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Effective Charges in Nuclei in the Vicinity of 100Sn

The shell structure of atomic nuclei far from the line of beta-stability and the properties of the nucleon-nucleon
interaction in exotic isotopes are not well known. The development of radioactive ion beams (RIBs) puts
certain unexplored regions of the nuclear chart within reach of detailed experimental investigations.

The low-energy nuclear structure of the unstable isotopes 106,108,110Sn, 100,102,104Cd, and 106,108In have
been studied using sub-barrier Coulomb excitation of postaccelerated RIBs. The experiments were carried out
at the REX-ISOLDE facility at CERN. The deduced transition probabilities - B(E2) values - provide a detailed
benchmark of modern models of the nucleon-nucleon interaction.

The B(E2) values between the 0+ ground states and the first excited 2+ states in the Sn and Cd isotopes were
compared with shell-model calculations. These are based on effective interactions derived from renormalized
multi-meson and QCD-based nucleon-nucleon potentials. In order to reproduce the experimental results in the
calculations, the neutron effective charge requires a renormalization. The observed effect is most prominent in
the light Sn isotopes.

The static quadrupole moments - Q(2+) values - of the first excited 2+ states in the 102Cd and 104Cd isotopes
were measured using the reorientation effect in Coulomb excitation. In this approach, the B(E2) and Q(2+)
values of each isotope are correlated. Therefore, the collected data were analyzed using the maximum
likelihood method. In this way, the two-dimensional probability distributions could be determined. In turn, this
enables a detailed comparison with theoretical models. Here, the results were interpreted using the shell-model.

The observed gamma-ray de-excitation patterns in 106,108In were also interpreted in the shell-model. The
excited states in 108In were further analyzed in terms of their proton-neutron multiplet character.

Coulomb excitation, reorientation effect, radioactive ion beams, shell-model calculations
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Chapter 1

Introduction

Research in fundamental nuclear physics is driven by the urge to understand
the interaction between nucleons and from this describe all the properties of the
atomic nucleus in a unified theory. Available nuclear models are in general very
good at explaining and predicting experimental observations such as nuclear
masses and binding energies, the degree of deformation, and regularities in the
energy spectra. However, each model is usually limited to a certain domain of
phenomena. For instance, the energy spectra of a deformed and rotating nu-
cleus is well understood in the collective nuclear model of Bohr and Mottelson
whereas other models must be employed for e.g. a quantitative description of
alpha decay.

The nuclear shell-model is the most successful theoretical framework for un-
derstanding the atomic nucleus in terms of its constituent nucleons. In the
shell-model, the nucleons are, to first order, moving independently in a static
potential created by all the other nucleons. This view is motivated by the
short-ranged nature of the strong nuclear force in combination with the fact
that the nucleons are on average quite far apart due to the Pauli principle.
The single-nucleon energy levels of the shell model are ordered in a certain
way and bunched into groups referred to as major shells. This explains the
experimental observation that nuclei with so-called magic proton or neutron
numbers 2,8,20,28,50,82, and 126 are particularly stable. The primary mecha-
nism responsible for this bunching of the single-particle orbits is the spin-orbit
force [1]1 acting between the nucleons. Experiments also show that several nu-
clear properties can be ascribed to the valence protons and/or neutrons residing
in the orbits above completely filled major proton and neutron shells, see e.g.
Ref. [2]. The filled major shells are referred to as the core and are treated as
one entity in the shell-model. This greatly reduces the dimensionality of the
many-body problem and thus enables a numerical solution.

1It was introduced by M. Goeppert-Mayer and J. H. D. Jensen in 1949. For this, they
shared the Nobel Prize in physics in 1963 together with E. P. Wigner.
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3

The many-body Schrödinger equation for A nucleons interacting via a two-body
force v(i, j) is given by A∑

i=1

− ~
2m

∇2
i +

A∑
i<j

v(i, j)

Ψ(1, 2, . . . , A) = EΨ(1, 2, . . . , A) (1.1)

where Ψ is the many-body wave function. In the shell-model approach one
introduces a single-particle potential U(i). This is the static one-body field
created by the A− 1 nucleons in which the ith nucleon is moving. This is not
given a priori. A common choice for U(i), which is also implemented here,
is the harmonic oscillator. In particular, it allows for separate analytical ex-
pressions for the center-of-mass motion and the relative single-particle motion.
Equation 1.1 can be written

[
A∑

i=1

− ~
2m

∇2
i + U(i)

]
+

 A∑
i<j

v(i, j)−
A∑
i

U(i)


︸ ︷︷ ︸

VR

Ψ = EΨ (1.2)

where VR is the residual interaction. There exists no unified description or
method for deriving this from fundamental physical principles. Instead there
are several different methods for approximating it. However, its documented
weak strength enables a perturbative solution of the many-body Schrödinger
equation. Experimentally, the nuclear wave functions, and thus the residual
interaction, are probed by measuring the quantum mechanical observables.

So far, a vast majority of the experimental data comes from stable isotopes
and nuclei in the vicinity of the line of β-stability. Current research in nuclear
physics is geared towards exploring isotopes further from stability. Technical
developments have opened up new regions of the nuclear chart for detailed
experimental investigations. Studies of nuclei with more extreme proton-to-
neutron ratios reveal or enhance various facets of the nuclear force. The most
prominent feature is perhaps the appearance of new magic numbers due to the
’drift’ of the single particle orbits. In addition, the nuclear structure of unsta-
ble isotopes is intimately connected with understanding nucleosynthesis in e.g.
novae and supernovae.

This thesis presents an experimental study of electric-quadrupole transition
probabilities2 – B(E2) values– between nuclear states in the unstable isotopes
106,108,110Sn, 100,102,104Cd, and 106,108In, see Fig. 1.1. The energies, spins, and
parities of the excited states are rather well known in these nuclei. However, a
transition probability is more sensitive to small variations in the structure of

2The transition probability is inversely proportional to the lifetime of the decaying state.
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Figure 1.2: Coulomb excitation is a nuclear scattering technique for mea-
suring transition probabilities between nuclear states. In the collision be-
tween a projectile (P) and a target (T) nucleus, a nuclear excitation in
the projectile (target) can be induced by the long-ranged electric force of
the target (projectile). The populated state(s) subsequently de-excite via
the emission of γ-rays and/or conversion electrons. The detection of these
and the scattered particles provide a measure of the excitation cross section.
In addition, for limited beam energies, the Coulomb barrier prevents the
nuclei from contact. This removes any interference of the strong nuclear
force in the excitation process.

the nuclear wave function and therefore depends in detail on the properties of
the residual interaction. Thus it provides a good benchmark for shell-model
calculations. The experimental results presented here are interpreted by shell-
model calculations based on residual interactions that are derived from QCD
and multimeson-exchange nucleon-nucleon potentials. In particular, this thesis
explores the neutron degree of freedom with respect to the 100Sn nucleus in
the light Sn and Cd isotopes. It is found that a renormalization of the neutron
effective charge is required in order to understand the data.

The one-to-one proton-to-neutron ratio of the doubly-magic 100Sn nucleus pro-
vides a unique opportunity to study the nucleon-nucleon interaction between
protons and/or neutrons in identical single-particle orbits. Therefore the iso-
topes with one or two neutrons/protons more or less than 100Sn are particularly
interesting. However, 100Sn is rather far from the line of β-stability, see Fig. 1.1,
and presently it is not possible to produce the amounts required for an inves-
tigation of its excited states. However the evolution of the low-lying nuclear
structure in Sn, Cd, and In, as a function of the neutron degree of freedom, is
equally interesting. This allows for a systematic investigation of the observed
regularities and its dependence on the number of nucleons outside the doubly-
magic 100Sn nucleus.
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A transition probability can be expressed in terms of Weisskopf units (W.u.) [3].
In a certain sense, this unit reflects the number of particles that participate
in the transition from one nuclear state to another. The B(E2; 0+

gs → 2+
1 )

values that are measured in this work are of the order 10 W.u. and are thus
collective in their nature 3. From a simple shell-model perspective it is natural
to assume that the transition probabilities in e.g. 106,108,110Sn will decrease
as one approaches 100Sn. However, the transition strength could receive a siz-
able contribution from the nucleons in the 100Sn core. Therefore, the physics
case presented in this thesis primarily addresses whether or not the current un-
derstanding of the nucleon-nucleon interaction can reproduce the low-energy
nuclear-structure of unstable nuclei in the vicinity of 100Sn.

The transition probabilities were measured using Coulomb excitation, see Fig.
1.2. This is a well known experimental method [4, 5]. It depends only on the
electromagnetic interaction and therefore enables a model-independent study
of atomic nuclei. For the neutron-deficient even-mass Sn isotopes in particu-
lar, this method is the only option for measuring the B(E2; 0+

gs → 2+
1 ) values.

This is due to the higher lying nano-second isomeric 6+
1 states present in these

isotopes. These states hamper any lifetime measurements of the lower-lying 2+
1

states if they are populated from above. It is virtually impossible to resolve the
∼ ps lifetime of a 2+

1 state from the decay curve of a ∼ns state. This issue is
circumvented in Coulomb excitation since the 2+

1 states are populated directly
from the ground states.

The radioactive ion beams (RIB) were provided at the ISOLDE facility at
CERN. This is one of few facilities in the world where it is possible to produce
and postaccelerate unstable isotopes. Similar setups exist at e.g. TRIUMF
in Canada, ORNL-HRIBF in USA, GANIL in France, and RIKEN in Japan
but no other facility can produce the multitude of beams that ISOLDE does.
Radioactive isotopes have been produced for 40 years at ISOLDE. It was only
very recently that postacceleration became possible. This is essential for car-
rying out Coulomb excitation experiments since the excitation cross section in
principle increases exponentially with the beam energy. RIB-based Coulomb
excitation measurements enable a type of precision studies of exotic nuclei that
have been successfully carried out in stable isotopes in the past.

3Highly collective excitations with transition probabilities > 100 W.u. are common in e.g.
deformed rare-earth nuclei.
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Chapter 2

Experimental method

The postaccelerated radioactive ion beams (RIBs), partly consisting of the
isotope under study, are bombarded onto the micrometer thick isotopically
enriched secondary target. This is placed inside a vacuum chamber with a
diameter of 184 mm. The Rutherford scattered projectile and target nuclei
are detected by a circular Double-Sided Silicon Strip Detector (DSSSD) po-
sitioned 3 cm downstream of the target. The chamber is surrounded by the
24 Ge-crystals of the MINIBALL detector array. In the collisions between the
projectile and the target nuclei there is a probability that the electromagnetic
field of the projectile (target) induces a nuclear transition |i〉 → |f〉 in the
target (projectile), where |i〉 and |f〉 represent the initial and final states. The
probability for populating one or several excited states in the projectile and
the target nuclei is given by the Coulomb excitation cross sections σproj and
σtarg. The Coulomb excitation cross section depends on the mass and proton
numbers of the participating nuclei, the scattering angle of the particles in the
center of mass frame of reference, the beam energy, and the structure of the
wave functions of the initial and final nuclear states. The latter dependence
provides a method to probe the nuclear wave function in terms of the tran-
sition probabilities between the populated states and the ground state of the
nucleus. In the experiments that are presented here, the projectile excitation
cross sections are determined using the following relation

σproj = σtarg ·
Nproj

γ

N targ
γ

·
εtargγ

εproj
γ

· 1
P
·W (2.1)

where Nγ represents the detected γ-ray yields from the de-excitation of the
populated states in the projectile and target nuclei. The absolute normaliza-
tion of the experimental data is provided by the known target excitation cross
section. The remaining quantities on the right hand side are the γ-ray detec-
tion efficiencies εγ of the MINIBALL array, the isotopic purity P of the RIB,
and a correction, W , reflecting the differences in the form of the angular distri-
butions of the γ-rays emitted from the scattered projectile and target nuclei.
Every factor in Eq. 2.1 will be explained in detail below.

