous section.

The complete one-loop amplitude with four massless external vectors in spontaneously-

broken YMESG theory, is given by the double-copy form (2.5),

M1-loop
4 =

(κ
2

)4∑

S4

∑

i∈{box,tri,bub}

∫
dDℓ

(2π)D
1

Si

(
nSYM
i ni

Di

+
∑

α

nSYM
i,α ni,α

Di,α

+
∑

α

nSYM
i,α ni,α

Di,α

)
,

(5.12)

where the sums, symmetry factors, and denominator factors, are the same as in eqs. (5.1)

and (5.3). As before, the ni are the numerators of explicitly broken YM + φ3 theory given

in section 5.1, and the nSYM
i are numerators of spontaneously-broken SYM theory and we

identify the combination κλ/2 with the supergravity gauge coupling g.

For the one-loop amplitudes, the spontaneously-broken D-dimensional SYM numerators

are given by (D + 1)-dimensional SYM numerators with the last component of the loop

momentum interpreted as mass: ℓ→ (ℓ,±mα). We may write the numerators as

nSYM
i ≡ nSYM

i (1, 2, 3, 4; ℓ; 0) ,

nSYM
i,α ≡ nSYM

i (1, 2, 3, 4; ℓ;mα) , (5.13)

nSYM
i,α ≡ nSYM

i (1, 2, 3, 4; ℓ;−mα) ,

meaning that the numerators for massive and massless internal states are described by the
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same function, only the value of mα differs between them.32

Specifying to the maximally supersymmetric case, the box numerator of spontaneously-

broken N = 4 SYM is given by

nN=4 SYM
box (1, 2, 3, 4; ℓ;m) = istAtree(1, 2, 3, 4) =

[1 2] [3 4]

〈1 2〉 〈3 4〉δ
(8)
(∑

ηαi |i〉
)
, (5.14)

independent of the mass parameter m, whether zero or not, in agreement with ref. [80].

The corresponding triangle and bubble numerators vanish for this theory. Plugging this into

(5.12) gives the four-vector amplitude in spontaneously-broken N = 4 YMESG theory.

The N = 2 SYM one-loop numerator factors may be written as the difference between

N = 4 SYM and numerator factors for one adjoint N = 2 hypermultiplet running in the

loop,

nN=2 SYM
i (1, 2, 3, 4; ℓ;m) = nN=4 SYM

i (1, 2, 3, 4; ℓ;m)− 2nN=2,mat.
i (1, 2, 3, 4; ℓ;m) . (5.15)

Color/kinematics-satisfying one-loop numerator factors due to one adjoint hypermultiplet

running in the loop may be found in refs. [15, 18, 16, 17]. A manifestlyN = 2-supersymmetric

box numerator valid for D-dimensional loop momenta was given in ref. [17]; introducing the

mass-dependence we find

nN=2,mat.
box (1, 2, 3, 4, ℓ;m) = (κ12 + κ34)

(s− ℓs)
2

2s2
+ (κ23 + κ14)

ℓ2t
2t2

+ (κ13 + κ24)
st + (s+ ℓu)

2

2u2

+ (µ2 +m2)
(κ12 + κ34

s
+
κ23 + κ14

t
+
κ13 + κ24

u

)

+ 2iǫ(k1, k2, k3, ℓ)
κ13 − κ24

u2
, (5.16)

where ℓs = 2ℓ · (k1 + k2), ℓt = 2ℓ · (k2 + k3) and ℓu = 2ℓ · (k1 + k3). The numerator factors

of other box integrals are obtained by relabeling. The parameter µ is the component of

the loop momenta that is orthogonal to four-dimensional spacetime, and ǫ(k1, k2, k3, ℓ) =

kµ1k
ν
2k

ρ
3ℓ

λǫµνρλ is the Levi-Civita invariant. The external multiplet dependence is captured

by the variables κij,

κij = − [1 2] [3 4]

〈1 2〉〈3 4〉δ
(4)
(∑

ηαi |i〉
)
〈i j〉2 (η3i η4i )(η3j η4j ) . (5.17)

As before, the triangle and bubble numerators are given by the kinematic Jacobi relations,

nN=2 SYM
tri (1, 2, 3, 4; ℓ;m) = nN=2 SYM

box (1, 2, 3, 4; ℓ;m)− nN=2 SYM
box (2, 1, 3, 4; ℓ;m) ,

nN=2 SYM
bub (1, 2, 3, 4; ℓ;m) = nN=2 SYM

tri (1, 2, 3, 4; ℓ;m)− nN=2 SYM
tri (1, 2, 4, 3; ℓ;m) , (5.18)

32Note that the numerators of spontaneously-broken SYM are thus straightforward to obtain from the
massless theory in (D + 1) dimensions, in contrast to the numerators of explicitly broken YM + φ3 theory
which in general have a more complicated relation to the massless numerators.
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which have no mass-dependence, since the mass term in eq. (5.16) is totally symmetric.

Plugging the N = 2 SYM numerators, together with the YM + φ3 numerators (5.4), into

equation (5.12) gives a four-vector amplitude in the spontaneously-broken N = 2 YMESG

theory. The parameter Nφ in eq. (5.4) and (5.7) is identified with the number of massless

vector multiplets (i.e. the number of massless vector fields excluding those in the graviton

multiplet). One may verify the construction by observing that the unitarity cuts of these

amplitudes match the direct evaluation of cuts in terms of tree diagrams.

It is not difficult to integrate the resulting expression and find the divergence of the four-

vector amplitude. As usual, the masses do not enter the UV divergence, which is the same

as that of the unbroken theory; it is naturally organized in the powers of λ.

• The O(λ0) part of the amplitude is the same as in the MESG theory with the same

field content. The four-vector amplitude diverges in four dimensions and, as a term

in the effective action, the divergence is proportional to the square of the vector field

stress tensor [96, 97].

• The O(λ2) part of the amplitude is finite in four (and five) dimensions; it is given

by a combination of the four- and six-dimensional box integrals with tree-level color

structures.

• Since the O(λ4) part of the YM + φ3 numerators is momentum-independent, the

divergence at this order is proportional to the divergence of the four-gluon amplitude

in the N = 2 SYM theory. In the UV limit the masses drop out and the sum over the

index α leads to a factor of the index of the adjoint representation, T (A)δab = F acdF bcd.

Next consider the maximally-helicity-violating (MHV) amplitude in YMDR theory, which

is the generalization of the bosonic part of SYM theories. For four-dimensional external

states, the one-loop numerator factors may again be written as the difference between SYM

numerators and numerator factors for scalar matter running in the loop,

nYMDR
i (1, 2, 3, 4; ℓ;m) = nN=4 SYM

i (1, 2, 3, 4; ℓ;m)− 4nN=2,mat.
i (1, 2, 3, 4; ℓ;m)

+ (2 +N ′
φ)n

YMDR,mat.
box (1, 2, 3, 4; ℓ;m) . (5.19)

where N ′
φ is the number of real scalars in the loop (also counting the Goldstone boson). In the

gravity theory this number gives the number of real vector fields in the graviton multiplet.