7
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Figure 2.1: RIB production at ISOLDE together with an illustration of the
postacceleration stage. The low energy ISOL-beam is trapped, charge bred,
and postaccelerated to a final energy of 2.8 MeV/u.

Target Isotope Yield (ions/µC)
70.4g LaC2-C 110Sn 2.5·108

70.4g LaC2-C 110In 2.5·107

70.4g LaC2-C 110Inm 1-2·107

70.4g LaC2-C 108In 5.5 · 106

70.4g LaC2-C 106In 3.0 · 106

69.7g LaC2-C 104Cd 2.0 · 107

69.7g LaC2-C 102Cd 8.0 · 105

69.7g LaC2-C 100Cd 8.5 · 103

Table 2.1: The primary target yields, when measured, are given in the
standard unit of number of ions per µC. This can be transformed to the
number of released ions per second by multiplying with the average proton
beam current. If every other pulse of 3·1013 protons is used the proton DC
current is 2µA.

2.1 RIB production at ISOLDE

A wide range of exotic isotopes are available at the ISOLDE facility. The
unstable isotopes are produced using the Isotope Separator OnLine (ISOL)
technique. The implementation of this method at ISOLDE is schematically
illustrated in Fig. 2.1. A a pulse of maximum 3.2·1013 protons with an energy
of 1.4 GeV is delivered every 1.2 seconds by the Proton Synchrotron Booster
(PSB) of the CERN accelerator complex. These impinge on a thick primary
target. For the present cases the target material consisted of LaC2-C, i.e.
lanthanum carbide. The choice of material is governed by the production cross
section of the isotope under study. As a result of the high energy proton
bombardment, a wide range of both stable and radioactive species form from
the fission, fragmentation, and spallation reactions taking place in the target.
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The produced isotopes diffuse through the target material and effuse into a
transfer line leading to a hot ionizer cavity. The production and release of a
certain isotope from the primary target material depends in an intricate way
on the combination of the production cross section, the proton beam current,
the type of target material, the target heating1, and the chemical properties of
the particular isotope etc. The measured primary-target production yields are
given in Tab. 2.1. A list of the produced and postaccelerated RIBs used in the
experiments presented here is given in Tab. 2.2.

RIB Energy (MeV/u) Intensity (ions/sec) Purity(%)
110Sn 2.82 ∼ 106 90.0± 1.4
108Sn 2.82 ∼ 106 59.0± 2.7
106Sn 2.83 ∼ 105 29.2± 4.2
104Cd 2.87 ∼ 105 99.0± 0.1
102Cd 2.87 ∼ 105 97.0± 0.3
100Cd 2.87 ∼ 103 100.0± 10.0

Table 2.2: The intensity of the postaccelerated beam is given in the third
column. The purity P refers to how much of the corresponding isotope that
was present in the beam. The remaining fraction of the beam consisted of
the surface ionized indium isobar.

2.1.1 Isotope selection and postacceleration

The element of interest is singly ionized in the thin transfer line connecting
the primary target and the ionizer cavity. The atoms are ionized by three laser
beams with specific wavelengths [6] provided by the Resonance Ionization Laser
Ion Source (RILIS) [7]. The 1+ ions are subsequently extracted by the applied
60 kV electric field. Only the 50Sn or the 48Cd elements are selected using the
RILIS. However, the postaccelerated RIBs also contains a certain fraction of
the surface ionized [8] 49In isobar, see Sec. 2.1.2. The indium component of
the 100,102,104Cd beams was suppressed using volatility-based selective trapping
in the transfer line, see Sec. 2.1.2. The element(s) extracted from the cavity
are isotopically separated using one of the two mass separators [9, 10] of the
facility, i.e. the High Resolution Separator (HRS) or the General Purpose Sep-
arator (GPS). The design criteria of the mass-separation resolution (∆M/M)
is 2400 and 5000 for the GPS and HRS, respectively. The 100,102,104Cd beams
are separated by the HRS while the GPS is employed for the remaining beams.

The low energy and singly-charged RIB is bunched and cooled in a Penning-
type trap (REX-TRAP) using side-band cooling [11]. After a typical cycle
time of 20 ms the cooled ion bunch is transferred to the Electron Beam Ion

1The target was heated to 1800◦-2000◦ depending on the run.
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Figure 2.2: Atomic ionization potentials for neutral atoms in the vicinity
of 50Sn. The data are taken from Ref. [15].

Source [12] (EBIS) of the facility for charge breeding. A 4.5 keV focused elec-
tron beam induces a stepwise stripping of the atomic electrons. The breeding
time increases with the mass of the isotopes and the desired final charge state,
e.g. to reach 108Sn26+ requires 67 ms. The possibility of tuning the mass-
to-charge ratio A/q in the EBIS extends the mass range of the ion beams
that can be postaccelerated. The REX-LINAC [13] has an acceptance limit of
A/q < 4.5. The temporal form and duration of the postaccelerated ions are
governed by the release profile of the EBIS. The duration of the beam pulse
delivered at the experimental setup is ∼ 500µs. For the present cases, the
final energy of the postaccelerated isotopes range between 2.82-2.87 MeV/u
depending on the measurement, see Tab. 2.2. After the last bending magnet,
which measures the final beam energy, the beam profile is typically 4 mm in
diameter. The beam is focused onto the center of the target foil using a set of
quadrupole magnets. The position of the beam is also monitored in a Parallel
Plate Avalanche Counter (PPAC) [14] placed ∼ 10 cm downstream of target
chamber.

2.1.2 Isobaric contamination from surface ionization

The element 49In has a low ionization potential compared to neighboring ele-
ments, see Fig. 2.2, and is singly ionized by surface ionization on the heated
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walls of the cavity and the Tungsten transfer line2. The reason for heating the
transfer line and the ionization cavity, despite the apparent drawbacks of in-
creased surface ionization, is the increased ionization efficiency of the RILIS [7].

Determination of the isobaric contamination

As mentioned, the projectile excitations cross sections are normalized with re-
spect to the purity P of the RIBs, see Eq. 2.1. Therefore, the beam composition
is monitored during the experiments. The laser beams of the RILIS system can
be temporarily blocked by a metallic plate. This mode of operation is referred
to as ’laser off’. Without laser ionization, the postaccelerated Sn and Cd RIBs
consist of only the 49In isobar. On the other hand, during a ’laser on’ period
the mass-separated RILIS-ionized element is present. The ratio between the
detected beam intensities in a laser off period and a laser on period of equal
duration provides a measure of the beam purity P, at that moment. The beam
composition is monitored in this way by switching to laser on/off mode for one
hour every three hours, approximately. The durations of consecutive laser on
and laser off periods are governed by the PS signal which indicates the arrival
of a new supercycle of protons from the PSB. The PS operates at a repeti-
tion period of 1.2 seconds times the number of proton pulses per supercycle.
The length of this varies between 14-42 pulses depending on the measurement.
The RIB composition can be monitored continuously throughout an entire ex-
periment. However, this would reduce the intensity of the RIB. Instead, a
time-averaged measure of P is obtained by interpolating the periodical laser
on/off measurements, see Sec. 3.5.1. During the 110Sn measurement, the laser
status, i.e. on or off, was not registered in the data acquisition system nor the
data stream, see Sec. 2.4.3. Instead the RILIS was periodically blocked while
the beam current was measured online using a Faraday cup that was located
just before the secondary target.

Suppression of the isobaric contamination: thermochromatography

In the 100,102,104Cd measurements the 49In isobaric contamination is suppressed
with a factor of ∼100, see Tab. 2.2, using a volatility based selection technique
called isothermal vacuum chromatography [16, 17]. This method is imple-
mented with a temperature controlled quartz-glass transfer tube3 placed in the
primary target. In short, 48Cd, with a normal boiling temperature of 767◦C,
is relatively more volatile than 49In, that has a normal boiling temperature of
2080◦C. The higher volatility of the group 12 elements (Zn,Cd,Hg) originates
in a d10s2 atomic sub-shell closure that weakens the metallic bonding. The
temperature of the quartz glass transfer tube is set such that the less volatile
49In isotopes condense on its surface. Thus hindering any further propagation

2The probability of surface ionization is described by the Langmuir-Saha equation [8].
This depends on the ionization potential of the element, the temperature and work function
of the surface

3melting point 1600◦
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Figure 2.3: A photograph of the MINIBALL Ge-detector array. Four of
the eight triple-clusters and the spherical target chamber are visible.

down the RIB production chain. This technique cannot be implemented for
the Sn beams since the normal boiling temperature of 50Sn is 2602◦C.

2.2 The MINIBALL Ge-detector array

The MINIBALL Ge-detector array [18] consists of 24 high-purity Ge-crystals,
see Fig. 2.3. A triple-cluster, consisting of three Ge-crystals, is connected to
one liquid nitrogen cryostat and mounted on a movable mechanical frame. The
eight triple-clusters are arranged in a spherical configuration at a distance of
125 mm from the secondary target. Each crystal is electrically divided into
six segments which results in a total granularity of 8 · 6 · 3· = 144 individual
detection volumes in the MINIBALL array. The high granularity increases
the angular resolution of the detected γ-rays to a level sufficient for Doppler
correction, see Sec. 3.3. A depletion voltage of 2.5-4.5 kV, depending on the
detector, is applied to each crystal through a central core electrode. The sum
of the energies deposited in the segments are read from the core signal. The
energy resolution at a γ-ray energy of 1 MeV is 2.9 keV.
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Energy (keV) Intensity (%)
121.8 28.58(6)
244.7 7.583(19)
344.3 26.5(4)
778.9 12.942(19)
964.1 14.605(21)
1085.9 10.207(21)
1112.1 13.644(21)
1408.0 21.005(24)

Table 2.3: The energy and intensity of the γ-rays following β-decay of
152Eu that are used for the efficiency calibration of the MINIBALL array.
Intensity values are taken from [19].

 (keV)γE
0 200 400 600 800 1000 1200 1400 1600

γ∈
-r

ay
 d

et
ec

tio
n 

ef
fic

ie
nc

y 
γ

R
el

at
iv

e 

0

0.2

0.4

0.6

0.8

1
With add-back
Without Add-back

 (25 ns)
core2

γ and 
core1

γTime difference between 
-100 -50 0 50 100

co
un

ts
 / 

25
 n

s

200

400

600

800

1000

1200
100 ns

Figure 2.4: (Left) The relative γ-ray detection efficiency of the MINIBALL
array as obtained from a 152Eu calibration. (Right) The time-difference
between two γ-rays detected in two different cores of the same triple-cluster.
The deduced γ-ray addback gate of 100 ns is indicated.

2.2.1 γ-ray energy and efficiency calibration

The MINIBALL detector system is calibrated with respect to energy and detec-
tion efficiency using a well-known calibration source consisting of the β-unstable
isotope 152Eu. This is mounted in the secondary target position. According to
Eq. 2.1 only the relative photopeak efficiencies εγ are needed in the analysis.
These are obtained by comparing the detected γ-ray yields of the transitions
listed in Tab. 2.3 with the known intensities. 4 The energy dependence of εγ

is fitted to the following function

ln(εγ) =
4∑

i=0

Ai(ln(Eγ))i (2.2)

4The absolute detection efficiency is ∼6% at Eγ =1 MeV.
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Figure 2.5: The geometry and coordinate definition of the experimental
setup. The triple-cluster can be rotated an angle α around its symmetry
axis. Therefore, the position of each core is given by the angle α and the
position of the center of the triple-cluster. Regarding the segments, these
are identified with the polar coordinates (θ, ϕ). The coordinate for each
pixel of the DSSSD is defined from the same polar coordinate system.

where Ai are the fitted parameters. The γ-ray detection efficiency is improved
by an add-back algorithm. This is implemented in the following way. If two
γ-rays are detected within 100 ns of each other in different Ge-crystals of the
same triple-cluster their intensities are added, see Fig. 2.4. The segment signal
with the highest energy is selected as the primary interaction point. Figure 2.4
shows the relative efficiency curve with and without add-back. The add-back
algorithm increases the detection efficiency with ∼10% at 1 MeV. The position
of each segment is given by the polar coordinates (θ, ϕ) with respect to a right-
handed coordinate system oriented such that the positive z−axis coincides
with direction of the incoming beam, see Fig. 2.5. The interaction point of the
detected γ-rays is defined as the geometrical center of gravity of the polygon-
shaped front face of the segment crystal, see Fig. 2.5.