A box numerator for a four-vector amplitude with a single scalar running in the loop in the

YMDR theory, valid for D-dimensional loop momenta and four-dimensional external states,
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was given in ref. [17],

nYMDR,mat.
box (1, 2, 3, 4, ℓ;m) =

− (κ12 + κ34)
( ℓ4s
4s4

− ℓ2s(2L+ 3ℓs)

4s3
+

2Lℓs + ℓ2s − 2M2

2s2
− 2L− ℓs + s

4s

)

− (κ23 + κ14)
( ℓ4t
4t4

− ℓ2t (2L− ℓs − ℓu + t)

4t3
− M2

t2

)

− (κ13 + κ24)
(ℓ3u(ℓu + 3s)

4u4
− ℓu(ℓu(2L− ℓs)− ℓ2s + ℓ2t + 4s(L+ ℓu + 2M))

4u3

− ℓ2s − ℓ2t + 3ℓ2u + 4Lt + 8M(ℓu − s+M)

8u2
− ℓs − s

4u

)

− 2iǫ(k1, k2, k3, ℓ)(κ13 − κ24)
ℓ2u − uℓu − 2Mu

u4
. (5.20)

with

L = ℓ2 −m2 and M = µ2 +m2 . (5.21)

In the above non-supersymmetric expressions it is understood that only the vector compo-

nents of κij should be kept; that is, in eq. (5.19) and eq. (5.20) we take

κij →
[1 2] [3 4]

〈1 2〉〈3 4〉 〈i j〉
4 (η1i η

2
i η

3
i η

4
i )(η

1
j η

2
j η

3
j η

4
j ) . (5.22)

As before, the box numerator was constructed to obey color/kinematics duality, thus the

triangle and bubble numerators are given by the kinematic Jacobi relations,

nYMDR
tri (1, 2, 3, 4; ℓ;m) = nYMDR

box (1, 2, 3, 4; ℓ;m)− nYMDR
box (2, 1, 3, 4; ℓ;m) ,

nYMDR
bub (1, 2, 3, 4; ℓ;m) = nYMDR

tri (1, 2, 3, 4; ℓ;m)− nYMDR
tri (1, 2, 4, 3; ℓ;m) . (5.23)

Plugging the YMDR numerators together with the YM + φ3 numerators (5.4), (5.10),

(5.11) in eq. (5.12) gives the four-vector MHV amplitude in a spontaneously-broken YMDR-

Einstein theory.

6 N = 4 supergravity theories

In this section we discuss the application of our results to construction of the amplitudes of

N = 4 Maxwell-Einstein and Yang-Mills-Einstein supergravity theories. We begin with a

review of the Lagrangians of these theories.33

33Note that the conventions for labeling various quantities used in this section are independent of the
conventions used earlier for N = 2 supergravity theories.
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6.1 N = 4 Maxwell-Einstein and Yang-Mills-Einstein supergrav-
ity theories

The N = 4 Maxwell-Einstein supergravity theories describe the coupling of N = 4 su-

pergravity to N = 4 vector multiplets. Their construction and various gaugings in five

dimensions were studied in [98, 99, 100, 101]. Our review will follow mainly [100].

The pure N = 4 supergravity in five dimensions contains one graviton eµ
m, four gravitini

ψi
µ, six vector fields (Aij

µ , aµ), four spin 1/2 fermions χi and one real scalar field a:

(
eµ

m , ψi
µ , A

ij
µ , aµ , χ

i , a
)
. (6.1)

Here, µ, ν, . . . (m,n, . . . ) denote the five-dimensional curved (flat) indices and the i, j =

1, . . . , 4 are the indices of the fundamental representation of the R-symmetry group USp(4).

The vector field aµ is a USp(4) singlet and the vector fields Aij
µ transform in the 5 of USp(4),

i.e.,

Aij
µ = −Aji

µ , Aij
µ Ωij = 0 , (6.2)

where Ωij is the symplectic metric of USp(4) ∼= SO(5). On the other hand an N = 4 vector

multiplet contains the fields (
Aµ , λ

i , φij
)
, (6.3)

where Aµ is a vector field, λi denotes four spin 1/2 fields, and the φij are scalar fields in the

5 of USp(4)

φij = −φji φijΩij = 0 . (6.4)

The total field content of the N = 4 MESG theory with n vector multiplets can be labelled

as follows (
eµ

m , ψi
µ , A

Ĩ
µ , aµ , χ

i , λia , a , φx
)
, (6.5)

where the index a = 1, . . . , n counts the number of N = 4 vector multiplets whereas the in-

dices Ĩ , J̃ , ... = 1, . . . , (5+n) collectively denote the vector fields Aij
µ of supergravity multiplet

and the vector fields coming from the vector multiplets. The indices x, y, .. = 1, . . . , 5n de-

notes the scalar fields in the n vector multiplets. The USp(4) indices are raised and lowered

with the symplectic metric Ωij and its inverse Ωij :

T i = Ωij Tj , Ti = T j Ωji , (6.6)

and the a, b indices are raised and lowered with δab.

The scalar manifold spanned by the (5n+ 1) scalar fields is [98]

M =
SO(5, n)

SO(5)× SO(n)
× SO(1, 1) , (6.7)

where the SO(1, 1) factor corresponds to the USp(4)-singlet scalar field σ of the supergrav-

ity multiplet. The metric of the coset part G/H = SO(5,n)
SO(5)×SO(n)

of the scalar manifold M
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parametrized by the 5n scalars is denoted as gxy and the corresponding SO(5) × SO(n)

“vielbeins” as fa
yij

gxy =
1

4
f ija
x fa

yij , (6.8)

An equivalent description uses coset G/H representatives LĨ
A where Ĩ denotes a G =

SO(5, n) index, and A = (ij, a) is a H = SO(5) × SO(n) index. Denoting the inverse of

LĨ
A by LA

Ĩ ,

LĨ
A LB

Ĩ = δAB ,

one can define the vielbeins on G/H and the composite H-connections as follows:

L−1∂µL = Qab
µ Tab +Qij

µ Tij + P aij
µ Taij , (6.9)

where (Tab,Tij) are the generators of the Lie algebra h of H, and Taij denotes the generators

of the coset part of the Lie algebra g of G. More explicitly the composite SO(n) and USp(4)

connections are given by

Qab
µ = LĨa∂µLĨ

b = −Qba
µ and Qij

µ = LĨik∂µLĨk
j = Qji

µ . (6.10)

Furthermore we have

P aij
µ = LĨa∂µLĨ

ij = −1

2
faij
x ∂µφ

x . (6.11)