2.3 The double-sided silicon-strip detector

The scattered beam and target particles are detected by a circular Double
Sided Silicon Strip Detector (DSSSD) [20]. The Si wafer thickness is 480 µm
and the active area of the detector is 90.7% of the total area. A drawing and a
photograph of the detector is shown in Fig. 2.6. It consists of four quadrants.
These are treated individually in the data acquisition system and thus operates
as independent particle detectors. The front side of the detector consists of 16
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Figure 2.6: (left) A photograph of the DSSSD detector. (right) A schematic
drawing showing the front/back segmentation. (Taken from Ref. [20])

annular strips of 1.9 mm width and 2 mm pitch. The back side consists of
24 radial sectors at 3.4◦ pitch. The combined segmentation of the front and
back sides provides a total of 4 · 12 · 24 = 1152 pixels. However, the 24 signals
from the radial sectors on the back side are coupled into pairs in the electronic
setup.

2.3.1 Energy and position calibration

For the 106,108Sn and 106,108In experiments the distance from the DSSSD to the
secondary target is deduced from the hit-pattern of a triple-α source in the tar-
get position. For each strip, the ratio between the number of detected particles
and the number of expected particles depends on the solid angle coverage of
the detector. In turn, this depends on the known geometry of the DSSSD and
the distance to the triple-α source. The detection efficiency is assumed to be
equal for all strips in this analysis. Indeed, no effects related to a varying de-
tection efficiency is observed in the detected particle intensities. The distance
30.0±0.6 mm gives the best fit to the data. This distance is in accordance with
the distance measured in the target chamber for that experimental campaign.
For the other runs, a distance of 32.5 mm is measured directly from the setup.

The DSSSD is energy-calibrated in the offline analysis using the known kine-
matics of each run, see Sec. 3.1 and Appendix B. The energy calibration is
required for the Doppler correction and indirectly for the integration of the
Coulomb excitation cross section, see Sec. 2.5.2. The energy loss of the scat-
tered beam and target particles as they traverse the ∼ 2 µm thick target foil
is calculated using the SRIM computer code [21]. For example, the integrated
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energy loss of a 300 MeV 106Sn projectile as it passes a 2.25 µm thick 58Ni
target foil is 91 MeV.

2.4 The data acquisition and event building

A complete overview of the electronic setup for the data acquisition system is
given in Ref. [22].

2.4.1 Detector signals

The pre-amplified signals from the strips of the DSSSD are further amplified by
the Edinburgh/RAL 109 shaping amplifiers which also produce a time signal
using a constant fraction discriminator. The energy signals of each quadrant
are sent to a dedicated analogue peak sensing CAEN V785 ADC [23] and the
time signals of each quadrant are sent to a dedicated V775 TDC [23]. It should
be noted that the front strip time signals were not read out in the 110Sn ex-
periment. A summary of the ADC/TDC readout of the DSSSD is given in
Tab. 2.4. For each quadrant, the OR of the time signals from the front and the
back strips generate a ∼ 15 ns wide logic 1 signal, which indicates the presence
of an event in the corresponding DSSSD quadrant.

The six segment signals and the one core signal of each Ge-crystal are read
out by two XIA Digital Gamma Finder (DGF-4C) modules [24]. Each DGF
module has four input channels. The core signal is sent to channel 0 on the
first module and the six segment signals are sent to remaining channels of the
two modules. The time-stamping of the DGF modules is synchronized by a
common 40 MHz clock. Furthermore, the readout of the DGF modules are
synchronized by a BUSY-SYNCH loop. Whenever a DGF started a run the
BUSY output is set to logic one. All the BUSY outputs are OR’ed in a fan-
in/fan-out module and the output of this is sent back to the SYNCH-input of
each module. In this way all the DGF modules have a common acquisition
start and stop. The core signal triggers a 800 ns wide γ-gate which is joined
with the particle signals in a coincidence unit.

2.4.2 Particle-γ ray coincidence

The DSSSD 15 ns logic 1 signal from each quadrant is gated in a coincidence
(AND) unit with the DGF γ-gate. It should be noted that the particle signal is
delayed 800 ns in order to compensate for the processing time of the DGFs. The
coincidence unit generates a particle-γ coincidence trigger if any of the DSSSD
quadrants give a front signal within the 800 ns wide γ-gate. The DSSSD event
signal is split into three identical copies. One is sent to the coincidence unit,
the second is sent directly to the trigger box where it is downscaled a factor
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Experiment DSSSD strips TDC/ADC channels
110Sn Front annular 0-15 ADC 0-15

No TDC readout
Back radial 0-11 ADC 16-27

TDC 0-11
106,108Sn Front annular 0-15 ADC 0-15
In and Cd TDC 0-7

Back radial 0-11 ADC 16-27
TDC 16-27

Table 2.4: The layout of the hardware cabling of the ADC/TDC readout.
The annular strips 0-15 of the front side of the DSSSD are numbered ac-
cording to outer strip → inner strip. The radial strips of the back side are
numbered in the clockwise direction as seen from the incoming beam.

2n, and the third goes directly to a scaler that is read out every second5. The
downscaled signal produces a particle-γ trigger for every detected 2nth particle.
The downscale factor is set to 26 = 64 in all the experiments. This procedure
saves bandwidth and reduces the size of the particle data outside the 800 ns
coincidence window. The OR of the four outputs from the coincidence unit, one
per DSSSD quadrant, generates the ADC gate and the TDC stop. Furthermore,
the time stamping of the particles are synchronized with the γ-rays using four
DGFs, one for each quadrant of the DSSSD.

2.4.3 Other signals

The typical EBIS breeding times for the current beams are 60-70 ms. The EBIS
signal triggers a 800 µs long ’on-window’ during which the data acquisition
system is active. In this way the data acquisition system is synchronized with
the operation of the EBIS and the REX-linac. The end marker of the on-
window triggers the 800 µs off-window during which the data buffers of the
ADC/TDC modules are read out again, in order to be empty for the next
particle bunch. The EBIS signal is timestamped in a dedicated DGF. The
impact of a proton pulse on the primary target (T1) and the start of a new
proton supercycle (PS) are also timestamped in a DGF module.

Laser flag

The laser beams from the RILIS are used to extract the isobaric contamina-
tion of the RIB, see Sec. 2.1.2. For the 106,108Sn, 106,108In, and 100,102,104Cd
measurements the laser status, i.e. on or off, and the laser power of the RILIS
laser are written to the data. The laser status is recorded in bit number 9 of

5This provides an average rate of the detected number of particles.
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the pattern unit box and a measure of the laser power is sent to channel 29 in
the ADC of DSSSD quadrant 1.

2.4.4 Computational environment

The data analysis described in Ch. 3 is carried out within the C++ based
object-oriented ROOT [25] framework. During the experiments the data are
stored in the MBS Event Data (MED) format [26]. The conversion software
(mbs2root) from MED to ROOT was written as a part of the thesis work. The
program is based on the MED-I/O libraries by R. Lutter. The MED data file
contains a stream of event buffers that differ in format depending on the type
of module that is read out.

• The buffer data from the XIA DGF-4C module data are written in the
MARABOU MBS 10,2X format [26, 27]. The most significant informa-
tion contained in these data buffers are

– DGF Channel (0...3)

– Energy value

– Timestamp

– Module number:

∗ 1-48: γ-ray data
∗ 49: DSSSD Quadrant 1 particle timestamp (ch 0)
∗ 50: DSSSD Quadrant 2 particle timestamp (ch 0)
∗ 51: DSSSD Quadrant 3 particle timestamp (ch 0)
∗ 52: DSSSD Quadrant 4 particle timestamp (ch 0)
∗ 53: EBIS timestamp (DGF Channel 0), T1 timestamp (DGF

Channel 1), PS timestamp (DGF Channel 2)

• The data from the CAEN V7X5 ADC/TDC modules are written in the
MARABOU MBS 10,4X format [26, 27]. Each buffer may contain up to
32 events. Each event contains

– Module serial number

– Channel: strip number according to Tab. 2.4

– 12 bit Energy data (if ADC module)

– 12 bit Time data (if TDC module)

This information is converted into ROOT format. At this point, no physical
events are constructed.
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2.4.5 Physical event structure

The construction of a physical event is dictated by the reconstruction of the
physical particles. These are constructed from two coincident front and back
strip events within each quadrant using the CAEN TDC time data. However,
the lack of TDC front strip data in the 110Sn experiment implies that a par-
ticle can be reconstructed only from the MED data buffers with a quadrant-
multiplicity of one. For the other experiments the TDC front strip data is
available, and a 90 ns coincidence gate between the front-back strip events is
established. This increases the number of constructed particles with 80% com-
pared to the 110Sn experiment. Furthermore, 20% and 13% of the double-hits
in adjacent front- or back-strips, respectively, are found to be coincident within
60 ns. These events are combined and the position of the particle is assigned to
the strip with the highest energy. The particle time is set according to the cor-
responding DGF timestamp data. The γ-rays detected within 4µs of a physical
particle are assigned to the particle event. A given γ-ray is maximally assigned
to one event.

Two different types of particle events can occur. Due to the two-body character
of the scattering process the projectile and target nuclei from a physical event
should be detected in coincidence in opposite quadrants, see Fig. 2.7. This
defines the two-particle (2p) event type. Particle identification is determined
from the angular dependence of the detected energy, see Sec. 3.1 and Fig. 3.2.
Depending on the details of the kinematics, one of the particles may scatter
outside of the angular range of the DSSSD. Also, the CAEN modules of the
DSSSD have a deadtime of about 10 µs. This implies that there are 1p events
present also in the 2p angular interval. The missing particle is reconstructed
from the energy and angle of the detected one.
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Figure 2.7: The time difference between two particles detected in (top)
opposite quadrants or (bottom) adjacent quadrants of the DSSSD.
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2.5 Semiclassical Coulomb excitation

In the semiclassical description of Coulomb excitation the relative motion of
the projectile and target particles are described by hyperbolic orbits while the
probability for finding either particle in an excited state after the collision is
described by quantum mechanical perturbation theory. The applicability of
this approach requires that the de Broglie wavelength λ is small compared to
the dimensions of the classical orbits. This condition is fulfilled for large values
of the Sommerfeld parameter η defined as

η =
b

2λ
=
ZpZte

2

~v
(2.3)

where v is the relative velocity of the particles at infinity, b is the distance of
closest approach in a head-on collision6,and Zp and Zt are the proton numbers
of the projectile and target nuclei. For the present experiments η > 100.

The onset of nuclear forces is expected to drop exponentially with the dis-
tance between the nuclear surfaces [5]. The projectile energy in the laboratory
below which the strong nuclear force can be safely disregarded is given by [5]

Esafe = 1.44
Ap +At

At

Zp · Zt

1.25(A1/3
p +A

1/3
t ) + 5

MeV (2.4)

which corresponds to an internuclear surface-separation of 5 fm in a head-on
collision. Furthermore, the transfer of energy, ∆Ei→f , and angular momentum,
∆`i→f , in the Coulomb excitation induced transition between the nuclear states
i and f must be small enough to not perturb the classical hyperbolic orbits of
the particles, i.e

∆Ei→f/E << 1 and ∆`i→f/` << 1 (2.5)

where E is the center of mass energy and ` is the total angular momentum
` ≈ m0va = ~η, where m0 is the reduced mass of the particles. The inequalities
in Eq. 2.5 hold for all the states that were populated in the present experiments.
The probability for an excitation from the ground state i to the final state f
can be estimated from the adiabaticity parameter defined as

ξi→f =
Ef

~
τ =

Ef

~
a

v
(2.6)

where the collision time τ is estimated from a/v. It should be noted that the
probability for Coulomb excitation tends to zero exponentially for ξi→f & 1.
The differential cross section for Coulomb excitation from the initial state i to
the final state f is given by

dσ

dΩ

∣∣∣∣
i→f

=
dσ

dΩR
Pi→f (θ) (2.7)

6Half the distance of closest approach a = b/2 is given by a = 0.719990(1 +
Ap/At)ZpZt/Elab

p,MeV fm.
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where the subscript R denotes the Rutherford cross section7 and P is the i→ f
excitation probability at the center of mass scattering angle θ.