The Lagrangian of the five-dimensional N = 4 MESG theory is reproduced in appendix D

following [98, 100]. Its bosonic part can be written as:

e−1 LBosonic = −1

2
R− 1

4
Σ2 aĨ J̃ F

Ĩ
µνF

µνJ̃ − 1

4
Σ−4GµνG

µν (6.12)

−1

2
(∂µa)

2 − 1

2
gxy∂µφ

x∂µφy +

√
2

8
e−1CĨJ̃ ǫ

µνρaλ F Ĩ
µνF

J̃
ρa aλ ,

where

Σ = e
1√
3
a
. (6.13)

and the abelian field strengths of vector fields are defined as

F Ĩ
µν = (∂µA

Ĩ
ν − ∂νA

Ĩ
µ) , Gµν = (∂µaν − ∂νaµ) , (6.14)

The main constraints imposed by supersymmetry are 34

aĨ J̃ = Lij

Ĩ
LJ̃ij + La

Ĩ
La
J̃
, CĨ J̃ = Lij

Ĩ
LJ̃ij − La

Ĩ
La
J̃
, (6.15)

where CĨJ̃ is the constant SO(5, n) invariant metric.

Five-dimensional N = 4 MESG theories can be truncated to N = 2 MESG theories with

or without N = 2 hypermultiplets. To understand the structure of truncations we note that

34 The indices Ĩ , J̃ , . . . are raised and lowered by aĨJ̃ and its inverse, e.g. LA
Ĩ

= aĨJ̃ LJ̃A.
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the pure N = 4 supergravity theory can be truncated to N = 2 supergravity coupled to a

single vector multiplet by discarding two of the N = 2 gravitino supermultiplets where each

gravitino multiplet contains a gravitino, two vectors and one spin 1/2 field. The remaining

vector multiplet involves the SO(n, 5) singlet vector aµ. On the other hand an N = 4 vector

multiplet decomposes into an N = 2 vector multiplet plus an N = 2 hypermultiplet which

has four scalars. One can discard either the N = 2 hypermultiplet or the N = 2 vector

multiplet in truncation. If one throws away the N = 2 hypers from all the N = 4 multiplets

the resulting theory is an N = 2 MESG theory belonging to the generic Jordan family with

the scalar manifold

MV(n+1)
=
SO(1, 1)× SO(n, 1)

SO(n)
,

which is unique modulo the embedding of N = 2 R-symmetry group SU(2) inside USp(4).

On the other hand if one throws away m of the N = 2 vector multiplets and keeps the

corresponding hypermultiplets the resulting theory is an N = 2 MESG theory coupled to m

hypermultiplets with the moduli space:

MV(n−m+1)
× VHm

=
SO(1, 1)× SO(n−m, 1)

SO(n−m)
× SO(m, 4)

SO(m)× SO(4)
.

The N = 2 MESG theory sector of all these truncations is of the generic Jordan type.

The F ∧ F ∧A term √
2

8
e−1CĨJ̃ ǫ

µνρaλ F Ĩ
µνF

J̃
ρa aλ , (6.16)

of the N = 4 MESG theory reduces to

√
2

8
e−1CRS ǫ

µνρaλ FR
µνF

S
ρa aλ , (6.17)

where R, S, .. = 1, 2, ..(n−m+ 1). If we denote the singlet vector aµ as A0
µ this implies that

the C-tensor of the N = 2 MESG theory is simply given by

C0RS =

√
3

2
CRS ,

where CRS is proportional to the constant SO(n−m, 1) invariant metric, namely

C011 =

√
3

2
,

C0rs = −
√
3

2
δrs , r, s, .. = 1, 2, ...(n−m) . (6.18)

Four-dimensional N = 4 MESG theories and their gaugings were first studied in [102, 103].

Their most general gaugings both in four and five dimensions using the embedding tensor

formalism was given more recently [101]. Under dimensional reduction the five-dimensional
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N = 4 MESG theory with n vector multiplets leads to the four-dimensional MESG theory

with (n + 1) vector multiplets and the scalar manifold

M4 =
SO(6, n+ 1)

SO(6)× SO(n+ 1)
× SU(1, 1)

U(1)
. (6.19)

The SU(1, 1) symmetry acts via electric and magnetic dualities and in the symplectic section

that descends directly from five dimensions via dimensional reduction the Lagrangian is

invariant under the five-dimensional U-duality group. These N = 4 MESG theories in four

dimensions can be truncated to N = 2 MESG theories belonging to the generic Jordan

family with or without hypermultiplets. Truncation to maximal N = 2 MESG theory with

(n + 1) vector multiplets without hypers is unique modulo the embedding of the N = 2

R-symmetry group U(2) inside N = 4 R-symmetry group SO(6) = SU(4). The resulting

theory has the scalar manifold

SO(n+ 1, 2)

SO(n+ 1)× SO(2)
× SU(1, 1)

U(1)
. (6.20)

If one retains m, N = 2 hypermultiplets and (n+1−m) vector multiplets in the truncation

the resulting theory is a MESG theory coupled tom hypermultiplets with the scalar manifold

SO(n+ 1−m, 2)

SO(n+ 1−m)× SO(2)
× SU(1, 1)

U(1)
× SO(m, 4)

SO(m)× SO(4)
. (6.21)

Most general gaugings of N = 4 supergravity theories coupled to N = 4 vector multiplets

were studied in [101] using the embedding tensor formalism. In this paper we will only

focus on gaugings that lead to N = 4 supergravity coupled to Yang-Mills gauge theories

with a compact gauge group that allow Minkowski vacua only. For this we will follow the

work of [100] on gaugings of five-dimensional N = 4 MESG theories. As was shown by the

authors of [100] gauging with tensors requires an abelian gauge group whose gauge field is the

singlet vector aµ. Furthermore gauging a semisimple subgroup of the global symmetry group

SO(5, n) by itself does not require coupling to any tensors and allows Minkowski vacua only.

To gauge a semisimple subgroup KS of SO(5, n) one identifies the subset of vector fields AI
µ

that transform in the adjoint representation of KS with the remaining vector fields being

spectators. Since such gaugings do not have tensors we can formally use the same index

Ĩ , J̃ , .. = 1, 2, ..., n+5 to collectively denote the KS gauge fields plus the spectators with the

understanding that the structure constants f K̃
ĨJ̃

of the gauge group vanishes when any one

of the indices corresponds to the spectator vector fields. In this paper we restrict ourselves

to gaugings of a compact subgroup K of SO(n) global symmetry which do not involve any

tensor fields and will use this formal trick to simplify the formulas.

The gauging of a subgroup K requires that all derivatives acting on fields that transform

non-trivially under K be covariantized. This is implemented by the following substitutions
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in the Lagrangian AĨ
µ in the standard way:

F Ĩ
µν −→ F Ĩ

µν = F Ĩ
µν + gS A

J̃
µf

I

J̃K̃
AK̃

ν ,

∂µL
Ĩ
A −→ DµL

Ĩ
A = ∂µL

Ĩ
A + gSA

J̃
µf

I

J̃K̃
LK̃
A . (6.22)

The composite USp(4) and SO(n) connections, the vielbein P a
µij as well as the derivatives

Dµ acting on fermions are also modified by the new gS dependent contributions as reviewed

in appendix D where we also reproduce the Lagrangian of the N = 4 YMESG theory in five

dimensions following [100]. The bosonic part of the Lagrangian of the YMESG theory has

the form [100] :

e−1 LYMESG = −1

2
R− 1

4
Σ2 aĨ J̃ F Ĩ

µνFµνJ̃ − 1

4
Σ−4GµνG

µν (6.23)

− 1

2
(∂µa)

2 − 1

2
Paij

µ Pµ
aij +

√
2

8
e−1CĨJ̃ ǫ

µνρaλ F Ĩ
µνF J̃

ρa aλ

− g2
S

(
−9

2
Sij∆

ij +
1

2
T a
ij T

aij

)
,

where

Sij = −2

9
Σ−1LJ̃

(i|k|f
K̃
J̃ Ĩ
Lkl
K̃
LĨ
|l|j), (6.24)

T a
ij = −Σ−1LJ̃aLK̃

(i
kf Ĩ

J̃K̃
LĨ|k|j), (6.25)

Pa
µij = P a

µij − gSA
J̃
µL

K̃
ij f

Ĩ
J̃K̃
La
Ĩ
. (6.26)

The N = 4 Yang-Mills-Einstein supergravity with a compact gauge group K that is a

subgroup of SO(n) can be truncated to N = 2 Yang-Mills-Einstein supergravity with the

same gauge group that belongs to the generic Jordan family discussed in section 3. This

truncation is unique for a given compact gauge group K, modulo the equivalence class of

embeddings of K in SO(n) and R symmetry group SU(2) inside USp(4), and assuming

that the number of spectator vector multiplets is the same in the truncated theory as the

original N = 4 theory. Conversely one can extend a YMESG theory belonging to the generic

Jordan family to an N = 4 YMESG theory with the same gauge group. These results hold

true also for the corresponding YMESG theories in four dimensions so long as one works

in the symplectic section that descends directly from five dimensions. The four-dimensional

YMESG theories have one extra spectator vector multiplet coming from the supergravity

multiplet in five dimensions.

The spontaneous symmetry breaking mechanism of N = 2 YMESG theories induced by

giving a VEV to some of the scalars in the vectors multiplets can be extended to the N = 4

YMESG theories for compact gauge groups K that are subgroups of SO(n) both in five as

well as in four dimensions. For example the N = 4 supersymmetric Yang-Mills theory with

gauge group SU(2) spontaneously-broken down to U(1) subgroup by giving a VEV to one of
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VR\VL Aµ λi φ[ij]

Aν hµν ⊕ σ ⊕ φ Ψi
µ ⊕ ψi A

[ij]
ν

φc Ac
µ ψi,c φ[ij],c

Table 4: The spectrum of the D = 4, N = 4 Maxwell-Einstein and Yang-Mills-Einstein super-
gravity theories from the double-copy construction: one N = 4 supergravity multiplet given by the
second, third and fourth entries of the second line and as many vector multiplets as the range of
the index c of the scalar fields in the non-supersymmetric gauge-theory factor given in the third
line.

the scalars leads to a massless gauge multiplet and two massive BPS vector multiplets which

can be written as complex fields carrying opposite U(1) charges. In four dimensions these

charged BPS vector multiplets have 5 massive complex scalars and four massive fermions

[104]. A massive N = 4 BPS vector multiplet decomposes into a massive BPS N = 2 vector

multiplet plus a massive N = 2 BPS hypermultiplet. Therefore a spontaneously-broken

N = 4 YMESG theory can be truncated to a spontaneously-broken N = 2 YMESG theory

by throwing away the massive hypermultiplets. The spontaneous symmetry breaking by

giving a VEV to one of the scalars in a gauge vector multiplet breaks the R-symmetry from

SO(6) down to SO(5) = USp(4) in four dimensions and from USp(4) down to SO(4) in five

dimensions.

6.2 More on double copies with N = 4 supersymmetry

In the double-copy construction of the amplitudes of N = 2 MESG theories one gauge-

theory copy is N = 2 supersymmetric and the other copy has no supersymmetry. If one

replaces the N = 2 gauge-theory factor with an N = 4 supersymmetric theory one obtains

the amplitudes of an N = 4 MESG theory both in five as well as in four dimensions. The

fields of four-dimensional N = 4 MESG theory and YMESG theory in terms of those of

N = 4 SYM and of the pure YM theory coupled to scalars in a specific way can be obtained

by restricting to the product VL ⊗ VR in section 2.6.2 which we give in Table 4.

The double-copy construction yields the superamplitudes of N = 4 MESG theory in terms

of the N = 4 SYM superamplitudes and the amplitudes of the dimensional reduction of pure

YM theory from D = 4 + nV , where nV is the number of vector multiplets. In the same

sense as from a Lagrangian point of view we can truncate these N = 4 supergravity su-

peramplitudes to a combination of N = 2 superamplitudes corresponding to vector and

hypermultiplets that describe the amplitudes of N = 2 MESG theory coupled to hyper-

multiplets corresponding to the quaternionic manifold SO(m,4)
SO(m)×SO(4)

. Special cases of such

amplitudes that arise in N = 2 MESG theories which are orbifolds of N = 8 supergravity

were discussed in [15, 27].

Similarly, the superamplitudes ofN = 4 YMESG theories can be obtained as double copies
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by replacing the N = 2 supersymmetric gauge-theory factor by an N = 4 supersymmetric

gauge-theory factor while keeping the N = 0 gauge copy as in section 2.3, with only the φ

fields but not the ϕ fields. (Keeping both the fields φ and ϕ leads to a theory that does not

obey color/kinematics duality.)

Similarly to the unbroken symmetry case, scattering amplitudes with manifest N =

4 supersymmetry and spontaneously-broken gauge symmetry can be constructed rather

straightforwardly by replacing the spontaneously-broken N = 4 SYM theory in place of

the spontaneously-broken N = 2 SYM theory in section 2.6. These amplitudes are expected

to describe spontaneously-broken YMESG theories that preserve all N = 4 supersymme-

tries. Some of them, such as the anomalous amplitudes discussed in [105] for MESG theories,

are particularly easy to find from the expressions found in sec. 5. Apart from the rational

contribution present in the MESG and unbroken YMESG theories, they will also acquire

nontrivial dependence on the non-zero masses. However, spontaneous partial supersymme-

try breaking is possible in N = 4 YMESG theories [103, 106, 107]. In particular the work

of [107] studies in depth the breaking of N = 4 supersymmetry down to N = 2 supersym-

metry in N = 4 supergravity theories. Detailed study of the double-copy construction of

the amplitudes of spontaneously broken N = 4 YMESG theories with or without partial

supersymmetry breaking is beyond the scope of this paper. It will be studied in a separate

work where we will discuss explicitly these amplitudes and their comparison with a direct

Feynman graph-based calculations.