The number of detected γ-rays Nγ from the f → i de-excitation of the projec-
tiles per second can be estimated from

Nγ = 6.022 · Ibeam

dmg/cm2σmb

Atarg
εabsolute

γ × 10−7 s−1 (2.8)

where d is the thickness of the target foil in mg/cm2, A is the mass number of
the target, σ is the cross section in mb, Ibeam is the beam intensity in particles
per second, and εabsolute

γ is the absolute γ-ray detection efficiency.

2.5.1 The excitation probability

The excitation probability Pi→f from the state i = |IiMi〉 to the state f =
|IfMf 〉 is given by the squared sum of the excitation amplitudes ai→f

Pi→f =
1

2Ii + 1

∑
MiMf

|ai→f |2 (2.9)

where I and M are denote the spins and magnetic substates, respectively. If
the excitation amplitude is small, it can be estimated from time-dependent
perturbation theory. The magnitude of ai→f depends on the strength of the
electromagnetic interaction V (r). This can be estimated from the action

〈f |V (r)|i〉τ (2.10)

evaluated at the distance of closest approach b and for a collision time τ =
b/2v. Thus, the strength of the electromagnetic interaction with the nucleus is
characterized by

χ =
〈f |V (b)|i〉b

2~v
(2.11)

A multipole expansion of the electric field leads to a strength parameter for
projectile excitation for each multipole order λ

χ
(λ)
i→f =

√
16π(λ− 1)!
(2λ+ 1)!!

Zte

~v
〈Ii||Eλ||If 〉
aλ
√

2Ii + 1
(2.12)

The absolute square of this measures the λ-pole excitation probability for center
a center of mass scattering angle θ = π and ξ = 0. Following a detailed
discussion in Ref. [5] it is clear that the amplitudes ai→f are very small for
most cases and therefore a perturbative treatment of ai→f is in general valid.
For the present cases χλ=2

0→2 . 0.5. To second order, the excitation amplitude is
given by

ai→f = a
(1)
i→f + a

(2)
i→f (2.13)

7 dσ
dΩR

= 1
4
a2 sin−4 θ

2
, where θ is the center of mass scattering angle
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In the following, the discussion specified to the case of electric excitations8.
Magnetic excitations are suppressed with a factor (v/c)2 apart from any differ-
ence in the nuclear matrix element [5]. The electric multipole operator is given
by

E(λµ) =
∫
ρ(r)rλYλµ(r̂)dτ (2.14)

where the integration is performed over the charge density of the nucleus,
λ = 0, 1, 2, 3, ..., and µ = −λ,−λ+1, ..., λ. The charge distribution ρ is defined
in a coordinate system with origo in the center of mass of the projectile nucleus.

The first order expression for projectile electric excitation is given by

a
(1)
IiMi→If Mf

=
1
i~

∫ +∞

−∞
dt 〈IfMf |V (t)|IiMi〉e

i
~ (Ef−Ei)t

=
4πZte

i~v
∑
λµ

1
aλ

(λ− 1)!
(2λ+ 1)!!

√
2λ+ 1
π

(−1)Ii−Mi×

(
Ii λ If
−Mi µ Mf

)
〈Ii||Eλ||If 〉Rλµ(θ, ξ)

(2.15)

where Rµν contains the integral over the hyperbolic orbit and θ is the center
of mass scattering angle. The Rµν function is treated in detail and evaluated
numerically in Ref. [5].

The second order term is given by

a
(2)
IiMi→If Mf

=
∑

z

(
−i
~

)2 ∫ +∞

−∞
dt 〈IfMf |V (t)|IzMz〉e

i
~ (Ef−Ez)t×∫ t

−∞
dt′ 〈IzMz|V (t′)|IiMi〉e

i
~ (Ez−Ei)t

′
=

= −1
2

∑
λλ′µµ′IzMz

√
(2Ii + 1)(2Iz + 1)(2λ+ 1)(2λ′ + 1)×

(−1)Ii−Mi+Iz−Mz

(
Ii λ Iz
−Mi µ Mz

)(
Iz λ′ If
−Mz µ′ Mf

)
×

χ
(λ)
i→zχ

(λ′)
z→f × {Rλµ(θ, ξi→z)Rλ′µ′(θ, ξz→f ) +

i

π
P

∫ +∞

−∞

dξ

ξ
Rλµ(θ, ξi→z + ξ)Rλ′µ′(θ, ξz→f − ξ)

}
(2.16)

where ξ = ξi→z + ξz→f and P denotes the Cauchy principal value of the
improper integral. In the above expression the summation runs over all inter-

8The magnetic excitation amplitudes are obtained in a similar fashion using instead the
magnetic multipole operator M(λµ) = −i

c(λ+1)

R
j(r)rλ(−ir×∇)Yλµ(r̂) dτ
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mediate states z, including i and f . The excitation probability to second order
is given by the sum

Pi→f = P
(1)
i→f + P

(1,2)
i→f + P

(2)
i→f (2.17)

where the superscripts indicate the order in the perturbative expansion and
P (1,2) is the interference term. This term plays an important role in the eval-
uation of the Coulomb excitation cross sections that are presented here, in
particular for the 100,102,104Cd experiments. This is discussed further below.
The excitation probabilities at each order are given by

P
(1)
i→f =

∑
λ

|χ(λ)
i→f |

2R2
λ(θ, ξi→f ) (2.18)

P
(1,2)
i→f =

∑
λλ′λ′′Iz

√
(2Iz + 1)(2λ+ 1)(2λ′ + 1)(2λ′′ + 1)(−1)Ii+If×{

λ λ′ λ′′

Iz If Ii

}
χ

(λ)
i→fχ

(λ′)
i→zχ

(λ′′)
z→f×∑

µ

R∗λµ(θ, ξi→f )G(λ′λ′′)λµ(θ, ξi→z, ξz→f )

(2.19)

P
(2)
i→f =

1
4

∑
λ1λ′1λ2λ′2

IzIz′k

√
(2Iz + 1)(2Iz′ + 1)(2λ1 + 1)(2λ′1 + 1)(2λ2 + 1)(2λ′2 + 1)×

(2k + 1)
{
λ1 λ2 k
If Ii Iz

}{
λ′1 λ′2 k
If Ii Iz′

}
χ

(λ1)
i→zχ

(λ2)
z→fχ

(λ′1)
i→z′χ

(λ′2)
z′→f×∑

κ

[
R∗(λ1λ2)kκR(λ′1λ′2)kκ +G∗(λ1λ2)kκG(λ′1λ′2)kκ

]
(2.20)

where for the interference and the second-order terms, two new spherical tensors
that couple the λ+ λ′ excitations have been defined according to

R(λλ′)kκ(θ, ξi→z, ξz→f ) =
∑
µµ′

(−1)κ

(
λ λ′ k
µ µ′ −κ

)
Rλµ(θ, ξi→z)Rλ′µ′(θ, ξz→f )

(2.21)

and

G(λλ′)kκ(θ, ξi→z, ξz→f ) =
∑
µµ′

(−1)κ

(
λ λ′ k
µ µ′ −κ

)
Gλλ′

µµ′(θ, ξi→z, ξz→f )

(2.22)

where

Gλλ′

µµ′(θ, ξ, ξ
′) =

1
π
P
∫ +∞

−∞

dq
q
Rλµ(θ, ξ + q)Rλ′µ′(θ, ξ′ − q) (2.23)
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These expressions are evaluated numerically in e.g Refs. [4, 5, 28]. The Rλµ,
R(λλ′)kκ, and Gλλ′

µµ′ differ slightly in their ξ dependence. The Rλµ of the first or-
der term vanish exponentially with ξ [4], e.g. for large excitation energies. The
R(λλ′)kκ is proportional to the product of the first order integrals and therefore
also vanish exponentially with ξ. The Gλλ′

µµ′ functions vanish exponentially for
large values of |ξi→z + ξz→f |, i.e. for a double excitation of a high energy state.
However, if a low lying state is excited through an intermediate state of high
energy, i.e. ξz→f ≈ −ξi→z the G function only vanish with 1/ξ. In, general,
this leads to a non-negligible impact of the higher lying states on the excitation
cross section of the low-lying states. For the cases presented here, this effect is
. 1− 2% and taken into account.

As mentioned, the expressions presented above for the Coulomb excitation
probability includes the intermediate states |z〉. For a case with several ex-
cited states, such as in the 106,108In experiments, it is impractical to carry
out the coupled summations. It is more convenient to diagonalize the coupled
differential equations that describe the time evolution of the excitation ampli-
tudes. The effects of the higher lying and excluded states are then included as
a perturbation via a polarization potential, see Ref.[5]. This is the approach
implemented in this thesis. The coupled equations were solved using the com-
puter codes CLX [29] or GOSIA [30], see Sec. 3.6. In brief, the time evolution
of the nuclear state vector |Ψ(t)〉 =

∑
n an(t)|n〉 exp(−iEnt/~) of the projectile

is described by the Schrödinger equation

i~
d

dt

(∑
n

an(t)|n〉 exp(−iEnt/~)

)
= V (t)

(∑
n

an(t)|n〉 exp(−iEnt/~)

)
(2.24)

Multiplying from the left with state 〈m| gives a differential equation for am(t)

i~
d

dt
am(t) =

∑
n

am(t)〈m|V (t)|n〉 exp(i(Em − En)t/~) (2.25)

The initial conditions for this coupled set of equations are an(t = −∞) = δ0n,
i.e. the nucleus is initially in its ground state. After the collision, the excitation
amplitudes are given by |an(t = +∞)|2.

Definition of the static and dynamic moments

The two main quantities that are measured in a Coulomb excitation experiment
are the static quadrupole moment and the reduced transition probability.

1. The electric/magnetic transition probability between the states |i〉 and
|f〉 is defined as

B(Oλ, Ii → If ) ≡ 1
2Ii + 1

|〈i||Oλ||f〉|2 (2.26)
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where Oλ represents the electric/magnetic λ−pole operator.

2. The spectroscopic electric quadrupole moment for the state |f〉 is defined
as

Q(If ) ≡
√

16π
5

(
If 2 If
−If 0 If

)
〈If ||E2||If 〉 =√

16π
5

√
If (2If − 1)

(If + 1)(2If + 1)(2If + 3)
〈If ||E2||If 〉

(2.27)

Note that a spin 0 and spin 1
2 state does not possess a spectroscopic

moment even if the intrinsic moment is non-zero. For the M1 operator,
the magnetic dipole moment is defined as

µ(If ) ≡
√

4π
3

√
If

(If + 1)(2If + 1)
〈If ||M1||If 〉 (2.28)

2.5.2 Application to experiments

The Coulomb excitation cross section σ depends strongly on the projectile
energy, the energy of the excited state, and on the product ZpZt. This is
exemplified in a set of calculations based on the projectile excitation of 108Sn,
see Fig. 2.8. The transition probability was set to the value determined in
the analysis presented in Ch. 3. The differential cross section was integrated
over the projectile scattering angles covered by the DSSSD, if nothing else is
stated in the figure. It should be pointed out that in the data analysis the
differential cross sections are also integrated over the thickness of the target
foil. As is apparent from the panels in the figure, the projectile excitation cross
section increases with the beam energy and the Z of the target. However,
the increasing Coulomb barrier between the projectile and the heavier targets
requires an equivalent increase in beam energy in order to exploit the larger Z
value of target. Clearly, for the beam energy available at the REX-ISOLDE
facility, the optimal projectile cross section for the 108Sn case occurs for targets
in the vicinity of 58Ni.