7 Conclusions and outlook

In this paper we have extended color/kinematics duality and the double-copy construction

to gauge and gravity theories that are spontaneously broken by an adjoint scalar VEV.

As demonstrated in earlier work [27], abelian and non-abelian gauge theories that couple to

(super)gravity provide a rich class of theories for which both spectra and interactions appear

to exhibit a double-copy structure. The tree-level S matrices and the loop-level integrands

of these YMESG theories can be constructed in terms of the tree-level S matrices and the

loop-level integrands of particular matter-coupled YM theories. Color/kinematics duality is

the main agent behind the consistency of this construction.

In the presence of a non-abelian gauge symmetry it is particularly natural to consider spon-

taneous symmetry breaking. We observe that the gravity double-copy structure is present at

the level of the spectrum of spontaneously-broken YMESG theories. The YMESG spectra

can be expressed as the tensor product of the spectrum of two types of gauge theories: a

spontaneously-broken YM theory and a YM theory coupled to massive scalars charged under

a global symmetry. In the latter YM + φ3 theory, the scalar fields have acquired mass as a

consequence of an explicit breaking of the global symmetry.

The double-copy construction is shown to work for the interacting fields given that the

63



two gauge-theory factors obey color/kinematics duality of a form specific to broken gauge

theories. As discussed in section 2.4, in addition to the Jacobi relation and commutation rela-

tion, there are new types of color-factor relations in a gauge theory spontaneously broken by

an adjoint scalar VEV. Color/kinematics duality then requires that corresponding kinematic

identities are satisfied by the kinematic numerators of the diagrammatic expansion of an am-

plitude. With the appropriate definition of the numerator factors, the spontaneously-broken

YM theory inherits color/kinematics duality from the corresponding unbroken (D + 1)-

dimensional theory. For the explicitly-broken YM + φ3 theory, color/kinematics duality

acts as a highly non-trivial constraint on the terms in the Lagrangian that are introduced

to break the global symmetry. These terms exhibit certain similarities with terms appearing

in spontaneously-broken gauge theories, but the details differ significantly. While we do not

discuss it in the current work, it should be interesting to understand these terms as origi-

nating from some limiting case (perhaps a double-scaling limit) of a spontaneously-broken

gauge theory.

Using the above gauge-theory ingredients, and building on our earlier work [27], we dis-

cussed in detail the N = 2 generic Jordan family YMESG theories with spontaneously-

broken gauge symmetry and showed that they continue to exhibit a double-copy structure

on the Coulomb branch. By computing three-point and four-point scattering amplitudes we

identified the map relating the double-copy asymptotic states and the asymptotic states of

the supergravity Lagrangian. Similar to the orbifold constructions of ref. [15], the super-

gravity fields are related to bilinears of the gauge theory fields which are neutral under an

appropriately-identified global symmetry. The double-copy construction of the asymptotic

states also follows closely the approach taken in ref. [17]. Similar to the unbroken case [27],

upon comparing the scattering amplitudes we identify the parameters of the supergravity

Lagrangian in terms of the parameters of the two gauge-theory factors. This gives non-trivial

relations between the dimensionful and dimensionless couplings of the various theories.

The details of the double-copy construction extend to YMESG theories with N ≤ 4

supersymmetry with little change. In this paper, the N < 2 YMESG theories have only

been considered as obtained through the double copy, without detailing their Lagrangian

formulation. Nevertheless, as pointed out in ref. [27], the formalism described there should

extend to unbroken N = 1 supersymmetric and non-supersymmetric theories. Since N = 1

YMESG theories have no adjoint scalars they cannot be considered on the Coulomb branch.

For non-supersymmetric YME theories with adjoint scalars, the spontaneously-broken phase

is straightforwardly obtained through the double copy.

We addressed with more details the case of N = 4 MESG and YMESG theories. The

N = 4 MESG theories are obtained as a double-copy of N = 4 SYM theory with the

dimensional reduction of some higher-dimensional pure YM theory [27]. The correspond-

ing N = 4 YMESG theories are obtained by gauging a subgroup of the global symmetry

group, which in terms of the double-copy construction amounts to adding a φ3 term to the
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non-supersymmetric gauge-theory factor [27]. In analogy with the double-copy construction

for N = 2 theories, amplitudes in the spontaneously-broken N = 4 theory should be ob-

tained from a double copy between spontaneously-broken N = 4 SYM and explicitly broken

YM + φ3 theory. We leave for future work a thorough understanding of the N = 4 YMESG

theories from a Lagrangian perspective, as well as a comparison of the resulting scattering

amplitudes with the results of the double-copy construction outlined here.

To illustrate the power of the double-copy construction we presented several one-loop four-

point amplitudes. For the broken YM + φ3 theory, we considered one-loop diagrams with

external massless scalars, and internal massless vectors and massive scalars. After double-

copying this theory with the corresponding spontaneously-broken N = 4, 2 SYM numerators,

we obtained amplitudes in spontaneously broken N = 4, 2 YMESG theories. Corresponding

one-loop amplitudes with no supersymmetry were also presented.

A future relevant study would be the case of N = 2 YMESG theories with hypermultiplets

in the fundamental representation. A Higgs mechanism with fields in representations different

from the adjoint gives distinct scenarios for breaking the gauge group. It would be interesting

to explore whether gauge theories with a fundamental scalar VEV exhibit color/kinematics

duality, and similarly to check the result of the double-copy construction against scattering

amplitudes evaluated with the corresponding supergravity Lagrangian as a starting point.
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A Summary of index notation

Here we give a brief summary of the various indices used in the paper, with the exception

of section 6, which follows a different notation consistent with the relevant supergravity

literature. The types of indices are:

A,B,C = −1, 0, . . . , ñ index running over all sugra vectors in 4D,
global gauge-theory index (before symmetry breaking),

I, J,K = 0, . . . , ñ index running over matter vectors in 4D;
index running over all vector fields in 5D,

x, y = 1, 2, . . . , ñ curved target space indices in 5D,

a, b, c index running over massless vectors,
in the Higgsed supergravity;
global index in gauge-theory,

i, j, k index running over massless scalars,
in the Higgsed supergravity ;
fundamental global indices in gauge theory,

ı̂, ̂, k̂ fundamental rep. indices in gauge theory,

α, β, γ index running over massive fields,

â, b̂, ĉ gauge-theory adjoint indices,

α̂, β̂, γ̂ gauge-theory matter-representation indices,

m,n, o flavor indices.

With this notation we have

A =
(
− 1, I

)
=
(
a, α, ᾱ

)
=
(
− 1, i, α, ᾱ

)
. (A.1)

B Symmetry breaking vs. dimensional compactifica-

tion

B.1 Spontaneously broken SYM

In this appendix we show that SYM spontaneously-broken by an adjoint scalar VEV is

equivalent to a dimensional compactification (D + 1) → D of SYM such that for each field

the extra-dimensional momentum becomes a mass that is proportional to a U(1) charge.

Consider that the gluons and scalars fields in the higher-dimensional theory satisfy the

following differential equation with respect to a derivative in the internal direction (D + 1):

∂D+1

(
AµÂ

φaÂ

)
= −gV f 0ÂB̂

(
AµB̂

φaB̂

)
≡ imÂB̂

(
AµB̂

φaB̂

)
. (B.1)
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This means that some fields have a momentum turned on in the internal direction (D + 1),

corresponding to the eigenvalues of −gV f 0ÂB̂ ≡ imÂB̂. Fields that commute with the

generator t0 will not have a mass since that implies that f 0ÂB̂ vanish. If needed one can

decompose this equation into massive and massless field, with the corresponding renaming

and complexification as in section 2.4, giving

∂D+1

(
Aµâ

φaâ

)
= 0 ,

∂D+1

(
W µ

α̂

ϕa
α̂

)
= −gV f 0 β̂

α̂

(
W µ

β̂

ϕa

β̂

)
≡ im β̂

α̂

(
W µ

β̂

ϕa

β̂

)
. (B.2)

However, for the exercise in this appendix it is more convenient to work with the real fields

and mass matrix in eq. (B.1).

The kinetic term of the scalars φa>0 in (D+1) dimensions can now be shown to be identical

to a kinetic term in D dimensions plus a φ4-term containing a VEV:

1

2

(
Dµφ

aÂ
)2 − 1

2

(
∂D+1φ

aÂ + gfAB̂ĈAB̂
D+1φ

aĈ
)2

=
1

2

(
Dµφ

aÂ
)2 − 1

2

(
imÂB̂φaB̂ + gfABCφ0B̂φaĈ

)2

=
1

2

(
Dµφ

aÂ
)2

+
g2

2
tr
(
[V t0 + φ0, φa]2

)
, (B.3)

where the second term on the first row corresponds to the (D+1) component of the kinetic

term, similarly AÂ
D+1 is the gauge field in that direction. The latter is renamed to φ0Â on

the second line. The full expression for Dµφ
aÂ can be found in eq. (2.23), remembering that

the global index a does not yet include a = 0.

To get the kinetic term for the φ0 field we need to look at the (D+1)-dimensional vector-

field kinetic term. It is straightforward to see that it is identical to the D-dimensional

vector-field kinetic term plus the kinetic term of φ0, including a VEV for the latter,

−1

4

(
F Â

µν

)2
+

1

2

(
∂µA

Â
D+1 − ∂D+1A

Â
µ + gf ÂB̂ĈAB̂

µA
Ĉ
D+1

)2

= −1

4

(
F Â

µν

)2
+

1

2

(
∂µφ

0Â − imÂB̂AB̂
µ + gf ÂB̂ĈAB̂

µ φ
0Ĉ
)2

= −1

4

(
F Â

µν

)2
+

1

2

(
(Dµφ

0)Â − imÂB̂AB̂
µ

)2

= −1

4

(
F Â

µν

)2
+

1

2

(
(Dµφ

0 +Dµ〈φ0〉)Â
)2
, (B.4)

where 〈φ0〉 = V t0. Similar to before, the second term on the first line is the contribution of

the field-strength in the µ⊗ (D + 1) direction, on the second line AÂ
D+1 is renamed to φ0Â,

and on the third and fourth lines terms are reassembled into covariant derivatives. Again,

the full expressions for F Â
µν and Dµφ

0Â can be found in eq. (2.23).
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Finally, including the quartic terms for the φa>0 scalars, the (D + 1)-dimensional (mass-

less/unbroken) SYM Lagrangian has become a spontaneously-broken D-dimensional SYM

Lagrangian,

LSYM = −1

4

(
F Â

µν

)2
+
1

2

(
(Dµφ

a+Dµ〈φa〉)Â
)2
+
g2

4
tr
(
[φa+〈φa〉, φb+〈φb〉]2

)
+fermions , (B.5)

where 〈φa〉 = δa0V t0.

A practical implication of this identification is that scattering amplitudes for SYM spontaneously-

broken by a adjoint scalar VEV can be computed from unbroken (D+ 1)-dimensional SYM

given that for each field there is a relation between the internal-space momentum and a

U(1) charge. This relation can be stated as an operator equation, simply by rewriting the

differential equation (B.1) as follows:

i(pD+1 − gV q)

(
AµÂ

φaÂ

)
= 0 , (B.6)

where pD+1 is the momentum operator pointing in the (D+1) direction, and q is a U(1)-charge

operator that acts as qΦ = [t0,Φ], for some field Φ. Similarly, we have that pD+1Φ = mΦ,

where m is the mass of Φ, implying that a (massive) field carries the U(1) charge m/(gV ).

For example, for tree amplitudes it is sufficient to impose the constraint (B.6) on the

external states, then the internal states will automatically have this satisfied by virtue of

charge/momentum conservation. Similarly, for loop amplitudes, it is sufficient to have this

constraint imposed once for each independent loop momenta.

B.2 Explicitly broken YM + φ3

Here we re-derive the Lagrangian (2.42) for explicitly broken YM + φ3, without explicitly

using color/kinematics duality. Similar to the derivation in section B.1, it is given by a

dimensional compactification (D + 1) → D of the corresponding unbroken theory, after a

proper identification of the extra-dimensional momentum and the U(1) charge of each field.

Although, the details are strikingly different compared to the SYM case.

Consider that the scalars fields in the higher-dimensional theory satisfy the following

differential equation with respect to a derivative in the internal direction (D + 1):

∂D+1φ
Aâ = −1

2
ρλF 0ABφBâ ≡ imABφBâ . (B.7)

Similar to before we let φ̃0â = Aâ
D+1 represent the gluon that is converted to a scalar upon

dimensional reduction. The covariant derivative, applied in the (D + 1) direction, of the
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other scalars is then given by

−1

2

(
(DD+1φ

A)â
)2
=− 1

2

(
∂D+1φ

Aâ + gf âb̂ĉAb̂
D+1φ

Aĉ
)2

=− 1

2

(
− 1

2
ρλF 0ABφBâ + gf âb̂ĉφ̃0b̂φAĉ

)2

=− 1

2
mACmCBφAâφBâ+

1

2
gρλF 0ABf âb̂ĉφ̃0âφAb̂φBĉ− g2

2
f âb̂êf êĉd̂φ̃0âφAb̂φ̃0ĉφAd̂

=− (m2) β
α ϕ

αâϕ â
β + gρλF 0 β

α f âb̂ĉφ̃0âϕαb̂ϕ ĉ
β − g2f âb̂êf êĉd̂φ̃0âφ̃0ĉϕαb̂ϕ d̂

α

− g2

2
f âb̂êf êĉd̂φ̃0âφab̂φ̃0ĉφad̂ . (B.8)

On the last line the proper massive fields have been identified (and complexified), and m β
α

is the proper mass matrix corresponding to these fields, similar to the presentation in sec-

tion 2.5.