The second order effects: double excitation and reorientation

The projectile and target isotopes in the experiments presented here are mostly
even-even with a 0+ ground state and a first excited 2+ state. The next ob-
served higher lying state is either a 2+ or a 4+ state. The second order effects
occurring in Coulomb excitation are conveniently discussed if only one inter-
mediate state |z〉 is included in Eqs.2.19-2.20. In the following a 0+

gs → 2+
1 exci-

tation in the presence of a second higher lying 2+
2 state is discussed. A double

excitation and the reorientation effect are schematically drawn in Fig. 2.9 In the
case of a direct excitation 0+

gs → 2+
1 , the integrated Coulomb excitation cross
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(a) Double excitation: the 0+

gs → 2+
2 excitation can proceed directly or

through and intermediate state, which in the figure is the 2+
1 state. (b) Re-

orientation effect: in a sense, this can be considered as a double-excitation
where the 2+

1 and 2+
2 states in panel (a) coincide. This is indicated with a

circular arrow. The strength of the reorientation effect is reflected in the
Q(2+

1 ) value.

section for the projectile and target nucleus is to first order directly proportional
to the corresponding B(E2) value. The upper limit of the P (1) excitation prob-
ability is reached for θ = π and ξ = 0, hence P (1)

0→21
≤ |χ(2)

0→21
|2. The excitation

from the ground state to the 2+
2 state can proceed with a direct E2 transition

or as a double excitation via the 2+
1 state. The probability for the latter tran-

sition is given by the sum of the interference term P
(1,2)
0→22

∝ χ
(2)
0→22

χ
(2)
0→21

χ
(2)
21→22

and the second order term P
(2)
0→22

∝ |χ(2)
0→21

|2|χ(2)
21→22

|2. However, the latter
term is small compared to the former. The probability of a double-excitation
depends on the E2-coupling between the states, the center of mass scattering
angle as well energy of both of the excited states through the adiabaticity pa-
rameters ξ0→22 , ξ0→21 , and ξ21→22 . If instead the higher lying 2+

2 state has
spin and parity 4+, the first order and the interference excitation probabilities
practically vanish since the E4 transition is orders of magnitude weaker than
the E2 transition [31]. In this case, only the second order excitation probability
P

(2)
0→4 ∝ |χ0→21 |2|χ21→41 |2 remains. This term is in principle proportional to

the square of two first order probabilities and is the first sizable contribution
to the cross section of a 0+

gs → 4+
1 excitation via an intermediate 2+

1 state.
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The reorientation effect arises from the interference term P (1,2) and introduces
a dependence of the static moment in the cross section. Indeed, if 2+

2 = 2+
1 ,

and higher the order corrections are neglected, then the expression for the
excitation probability, Eq. 2.17, can be written

P0→2 = P
(1)
0→2 + P

(1,2)
0→2 = |χ(2)

0→2|2R2
2(θ, ξ0→2)+

25
{

2 2 2
2 2 0

}
χ

(2)
0→2χ

(2)
0→2χ

(2)
2→2

∑
µ

R∗2µ(θ, ξ0→2)G(22)2µ(θ, ξ0→2, ξ2→2) =

= |χ(2)
0→2|2R2

2

(
1 + χ

(2)
2→2 · 5 ·

∑
µR

∗
2µG(22)2µ

R2
2

)
=

= |χ(2)
0→2|2R2

2

(
1 +

[√
16π
15

Zte

~v
〈2+||E2||2+〉

a2
√

5

]
5 ·
∑

µR
∗
2µG(22)2µ

R2
2

)
=

= |χ(2)
0→2|2R2

2

(
1 +

[√
7
90

Zte

a2~v
Q(2+)

]
5 ·
∑

µR
∗
2µG(22)2µ

R2
2

)
=

= 206.19045 ·
AprojE

3
beam,MeV

Z2
targZ

4
proj(1 +Aproj/Atarg)4

·B(E2; 0+ → 2+)e2b2R2
2(

1 + 8.47465 ·
A

1/2
projE

3/2
beam,MeV

ZtargZ2
proj(1 +Aproj/Atarg)2

Q(2+)proj,eb5 ·
∑

µR
∗
2µG(22)2µ

R2
2

)
(2.29)

Evidently the B(E2) value and the Q(2+) value, including the sign, of the
projectile nucleus can be determined from two independent cross section mea-
surements. This approach is pursued in the study of 102,104Cd. However, the
full coupled-channels theory of Coulomb excitation is used in the data analysis.
Still, the expression in Eq. 2.29 gives an estimate of the contribution from the
static moment to the excitation probability. For the case of a 104Cd projectile
with an energy of 2.87 MeV/u scattered against a 64Zn target, the expression
in Eq. 2.29 becomes

P0→2 = 206.19 · 104 · 2993

302 · 484 · 2.64
·B(E2 ↑) ·R2

2(
1 + 8.47 · 1041/2 · 2993/2

30 · 482 · 2.62
Q(2+

1 )5

∑
µR

∗
2µG(22)2µ

R2
2

)
=

= 2.63B(E2 ↑) ·R2
2

(
1 + 0.96Q(2+

1 ) · 5
∑

µR
∗
2µG(22)2µ

R2
2

) (2.30)

In this case, the adiabaticity parameter is ξ ≈ 0.4, and for a center of mass
scattering angle θ = 100◦ the orbital integrals R and G are according to Ref. [5]
R2

2 ≈ 0.18 and 5
P

µ R∗
2µG(22)2µ

R2
2

≈ 0.4, thus

P0→2 ≈ 0.47B(E2 ↑) · (1 +Q(2+
1 )0.38) (2.31)
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The numerical values for the transition probability and the quadrupole moment
as deduced from the data analysis are e.g. B(E2; 0+ → 2+) = 0.35e2b2 and
Q(2) = −0.23, see Paper III. This leads to an excitation probability

P0→2 ≈ 0.16 · (0.91) = 0.15 (2.32)

In conclusion, for the present case the effects of the static quadrupole moment
on the excitation probability is in the order of ∼ 10%. Therefore, a ∼ 1%
precision is required for the measured cross section in order to extract a static
moment with ∼10% precision. A computational multiple Coulomb excitation
calculation, which includes an integration over the target thickness and the pro-
jectile scattering angles, gives P0→2 = 0.12 for the current case. The differential
Coulomb excitation cross section is shown in Fig. 2.10.
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Figure 2.10: The differential Coulomb excitation cross section for 2.87
MeV/u 104Cd+64Zn with Q(2+) = {−1.0, 0.0, 1.0} eb as indicated on the
respective curve.

Angular distribution of de-excitation γ-rays

The states populated in Coulomb excitation are generally left with an un-
equal distribution with respect to the magnetic sub-states. Therefore, the
de-excitation γ-rays are not emitted isotropically. The probability of observing
a γ-ray in the solid angle element dΩγ while the nucleus is observed in dΩp,
is given by a differential cross section d2σ/(dΩγdΩp). The explicit expressions
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are given in Ref. [5]. Furthermore, the γ-rays are emitted in flight. Therefore,
the angular distribution of the detected γ-rays will be shifted in the direction
of motion of the nucleus. The angular distribution in the laboratory frame Wγ

is calculated for each case using the computer code GOSIA [30]. The differ-
ential cross section for γ-ray emission is integrated over the energy loss of the
particles in the target foil and the particle detection angles used in the analy-
sis, see Fig. 2.11. As can be noted from the figure, the symmetric form of the
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Figure 2.11: The angular distribution of the emitted γ-rays in the
104Cd+64Zn experiment. The average velocity 〈β〉 used in the transforma-
tion from the laboratory frame to the rest frame is indicated in the upper
right corner.

angular distributions are retained if the calculated values are transformed to
the rest frame of the emitting nucleus, see Appendix B. However, due to the
integration over particle scattering angles, an average recoil velocity 〈β〉 must
be introduced in the transformation.

The measured Coulomb excitation cross sections are corrected for the differ-
ences in the angular distributions of the detected γ-rays emitted by the projec-
tile and target nuclei. The angular distribution correction factor W is defined
as

W =
wtarg

γ

wproj
γ

(2.33)

where the angular distribution coefficient wγ is obtained from the normalized
integral of the angular distribution Wγ in the laboratory frame of reference.
The integration limits are set according to the θ-coverage of the MINIBALL
array. This is quite large, typically 30◦ − 75◦ and 100◦ − 155◦. Therefore, the
correction factors W , see Tab. 2.5, are relatively small. For the same reason,
the correction factors become rather insensitive to the integration over the
projectile scattering angles.
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Experiment W
110Sn+58Ni 1.0084
108Sn+58Ni 0.9951
106Sn+58Ni 1.0068
104Cd+64Zn 0.9870
104Cd+109Ag(311 keV) 1.0227
104Cd+109Ag(415 keV) 1.0177
102Cd+64Zn 0.9958
102Cd+109Ag(311 keV) 1.0294
102Cd+109Ag(415 keV) 1.0251
100Cd+109Ag(311 keV) 1.0396
100Cd+109Ag(415 keV) 1.0362

Table 2.5: The angular distribution correction factors W = wtarg
γ /wproj

γ

for the experiments.

2.5.3 Quantal effects, conversion and atomic electrons

The semiclassical derivation of the Coulomb excitation cross section is valid for
η >> 1, see Eq. 2.3. A fully quantum-mechanical derivation is given in Ref. [5]
and discussed with respect to second order effects in Ref. [32]. The quantal
correction CQM to the semiclassical results decrease with increasing η and the
corrected cross section σ can be written as

σ(η, θ, ξ) = σclassic(θ, ξ)−
1
η2
CQM (ξ) (2.34)

where CQM is of order unity [5]. Most of the quantal corrections can be in-
cluded by a proper symmetrization of the classical parameters η, ξ, and a
see Refs. [4, 5]. This approximately accounts for the distortion of the classical
hyperbolic trajectory caused by the energy transfer from the excitation process.

The excited states are not de-excited solely by the emission of γ-rays but also
via internal conversion. This effect is accounted for in the analysis by using
the internal conversion coefficients α(λ) of Ref. [33]. This effect is increasingly
important for low energy γ-ray transitions and large proton numbers Z.

The postacclerated isotopes are not completely stripped of their atomic elec-
trons, but rather in a charge state ∼+25. The target isotopes are clearly
surrounded by atomic electrons. The combined effect of the atomic electrons is
reduction of the center of mass energy. This energy shift δE can be estimated
from the Thomas-Fermi potential of atoms [5]. For the cases presented in this
work, δE is less than 0.3% of the initial beam energy. This gives an effect on
the cross sections that is smaller than 0.8%.
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Data analysis and results

The analysis of the particle and γ-ray part of the data consists of four sequential
reductions that enable a statistically significant extraction of the detected γ-ray
yields. The data reduction steps are:

• Particle-γ coincidence cut.

• Particle-Particle coincidence cut.

• Particle identification.

• Doppler correction of the detected γ-ray energy.

Each reduction is explained and demonstrated below.