An important difference from the derivation in section B.1 is that the extra-dimensional

gluon is also charged under the global group, since F 0AB 6= 0 is assumed in order to have a

mass term. However, in the derivation in eq. (B.8) this field is a U(1) singlet in the ρ → 0

limit, which appears to be inconsistent with this assumption. To ensure the existence of a

non-singlet scalar in this limit we demand that the true φ0 scalar is a linear combination of

φ̃0 and a scalar φ̂0 that was present already before the dimensional compactification. The

non-kinetic terms in the Lagrangian containing φ̂0 is then,

gλF 0 β
α f âb̂ĉφ̂0âϕαb̂ϕ ĉ

β − g2f âb̂êf êĉd̂φ̂0âφ̂0ĉϕαb̂ϕ d̂
α − 1

2
g2f âb̂êf êĉd̂φ̂0âφab̂φ̂0ĉφad̂ . (B.9)

Indeed, if we add the terms in eq. (B.8) and eq. (B.9) and do the unitary rotation

(
φ̂0

φ̃0

)
=

1√
1 + ρ2

(
1 −ρ
ρ 1

)(
φ0

φ′0

)
, (B.10)

of the two scalars, then only the field φ0 has a cubic interaction, and φ′0 becomes a U(1)

singlet of the global group. We may drop the latter field since it can be absorbed into the

freedom of redefining the global group, e.g. Gk × U(1) → Gk. We then get the following

modification of the covariant derivative considered in eq. (B.8):

−1

2

(
(DD+1φ

A)â
)2→ −(m2) β

α ϕ
αâϕ â

β + gλ
√
1+ρ2F 0 β

α f âb̂ĉφ0âϕαb̂ϕ ĉ
β − g2f âb̂êf êĉd̂φ0âφ0ĉϕαb̂ϕ d̂

α

− 1

2
g2f âb̂êf êĉd̂φ0âφab̂φ0ĉφad̂ . (B.11)

Compared to a massless unbroken theory, the only new terms in this expression are the

two first ones. It is not surprising that a quadratic mass term appears, but that the cubic

term corresponding to the global-group coupling gets modified by a square-root function

is striking. The remaining two terms are simply a group decomposition of certain quartic
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scalar terms already present in the original unbroken Lagrangian (2.37). Ignoring these, we

get the explicitly broken YM + φ3 by adding the above mass-term to the Lagrangian (2.37)

and at the same time swapping the cubic λ-dependent term as

gλF a β
α f âb̂ĉφaâϕαb̂ϕ ĉ

β → gλ∆abF b β
α f âb̂ĉφaâϕαb̂ϕ ĉ

β , (B.12)

with ∆ab = δab +
(√

1 + ρ2 − 1
)
δa0δ0b. Finally, carrying out the full decomposition of φAâ

into real and complex massive fields, we obtain precisely the Lagrangian in eq. (2.42).

Even though the terms in the Lagrangian can be obtained as a dimensional compactifica-

tion of the unbroken (D + 1) dimensional theory, the amplitudes of this theory have to be

treated with some care. The reason is that in the (D + 1)-dimensional theory the (massive)

scalars can potentially source W -bosons that are not part of the explicitly broken YM + φ3

theory. Without careful treatment of amplitudes in the (D + 1) theory, such “illegal” parti-

cles will appear as intermediate states. An example of such a treatment would be to impose

the operator equation (B.6), with the gauge-group generator replaced by the global-group

generator t0 → T 0, on all external states in the tree amplitude. Because of T 0 charge conser-

vation and extra-dimensional momentum conservation, the internal states will automatically

have the correct mass, including gluons which are singlets of the global group.

In fact, it is no surprise that explicitly broken YM + φ3 theory cannot be a straightforward

dimensional compactification. If it were then, through the double-copy construction, the

spontaneously broken YMESG would inherit this property. This is impossible, spontaneously

broken YMESG is clearly not a straightforward dimensional compactification of a (D + 1)-

dimensional theory; for example, it does not have massive modes of gravitons.

C Expansions for the supergravity Lagrangian

In this appendix we list expansions for the period matrix and scalar metric entering the

supergravity Higgs Lagrangian after the field redefinition (3.52) and up to terms linear in

the physical scalar fields. The non-zero entries of the period matrix are the following,

N−1−1 = −i+O(φ2) , N−1a = 2za +O(φ2) ,

N−10 = 2z0 +O(φ2) , N0a = 2z̄a +O(φ2) ,

N−11 = 2z1 +O(φ2) , N β
−1 =

√
2(ϕβ

x + iϕβ
y ) +O(φ2) ,

N00 = −i+O(φ2) , N−1β =
√
2(ϕxβ + iϕyβ) +O(φ2) ,

N01 = −2z̄1 +O(φ2) , N β
0 =

√
2(ϕβ

x − iϕβ
y ) +O(φ2) ,

N11 = −i+ 2z̄0 +O(φ2) , N0β =
√
2(ϕxβ − iϕyβ) +O(φ2) ,

Nab = (−i+ 2z̄0)δab +O(φ2) ,

N α
β = (−i+ 2z̄0)δαβ +O(φ2) , (C.1)
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where the indices a, b run over fields transforming in the adjoint of the unbroken gauge group

and additional (non universal) spectators. Similarly, the scalar metric has non-zero entries,

g00 = 1− 2
√
2y0 +O(φ2) , g1a = −ya +O(φ2) , gab = (1− 2y1)δab +O(φ2) ,

g11 = 1− 2y1 +O(φ2) , g β
1 = −ϕβ

y +O(φ2) , gαβ = (1− 2y1)δαβ +O(φ2) .

g1β = −ϕyβ +O(φ2) ,

(C.2)

Note that the differences between these expansions and the ones in the appendix of [27]

arise because the vector field A1
µ has not been dualized. These expansions are sufficient for

calculating the three-point amplitudes presented in section 4.2.