3.1 Particle data

A typical scatter plot of the detected particles is shown in Fig. 3.1. Three
observations can be made from this figure. Firstly, the angular dependence
of the Rutherford cross section is clearly visible. Secondly, the beam is well
centered. Thirdly, the innermost strip of the left quadrant is broken for the
particular case that is shown. For the cases where an annular strip of the
DSSSD is broken this is taken into account by correcting the integrated cross
sections for the projectile and target nuclei accordingly. It should be noted that
the data from the innermost annular strips are not used in the analysis of the
Sn experiments. The case of one or several broken radial strips are handled in a
similar fashion. Nevertheless, any broken strips, radial or annular, reduces the
overall detection efficiency. Apart from the 100,102,104Cd+109Ag experiments
the particle kinematics are always inverse, i.e. Aproj > Atarg. The detected
particle energy versus scattering angle in the 110Sn+58Ni experiment is shown
in Fig. 3.2. The effects due to the energy loss of the particles as they traverse
the target foil is shown in Fig. 3.3 for the case of 2.82 MeV/u 110Sn projectiles
on a 2.0 mg/cm2 thick 58Ni target foil. The kinematics and the energy loss
are calculated using Eqs. B.5- B.6 and the computer code SRIM [21]. The
energy loss and the finite width of incoming beam adds a broadening of the
kinematical branches. This is apparent from a set of Monte Carlo simulations of
the detected particles as a function of the beam width and the target thickness,
see Fig. 3.4.

33
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Figure 3.1: Particle hit pattern as detected by the DSSSD in the 104Cd +
64Zn experiment. See the text for details.

3.1.1 The two-particle (2p) and one-particle (1p) events

The two-particle (2p) event is defined in Sec. 2.4.5. This type of event is con-
fined to a certain interval of the detected scattering angles, see Fig. 3.5. In
the experiments with inverse kinematics, the 2p cut removes the projectile and
target events below a certain annular strip of the DSSSD. In detail, the pro-
jectiles that scatter with a small angle in the laboratory system are detected
with a higher energy. The accompanying target receives the remaining energy
and is scattered with a large angle in the laboratory frame. Therefore, for the
2p events, the upper angular coverage of the DSSSD limits the detection of the
high energy projectiles. Similarly, the detection of targets with high energy
and small scattering angles are limited by the lower energy threshold of the
DSSSD. The 2p-cut is applied to the data from the experiments with inverse
kinematics for two reasons. Firstly, it improves the signal-to-background ra-
tio of the particle-γ coincidences, see Fig. 3.6. This is due to the removal of
the large fraction of coincidences at low angles and the fact that the condition
of a second particle in the opposite quadrant reflects the two-body scattering
process. Secondly, it is advantageous to remove the small angle events since
the kinematical branches in this region merge. It should be pointed out that
the majority of the projectile excitation cross section resides in the 2p angular
region.
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Figure 3.2: The two panels show the energy versus scattering angles for
the detected particles in the 110Sn+58Ni experiment.

The 1p event data is just as complete as the 2p event data apart from the
larger fraction of random particle events, see Fig. 3.6. The undetected parti-
cles in the 1p data set are reconstructed event-by-event using the energy and
angle of the detected particle. For the reconstruction of the energy it is assumed
that the particle scattering took place in the center of the target.

3.2 Particle γ-ray coincidence

The prompt particle-γ coincidences are selected in the corresponding time-
difference spectrum, see Fig. 3.6. This cut is set separately for each quadrant
of the DSSSD and is typically 75-125 ns wide. The prompt coincidence peak
is more prominent in the 2p subset of the data due to the particle-particle cut.
This singles out the physically relevant events from the background very effi-
ciently. A random background subtraction is only carried out for the 106,108In
γ-ray spectra where several weak γ-ray transitions are observed.
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projectiles scattered against a 2.0 mg/cm2 thick 58Ni target foil. For the
dashed curve it is assumed that the particles scatter in the center of the
target. The solid curves include the energy loss from traveling through the
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Figure 3.6: (Top) Particle γ-ray time-difference spectrum from the
102Cd+64Zn experiment. The spectra for the 1p and 2p events are shown
separately. To the left and right of the random coincidences are the down-
scaled events. The physical significance of the 2p events is reflected in the
enhanced prompt coincidence peak. (Bottom) The two-dimensional dis-
tribution of the γ-ray energy versus the particle-γ time difference. The
projections to the left and right show the γ-ray energy for prompt and
random particle-γ time difference cuts.
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particle-γ gate is imposed. This spectrum is based on the 104Cd+64Zn data.

3.3 Doppler correction

Due to the relativistic Doppler shift the energy ELAB
γ of the detected γ-ray is

different from its energy EREST
γ in the rest frame of the nucleus it is emitted

from. Furthermore, the Doppler shift depends on the emission angle θpγ of
the γ-ray with respect to the direction of motion of the nucleus. Therefore the
shifted peak will also be broadened. The angle θpγ is related to the detection
angles θγ and ϕγ of the γ-ray and the detection angles θp and ϕp of the nucleus
as

cos θLAB
pγ = sin θp sin θγ cos(ϕp − ϕγ) + cos θp cos θγ (3.1)

The detected γ-ray energy is related to the rest-frame γ-ray energy as

EREST
γ = ELAB

γ · γ(1− β · cos(θLAB
pγ )) (3.2)

where the relativistic parameters are given by β = v/c and γ = 1/
√

1− β2.
The detection angles of the γ-ray are determined from the center of gravity
of the segments of the MINIBALL detectors, see Fig. 2.5. The positions of
the MINIBALL clusters are read from the holding-frame. These values are
subsequently fine tuned in the software by rotating each of the triple-clusters,
with the relative segment positions fixed according to the construction of the
triple-cluster, until a minimum FWHM of the Doppler corrected γ-ray peak is
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obtained. On average, a combined adjustment of the angular position compa-
rable to the size of a triple cluster is required. The scattering angles of the
particles are determined from the randomized detection positions in the an-
nular strips of the DSSSD. For the present cases, a difference of 100 MeV in
the kinetic energy of the emitting nucleus has an effect of 1% on the Doppler
shifted energy of the detected γ-ray. The lifetime of the excited states are ∼ 10
ps implying that the de-excitation γ-ray is emitted a few µm downstream of
the target. The induced perturbation of the origin of the coordinate system is
neglected since the MINIBALL and the DSSSD detectors are positioned 12.5
cm and 3.0 cm from the secondary target, respectively. The detected intensity
of the γ-rays is also transformed to the rest frame of the emitting nucleus, see
Appendix. B.2. This has a 0.9% effect on the Doppler corrected γ-ray yields.

3.3.1 Doppler correction without particle identification

In the 100,102,104Cd+109Ag experiment it is not possible to uniquely identify
the detected particles due to the almost identical masses of the projectiles and
targets. This removes the possibility to uniquely correlate the detected γ-rays
with the projectile and target nuclei. In turn, this affects the performance
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Figure 3.9: Laboratory versus center of mass scattering angles for a 104Cd
projectile and a 109Ag target. The gray region corresponds to the angu-
lar coverage of the DSSSD. The shape of the Rutherford cross section is
included for comparison.

of the Doppler correction which is realized as a broad structure surrounding
the base of the corrected γ-ray peak, see Figs. 3.14 and 3.16. Here, this is
referred to as the ’pedestal’ or ’base’ of the peak. The magnitude of this
compared to the integral of the peak depends on the probability of an erroneous
particle-γ combination. In the following, the Doppler correction of the 109Ag(

5
2

)−
1
→
(

1
2

)−
gs

transition in the 104Cd+109Ag experiment is examined in detail
using a Monte Carlo simulation. However, the discussion applies equally well
to the

(
3
2

)−
1
→
(

1
2

)−
gs

transition or the 2+
1 → 0+

gs transition of the Cd projectile.
The following effects are taken into account in the simulation code; the energy
loss of the particles as they traversed the target foil, the angular distributions
of the emitted γ-rays, the MINIBALL detection efficiency, the geometry of the
DSSSD, a beam spot with a Gaussian distribution with a standard deviation
of 1 mm. Applying the Doppler correction to the simulated data under the
assumption that all the detected particles are Cd gives the result shown in
Fig. 3.8. This is in agreement with the result of the Doppler correction of the
experimental data, see e.g. Fig. 3.14. Firstly, according to the Rutherford
cross section, 97% of the detected particles are in fact Cd. This is illustrated in
Fig. 3.9. However, the number of detected de-excitation γ-rays from the target
depends on the Coulomb excitation cross section. Indeed, folding the Coulomb
excitation probability P (θ) onto the Rutherford cross section shows that 76%
of the target γ-rays are registered in coincidence with a projectile. Thus, 24%
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of the target γ-rays are correctly assigned, which displays the fact that the
detected target particles, which have large center of mass scattering angles and
correspond to 3% of the total number of detected particles, carry a large fraction
of the Coulomb excitation cross section. Consequently, the Doppler correction
of the target γ-rays improve if it is based on the reconstructed particles. In this
reconstruction it is assumed that all detected particles are projectiles. This is
clearly seen in the data, see the bottom panels in Figs. 3.14 and 3.16. The target
γ-ray yield remains unchanged within one standard deviation irrespective of
the employed Doppler correction method. Returning to the experimental data,
the integrated pedestal of the γ-ray peak corresponds to 78(4)% of the total
γ-ray yield. The Doppler corrected peaks are fitted with a double-Gaussian
function. This assumption is verified by testing the fit-routine on the Monte
Carlo generated pedestal which returns a pedestal-fraction of 77(5)%.

3.4 Measured γ-ray yields

The following pages contain a summary of all the Doppler corrected γ-ray
energy spectra. The extracted yields are listed in Tabs. 3.1- 3.2. The cuts
explained in the preceding sections have been applied to the data.
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Figure 3.10: projectile 2.82 MeV/u 110Sn target 2.0 mg/cm2 thick 58Ni
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Figure 3.11: projectile 2.82 MeV/u 108Sn target 2.0 mg/cm2 thick 58Ni
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Figure 3.12: projectile 2.83 MeV/u 106Sn target 2.0 mg/cm2 thick 58Ni
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Table 3.1: The observed γ-ray yields from the Sn and Cd experiments.

Measurement Eγ / keV Transition γ-ray yield
Fig. 3.10
110Sn + 58Ni

1212 110Sn: 2+
1 → 0+

gs 579(24)
1454 58Ni: 2+

1 → 0+
gs 237(15)

Fig. 3.11
108Sn + 58Ni

1206 108Sn: 2+
1 → 0+

gs 994(38)
1454 58Ni: 2+

1 → 0+
gs 577(34)

Fig. 3.12
106Sn + 58Ni

1208 106Sn: 2+
1 → 0+

gs 133(14)
1454 58Ni: 2+

1 → 0+
gs 207(15)

Fig. 3.13
104Cd + 64Zn

658 104Cd: 2+
1 → 0+

gs 1487(59)
992 64Zn: 2+

1 → 0+
gs 471(28)

Fig. 3.14
104Cd + 109Ag

658 104Cd: 2+
1 → 0+

gs 1028(47)
311 109Ag: 3

2

−
1
→ 1

2

−
gs

2753(95)

415 109Ag: 5
2

−
1
→ 1

2

−
gs

2289(84)
Fig. 3.15
102Cd + 64Zn

777 102Cd: 2+
1 → 0+

gs 308(28)
992 64Zn: 2+

1 → 0+
gs 156(23)

Fig. 3.16
102Cd + 109Ag

777 102Cd: 2+
1 → 0+

gs 486(34)
311 109Ag: 3

2

−
1
→ 1

2

−
gs

2249(83)

415 109Ag: 5
2

−
1
→ 1

2

−
gs

1985(65)
Fig. 3.17
100Cd + 109Ag

1004 100Cd: 2+
1 → 0+

gs ≤6.0(24)
311 109Ag: 3

2

−
1
→ 1

2

−
gs

101(17)

415 109Ag: 5
2

−
1
→ 1

2

−
gs

75(14)
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Table 3.2: The observed γ-ray yields from the In experiments. The tran-
sition energy Eγ corresponds to the adopted value unless the transition is
observed in this work for the first time, in which case the value of Eγ is
given with an uncertainty. The 151 keV doublet in 108In is resolved using
known branching ratios.

Measurement Eγ / keV Transition γ-ray yield
Fig. 3.18
108In + 58Ni

1454 58Ni: 2+ → 0+
gs 565(35)

151 108In: 7+ → 7+
gs 377(66)

169 108In: 3+ → 2+ 1536(64)
248 108In: (5)+ → 7+

gs 631(50)
151 108In: (5)+ → (6, 7, 8) 79(14)
236 108In: 3+ → 2+ 1106(67)
283 108In: 4+ → 3+ 192(60)
216 108In: 4+ → 3+ 150(50)

Fig. 3.18
106In + 106In

1454 58Ni: 2+
1 → 0+

gs 194(25)
123 106In: (6+7+8+9+) → 7+

gs 897(41)
147 106In: (7+) → 7+

gs 566(61)
123 106In: (2)+ → (2)+ 897(41)
367.1(2) 106In: (6+) → 7+

gs 321(29)
221.1(14) 106In: (6+) → (7+) 38(14)
267 106In: 6 → (6+7+8+9+) 105(21)
821 106In: (8+) → 7+

gs 59(16)
673 106In: (8+) → (7+) 128(24)
1118 106In: (8+) → 7+

gs 66(23)
970 106In: (8+) → (7+) 81(21)
1307 106In: (9)+ → 7+

gs 40(12)
658.7(4) 106In: not placed 42(11)
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3.5 Beam composition analysis

The beam purity P is sampled for one hour every three hours during each
experiment using a laser based method referred to as laser on/off, see Sec. 2.1.2.
A time-averaged value P, that is representative for an entire experiment, is
deduced from the Pon/off samples. The precision and consistency of the laser-
based measure of P is carefully investigated using two complementary methods.
These are applied to the 108Sn experiment.

3.5.1 Isobaric purity of the Sn and Cd RIBs

The beam purity Pon/off is deduced from each laser on/off run data by observing
the differences in the total number of particles N detected in the DSSSD during
the laser on and the laser off periods

Pon/off =
Non −Noff

Non
(3.3)

The uncertainty of Pon/off is given from the Poisson statistics of the detected
particles. The P value for an entire experiment is obtained using the inten-
sity of the Coulomb excited In isobar. The number of de-excitation γ-rays
Nγ(In) following the population of excited states in the isobaric contaminant
is proportional to the number of indium particles scattered against the target,
i.e.

Nγ(In)off = N(In)off · σ̃ (3.4)

where σ̃ is a measure of the corresponding Coulomb excitation cross section.
Irrespective of its actual value, it remains constant for a given experiment.
Therefore, the total number of incident contaminant particles is proportional
to the number of detected Coulomb excitation γ-rays

Nγ(In)tot = N(In)tot · σ̃ (3.5)

which leads to

N(In)tot =
Nγ(In)tot ·N(In)off

Nγ(In)off
(3.6)

and the final value for P is obtained from

P = 1− Nγ(In)tot ·N(In)off
Nγ(In)offN(Sn+In)tot

(3.7)

As mentioned, during the 110Sn+58Ni experiment, there are no laser data stored
for offline use. Instead the isobaric contamination is deduced using the on/off
method in combination with a Faraday cup that measures the beam current
just before the 58Ni target. The result is consistent with the analysis of the
implantation γ-ray spectroscopy carried out at the primary target. For the
106,108Sn experiments the procedure outlined above lead to the values listed
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Experiment P /%
110Sn+58Ni 90.0(14)
108Sn+58Ni 59.0(27)
106Sn+58Ni 29.2(42)
104Cd+64Zn 99.6(1)
104Cd+109Ag 99.2(1)
102Cd+64Zn 97.3(3)
102Cd+109Ag 99.6(1)
100Cd+109Ag 100.0(100)

Table 3.3: The time-averaged beam purity P with respect to the Sn and Cd
content for each RIB.

in Tab. 3.3. However, for the 100,102,104Cd experiments it is not possible to
detect any Coulomb excitation of the In contaminant in the Cd beams due to
the suppression of this isotope, see Sec. 2.1.2. Therefore the quoted values are
the ones obtained from the average of the laser on/off measurements. Also, the
purity for the 100Cd is according to the scattered number of particles during the
laser-off runs consistently zero. A statistical uncertainty of 10%, with added
margins, is assigned based on the maximum uncertainty found in the table.

3.5.2 Correlation between laser power and beam purity

It is interesting to study the correlation between the injected laser power and
the number of detected Sn particles. This offers a check of the laser on/off
procedure outlined in the previous section. For the 108Sn+58Ni experiment
the offline data contains a measure of the injected laser power. Also, the RIB
contains a sizable amount of indium. Therefore, this experiment is suitable for
further studies of this type. During the laser on/off periods, the number of
scattered Sn particles N(Sn) is given by

N(Sn)on = N(Sn+In)on −N(In)off (3.8)

The assumption that N(In)on = N(In)off for consecutive on and off periods
is reasonable since the fluctuations in the ionization efficiency occurs on a
larger time scale. Furthermore, N(Sn)on is correlated1 with the laser power
LP injected in the ionization cavity. This is quantified by e.g. the Pearson
product-moment correlation coefficient

C(〈N(Sn)〉T , 〈LP 〉T ) =
n
∑n

i xiyi −
∑n

i xi

∑n
i yi√

n
∑n

i x
2
i − (

∑n
i xi)2

√
n
∑n

i y
2
i − (

∑n
i yi)2

(3.9)

1Correlation does not imply causality. However, for this study the causality is inferred
from the technical and physical knowledge of the RILIS.
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where yi = 〈N(Sn)〉T,i and xi = 〈LP 〉T,i. Note that the number of detected
particles in the on/off periods are averaged over a time period T . However, see
Tab. 3.4, the deduced values of the correlation coefficient is rather independent
of the length of the time interval T . The linear fit between the detected number
of Sn ions and the injected laser power for the time average with the largest
correlation coefficient is shown in Fig. 3.19. For completeness, the correlation
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Figure 3.19: Time-averaged values of scattered
108Sn versus laser power. The straight line is
the linear fit to the data.

T (min) C
10 0.86
20 0.87
30 0.85
40 0.90
50 0.86

Table 3.4: C for
various time inter-
vals T . The op-
timal T is marked
with bold font.

coefficient between the contaminant and the laser power C(〈N(In)〉T , 〈LP 〉T )
is 0.38. This value indicates, as expected, that there exists no correlation
between the laser power and the surface ionized component of the beam. The
correlation between the laser power and the number of Sn particles scattered
into the DSSSD offers an alternative measure of P since the laser power is
continuously stored during this experiment. The number of scattered 108Sn
nuclei is deduced from the linear fit in Fig. 3.19. and the corresponding value
of P is

PC = 0.58± 0.01 (3.10)

This value is consistent with the P-value deduced from the extrapolated Pon/off-
value. It is not possible to correlate the laser power with the number of scat-
tered 106Sn particles. One reason for this could be a drift in the position of the
laser beams during that experiment.

3.5.3 A coupled decay-chain analysis of the beam content

A third approach to verify the consistency of the deduced isobaric contami-
nation is given by the detected number of γ-rays from the decay of the RIB



3.5 Beam composition analysis 57

components. This method is completely independent of the laser based meth-
ods discussed above. Here, it is applied to the 108Sn experiment. In detail, the
beam composition is reflected in the total number of detected γ-rays coming
from the transitions following the decay of each component of the beam, see
Fig. 3.20. The indium fraction of the beam consists of two species, namely
indium in the ground state and indium with the first excited and isomeric
state populated. The ratio of these two quantities depends on the targetry of
the experiment. For the 108Ings+108Inm+108Sn beam, where gs means the 7+

ground state and m means the first meta-stable 2+ state, it is possible to find a
set of decay γ-rays that can be used to identify the various parts of the beam,
see Tab. 3.5. The magnitudes of the components of the beam can be written
as

P ·A Sn +Q ·A In +R ·A Inm (3.11)

where P,Q,R varies between zero and one such that P +Q+R = 1. The
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Figure 3.20: Schematic illustration of the decay-chain of the components
of the RIB in the 108Sn experiment.

Table 3.5: The γ-rays following the decay chain 108Sn→108In→108Cd that
are used as signatures of the beam components. The γ-ray intensities
Iγ [34] are normalized to the decay of the parent nucleus.

No. Decay-Eγ / keV Iγ /% Observed Yield Parent
1 272.75 45.5(6) 6801282(6229) 108Sn
2 396.43 64.3(6) 9788686(5212) 108Sn
3 669.11 22.6(4) 2383319(3667) 108Sn
4 730.87 9.3(10) 467648(2737) 108In
5 1032.92 35(3) 1017867(2096) 108In
6 1056.79 29(3) 1309156(2076) 108In
7 1529.72 7.3(4) 802648(1596) 108Inm
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data presented in Table 3.5 are collected over the entire duration of the exper-
iment. This data is modeled by the coupled decay-chain equations

d
dtSn(t) = −λSn · Sn(t) + PF(t)
d
dt In

m(t) = +λSn · Sn(t)− λInm · Inm(t) + (1− P)αF(t)
d
dt In

gs(t) = −λIngs · Ings(t) + (1− P)(1− α)F(t)

(3.12)

where a measure of the time-dependent incoming beam flux F(t) is given by the
number of detected particles in the DSSSD, see Fig. 3.21, and the isomeric ratio
α is defined as α ≡ R/(Q+R). Neither the chemical nor the heating properties

time / hrs
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Figure 3.21: The detected number of particles during the experiment pro-
vides a measure of the fluctuations of the beam flux. The dashed red and
green curves indicate the uncertainty of the beam flux as estimated from
Poisson statistics. Clearly, the periods of no-beam are included in the beam
flux curve. See the text for more details.

of the primary target varied during the experiment such that it affected the
isomeric ratio. This justifies the assumption of keeping α time-independent.
Furthermore, the time-dependence of the Sn-fraction P(t) is removed by using
the time-average 〈P〉 according to;

〈P〉 =
∫
P(t)F(t) dt∫
F(t) dt

(3.13)

This is identical to the P introduced in the preceding sections. The decay-
equations are solved numerically for given values of P and α using a fourth
order Runge-Kutta routine with the initial conditions

Sn(t = 0) = Inm(t = 0) = In(t = 0) = 0. (3.14)



3.5 Beam composition analysis 59

The overall normalization constant of the total number of deposited particles
and emitted γ-rays is removed by forming ratios Ri according to

Yγ(Ings)
Yγ(Sn)

,
Yγ(Inm)
Yγ(Sn)

,
Yγ(Inm)
Yγ(Ings)

(3.15)

The simulated ratios are compared to the experimental ratios using a χ2-type
penalty function defined as

X2/ν =
1
ν

∑
i=1

(
Rexp

i −Rcalc
i

σi

)2

(3.16)

This function is denoted with X2 to emphasize the sample nature of it. The
number of degrees of freedom ν is given by the number of ratios minus the
number of parameters, α and P, of the model. The uncertainties of the de-
tection efficiency, the γ-ray branching ratios, and the integrated γ-ray yields
are carried over to the final uncertainty σi using Gaussian error propagation.
The strength of the decay-chain method is twofold. Firstly, the methods pro-
vides an offline-tool for extracting the isomeric fraction of the A = 108 RIB.
Secondly, the X2-statistic is sensitive to both α and P and therefore provides
a consistency check of the laser on/off method.