D Lagrangians of N = 4 MESG and YMESG theories

in five dimensions

The Lagrangian of the five-dimensional N = 4 MESG theory is given by [98, 100]:

e−1 L = −1

2
R − 1

2
ψ̄i
µ Γ

µνρDνψρi −
1

4
Σ2 aĨ J̃ F

Ĩ
µνF

µνJ̃ − 1

4
Σ−4GµνG

µν

− 1

2
(∂µa)

2 − 1

2
χ̄iD/χi −

1

2
λ̄iaD/λai −

1

2
P aij
µ P µ

aij

− i

2
χ̄iΓµΓνψµi ∂νa+ iλ̄ia ΓµΓνψj

µ Pνij
a

+

√
3

6
ΣLij

Ĩ
F Ĩ
ρaχ̄i Γ

µΓρaψµj −
1

4
ΣLa

Ĩ
F Ĩ
ρaλ̄

ai ΓµΓρaψµi

− 1

2
√
6
Σ−2 χ̄i ΓµΓρaψµiGρa +

5i

24
√
2
Σ−2χ̄iΓρaχiGρa

− i

12
ΣLij

Ĩ
F Ĩ
ρaχ̄i Γ

ρaχj −
i

2
√
3
ΣLa

Ĩ
F Ĩ
ρaλ̄

iaΓρaχi −
i

8
√
2
Σ−2Gρaλ̄

iaΓρaλai

+
i

4
ΣLij

Ĩ
F Ĩ
ρaλ̄

a
iΓ

ρaλaj −
i

4
ΣLij

Ĩ
F Ĩ
ρa [ψ̄µiΓ

µνρaψνj + 2 ψ̄ρ
i ψ

a
j ]

− i

8
√
2
Σ−2Gρa [ψ̄

i
µΓ

µνρaψνi + 2ψ̄ρi ψa
i ]

+

√
2

8
e−1CĨ J̃ ǫ

µνρaλ F Ĩ
µνF

J̃
ρa aλ + e−1L4f , (D.1)

where L4f denotes the four fermion terms in the Lagrangian. The supersymmetry transfor-

mation laws are given by35

δemµ =
1

2
ε̄iΓmψµi ,

35All symmetrizations (ij) and anti-symmetrizations [ij] are of weight one.
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δψµi = Dµεi +
i

6
ΣLĨ ijF

Ĩ
ρσ(Γ

ρσ
µ − 4δρµΓ

σ)εj ,

+
i

12
√
2
Σ−2Gρσ(Γ

ρσ
µ − 4δρµΓ

σ)εi + 3-fermion terms ,

δχi = − i

2
∂/σεi +

√
3

6
ΣLĨ ijF

Ĩ
ρσΓ

ρσεj − 1

2
√
6
Σ−2GρσΓ

ρσεi ,

δλai = iP a
µijΓ

µεj − 1

4
ΣLa

Ĩ
F Ĩ
ρσΓ

ρσεi + 3-fermion terms ,

δAĨ
µ = ϑĨµ ,

δaµ =
1√
6
Σ2ε̄iΓµχi −

i

2
√
2
Σ2ε̄iψµi ,

δσ =
i

2
ε̄iχi ,

δLij

Ĩ
= −iLa

Ĩ
(δ

[i
k δ

j]
l − 1

4
ΩijΩkl)ε̄

kλla ,

δLa
Ĩ

= −iLĨ ij ε̄
iλja , (D.2)

where

ϑĨµ ≡ − 1√
3
Σ−1LĨ

ij ε̄
iΓµχ

j − iΣ−1LĨ
ij ε̄

iψj
µ +

1

2
LĨ
aΣ

−1ε̄iΓµλ
a
i . (D.3)

and

Σ = e
1√
3
a
. (D.4)

The abelian field strengths of vector fields are defined as

F Ĩ
µν = (∂µA

Ĩ
ν − ∂νA

Ĩ
µ) , Gµν = (∂µaν − ∂νaµ) , (D.5)

and the covariant derivative, Dµ involves the composite connections:

Dµλ
a
i = ∇µλ

a
i +Qµi

jλaj +Qab
µ λ

b
i , (D.6)

where ∇µ is the Lorentz- and spacetime covariant derivative.

To construct an N = 4 YMESG theory with a semisimple subgroup KS of the global

symmetry group SO(5, n) as the non-abelian gauge symmetry one replaces all derivatives

acting on fields that transform non-trivially under KS with KS gauge covariant derivatives

[98, 100]. As explained in section 6 this is implemented by the following substitutions in the

Lagrangian:

F Ĩ
µν −→ F Ĩ

µν = F Ĩ
µν + gS A

J̃
µf

Ĩ
J̃K̃
AK̃

ν ,

∂µL
Ĩ
A −→ DµL

Ĩ
A = ∂µL

Ĩ
A + gSA

J̃
µf

Ĩ
J̃K̃
LK̃
A . (D.7)

where f K̃
ĨJ̃

are non-vanishing only when the indices take values in the adjoint representation

of the semisimple gauge group KS and vanish whenever any one of the indices labels the
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spectator vector fields. The USp(4) and SO(n) connections, as well as the vielbein P a
µij are

also modified by the new gS dependent contributions, i.e.,

Q j
µi = Q j

µi + gSA
J̃
µL

K̃
ikf

Ĩ
J̃K̃
Lkj

Ĩ
, (D.8)

Q b
µa = Q b

µa − gSA
J̃
µL

K̃
a f

Ĩ

J̃K̃
Lb

Ĩ
, (D.9)

Pa
µij = P a

µij − gSA
J̃
µL

K̃
ij f

Ĩ
J̃K̃
La
Ĩ
. (D.10)

The derivatives acting on the fermions get modified accordingly

Dµλ
a
i = ∇µλ

a
i +Q j

µi λ
a
j +Qab

µ λ
b
i , (D.11)

where Q j
µi and Q b

µa now include the gS dependent terms.

To restore supersymmetry with the above covariantizations one adds to the Lagrangian

following Yukawa couplings as well as potential terms[98, 100]

∆L = LYukawa + LPotential , (D.12)

where

LYukawa =
3i

2
gSSij ψ̄

i
µΓ

µνψj
ν + igSIijab λ̄

iaλjb +
i

2
gSSij χ̄

iχj + gST
a
ij ψ̄

i
µΓ

µλja ,

+
√
3gSSij ψ̄

i
µΓ

µχj − 2i√
3
gST

a
ij χ̄

iλja , (D.13)

and

LPotential = −g2
S
V (S) = −g2

S

(
−9

2
Sij∆

ij +
1

2
T a
ij T

aij

)
. (D.14)

Various scalar field dependent quantities above are defined as follows:

Sij = −2

9
Σ−1LJ̃

(i|k|f
K̃

J̃ Ĩ
Lkl

K̃
LĨ
|l|j) , (D.15)

T a
ij = −Σ−1LJ̃aLK̃ k

(i f Ĩ

J̃K̃
LĨ|k|j) , (D.16)

Iijab = −3

2
Sijδab − Σ−1LJ̃aLK̃

ij f
Ĩ
J̃K̃
Lb
Ĩ
. (D.17)

Furthermore one needs to modify the transformation rules of the fermions as follows:

δnewψµi = igSSijΓµε
j, (D.18)

δnewλ
a
i = gST

a
ijε

j, (D.19)

δnewχi = gS

√
3Sijε

j . (D.20)
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