The MINIBALL detection efficiency of a Rutherford scattered source

The γ-rays from the Sn→Inm →Cd and Ings →Cd decay-chain are emitted
from particles implanted in either the target chamber, the downstream beam
dump, or somewhere in the beam pipes connecting these regions. However, the
γ-rays are detected by the MINIBALL detector array that is positioned around
the target chamber. Therefore, the γ-ray detection efficiency for this type of
Rutherford scattered source is determined from an internal calibration using
the γ-rays that are emitted from the Ings →Cd part of the decay-chain. The
resulting relative efficiency is fitted with an exponential function. The result
is shown as a blue dashed line in Fig. 3.22. From this, one can note that the
low-energy γ-rays are attenuated more compared to the high energy ones. In-
tuitively, this originates in the increased amount of material that the emitted
γ-rays must penetrate before reaching any of the MINIBALL triple-clusters.
Furthermore, the attenuation increases with the distance from the center of
the target chamber, i.e. it reaches a maximum for γ-rays emitted from the
beam dump. However, given the uncertainties in the efficiency curve from the
internal calibration, this hypothesis is verified using a GEANT4 simulation2.
The implementation of the GEANT4 physics-processes is verified by simulating
the detection of γ-rays from a 152Eu source in the target position, see Fig. 3.23
In the simulation, a 2.82 MeV/u 108In beam is scattered against a 2.0 mg/cm2

2The GEANT4 implementation of the MINIBALL triple-clusters is provided by H. Boie
et al., Heidelberg.
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Figure 3.22: Simulated and experimental relative efficiency curves. The
simulated relative detection efficiency of a centered γ-ray source is in ex-
cellent agreement with the experimentally obtained efficiency curve

thick 58Ni target. The width of 95% of the beam is 4.0 mm and follows a Gaus-
sian distribution and the transverse emittance is 0.3 · πmm·mrad normalized
at 3.0 MeV/u according to simulations and measurements [35]. The resulting
absolute detection efficiency for a γ-ray that is emitted from the beam dump
is in the order of 0.02%. This is 500 times less than the detection efficiency
of a γ-ray that is emitted in the target chamber, see Fig. 3.24. Note that the
detection efficiency of the γ-rays coming from the beam dump increases with
increasing energy of the emitted γ-ray. This is the origin of the rather flat
efficiency curve of the internal calibration. The number of particles implanted
in the beam dump is ∼1000 times the number of particles implanted inside and
in the vicinity of the target chamber. Therefore, the internal efficiency curve
can be understood from the properly weighted linear combination of the two
efficiency curves in Fig. 3.24. That is, 0.1% of the beam is implanted in the
vicinity of the target chamber and therefore 0.1% of the total efficiency curve
of the scattered beam comes from the target chamber efficiency curve and like-
wise for the fraction of the beam that is implanted in the beam dump. In this
model, the particles that are stopped in the beam pipes between the chamber
and the beam dump are neglected. Indeed, the fit of the linear combination of
the simulated efficiency curves to the internal calibration curve is improved if
the weight of the component due to the target chamber is shifted from 0.1% to
0.2%. This shift is included in the red curve in Fig. 3.22.
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Figure 3.23: Simulated and experimental γ-ray energy spectrum of a 152Eu
source in the target position.

X2-analysis of the beam composition

The coupled differential equations in Eq. 3.12 are integrated over the entire
duration of the experiment. The integration routine takes into account the
time periods when the data acquisition system is switched off. The results
based on the internal calibration efficiency and the γ-ray data summarized in
Tab. 3.5 gives the X2 surface in Fig. 3.25(a). The minimum X2

min value is
0.82 and defines the point of optimal α and P values that best fit the observed
γ-ray yields. This minimum extends over a certain region. The X2

min + 1
contour defines the region of one standard deviation. The projection of this
area onto the respective axis delimits the R and P values that within one
standard deviation fits best with the observed data. The numerical values are
50 . P . 80% and 0% . P . 30%. The P interval is clearly consistent
with the value 59±2.7% that is obtained with the laser on/off method. The
isomeric fraction is further constrained if the laser based measure is used in
conjunction with the decay-chain result, see Fig. 3.25. This implies that equal
amounts of isomeric and ground state 108In are produced in the primary target.

An important systematic effect that contributes to the width of the X2
min + 1

contour comes from the precision of the γ-ray branching ratios in Tab. 3.5.
Indeed, if only one γ-ray transition per beam component is included in the X2-
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Figure 3.24: Simulated absolute γ-ray detection efficiencies of the MINI-
BALL detectors. The particle source is distributed in (a) the target cham-
ber and (b) in the beam dump. The error bars come from the statistical
uncertainty of the integration of the simulated γ-ray peaks.

sum the resulting X2-surface becomes more narrow, see Fig. 3.25(b). However,
the choice of transitions introduces a bias in the final result. In order to avoid
this, the model should be based on as many γ-ray transitions as possible.
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Figure 3.25: (a) The X2/ν distribution in the R − P plane based on the
γ-ray efficiency curve obtained from the internal calibration and the γ-ray
yields listed in Tab. 3.5. The isomeric fraction of the indium component
of the beam is extracted using the P value based on the laser on/off mea-
surements. (b) The X2/ν distribution based on transitions No. 3, 5, and
7 in Tab. 3.5. With three data points and two parameters in the model,
the number of degrees of freedom for this case is ν = 1. Note the narrow
minimum obtained in this calculation compared to the one presented in
panel (a).
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3.6 Extraction of the nuclear moments

In the Sn and Cd experiments only the first excited 2+
1 states are populated.

The cross sections mainly depend on the B(E2; 0+
gs → 2+

1 ) value and the Q(2+
1 )

value, see Sec. 2.5 and Eq. 2.29 in particular.

The 106,108,110Sn experiments are analyzed with the computer code GOSIA [30].
The excitation-algorithms of the program are based on the semi-classical cou-
pled channels theory [4, 5] which is presented briefly in Sec. 2.5.1. The code
can also simulate the observed γ-ray yields for a given set of matrix elements
and any experimental setup, i.e. it can incorporate the effects of the particle
and γ-ray detector geometries, the target thickness, the angular distribution of
the γ-rays, the internal conversion coefficients, the branching ratios, the mix-
ing ratios etc. However, the main functionality of GOSIA is its capability of
fitting a large but limited set of transition matrix elements to the experimen-
tally observed γ-ray yields. This is done in a χ2 analysis where the coordinates
of the matrix elements in the parameter space are iteratively updated using a
modified steepest descent algorithm. For a reasonable ratio of the number of
free parameters to the number of data points, the program will converge to a
set of matrix elements that best reproduce the observed γ-ray yields. For the
Sn-isotopes a Q(2+

1 ) = 0.0 eb is used in accordance with theoretical calcula-
tions and experimental results from heavier stable Sn isotopes [36].

The projectile and target γ-ray yields from the 100,102,104Cd experiments are
analyzed using the computer code CLX [29]. This code is identical to GOSIA
apart from missing the χ2-minimization algorithm and the possibility of in-
cluding the geometry of the γ-ray detectors.

The γ-ray yields observed in the 106,108In experiments are compared to a
GOSIA-simulation based on shell-model matrix elements. This enables a study
of the proton-neutron multiplet structure in 108In, see Sec. 4.7.

3.6.1 106,108,110Sn

The level schemes of the 106,108,110Sn projectiles and the 58Ni target are shown
in Fig. 3.26. The absolute normalization of the extracted B(E2) values is
provided by the known target matrix elements, see Tab. 3.6. Therefore a version
of the GOSIA code, called GOSIA2 [30], which can handle the simultaneous
excitation of the target and the projectile is employed. The static quadrupole
moment Q(2+

1 ) in 58Ni has a ∼ 7% effect on the extracted B(E2) values in
the Sn isotpes. The remaining target matrix-elements have an additional effect
of 0.5% on the result. The differential cross sections of the projectiles and
targets are integrated by GOSIA2 over the 2p angular range in the center of
mass frame, see Fig. 3.27. The resulting B(E2) values for 106,108,110Sn provided
by GOSIA2 are given in Tab. 3.7. The 4+

1 and 2+
2 states in the Sn isotopes,
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Figure 3.26: The low-lying levels in 106,108,110Sn and 58Ni. The diagonal
and non-diagonal transition matrix elements of relevance to the analysis
are indicated with arrows. The previously known half-lives are included.

Table 3.6: The level index, spin, parity, level energy, and reduced matrix
elements 〈i||E2||j〉 = Mij for 58Ni. The adopted values of the matrix
elements are from Ref. [37]. The matrix elements and level energies are
given in units of eb and MeV, respectively.

Level Iπ Energy 1 2 3 4
1 0+ 0.0 0.0 0.266(4) 0.0 0.014(4)
2 2+ 1.454 -0.132(79) 0.367(20) 0.306(50)
3 4+ 2.459 0.0 0.0
4 2+ 2.775 0.0

although the 2+
2 state is not experimentally observed in 106Sn, couple via the

E2 operator to the 2+
1 state. Based on the corresponding matrix elements

in 112Sn it is concluded that the influence on the B(E2; 0+
gs → 2+

1 ) values is
negligible. The B(E2) values presented here are corroborated by intermediate
energy Coulomb excitation measurements [38, 39], see Fig. 3.28. The transition
probabilities in the neutron-deficient Sn isotopes do not decrease as rapidly as
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Figure 3.27: The panels show the 2p angular range for the 110Sn+58Ni
experiment. The integration limits in the center of mass frame is indicated
for (a) the scattered projectile nuclei and (b) the scattered target nuclei.

Table 3.7: The B(E2; 0+
gs) values in 106,108,110Sn extracted using GOSIA2.

Isotope B(E2; 0+
gs → 2+

1 ) 〈0+
gs||E2||2+

1 〉
110Sn 0.220(22) 0.470(23)
108Sn 0.222(19) 0.471(20)
106Sn 0.195(39) 0.442(45)

expected from theoretical predictions. The significant discrepancy between
experiment and theory appears already in the stable 114Sn isotope. This was
recently remeasured using intermediate energy Coulomb excitation [40]. The
adopted value [41] is 3% larger, but with a considerable uncertainty. For the
heavier Sn isotopes there are no significant deviations from theory. In Secs. 4.4
and 4.5, the neutron-deficient Sn isotopes are investigated in a set of large-scale
shell-model calculations and discussed from a generalized seniority perspective.

3.6.2 100,102,104Cd

For each measurement with the Cd isotopes, the projectile excitation cross
section is deduced using Eq. 2.1. The target excitation cross sections are cal-
culated from the known matrix elements, see Tabs. 3.8-3.9. The known level
schemes, for both the targets and the projectiles, are shown in Fig. 3.29. It
is pointed out in the discussion of Eq. 2.29 that a determination of both the
B(E2) and the Q(2+

1 ) values using Coulomb excitation requires e.g. at least
two independent measurements of the cross section. This condition is fulfilled
in the 102,104Cd experiments since both isotopes are Coulomb excited against a
109Ag target as well as a 64Zn target. Furthermore, for the measurements rela-
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values are from Ref. [39].

Table 3.8: The level index, spin, parity, level energy, and reduced matrix
elements 〈i||E2||j〉 = Mij for 64Zn. The data are taken from Refs. [41,
42, 43, 37]. The matrix elements and level energies are given in units of
eb and MeV respectively.

Level Iπ Energy 1 2 3
1 0+ 0 0.0 0.400(19) 0.043(2)
2 2+ 0.991 -0.420(79) 0.545(28)
3 2+ 1.799 0.0

tive to the 64Zn target, it is possible to extract the projectile cross section also
for small scattering angles in the center of mass frame, i.e. the events detected
in the two or three innermost annular strips of the DSSSD. The kinematics of
the measurements with the 109Ag target are such that it is not possible to de-
termine if a detected particle is a projectile or a target. Therefore the low-θcm

events cannot be distinguished from the large-θcm events. The three indepen-



68 Chapter 3. Data analysis and results

Table 3.9: The level index, spin, parity, level energy, and reduced matrix
elements 〈i||E2||j〉 = Mij for 109Ag. The data are taken from Refs. [37,
44, 45]. The matrix elements and level energies are given in units of eb
and MeV, respectively.

Level Iπ Energy 1 2 3 4 5 6
1 1

2

− 0.0 0.0 0.0 0.0 0.67(3) 0.80(3) 0.04(1)
2 7

2

+ 0.088 0.0 3.05(2) 0.0 0.0 0.0
3 9

2

+ 0.133 0.0 0.0 0.0 0.0
4 3

2

− 0.311 -0.91(39) 0.22(11) 0.0
5 5

2
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Figure 3.29: The low-lying levels in 100,102,104Sn, 64Zn, and 109Ag. The
diagonal and non-diagonal transition matrix elements of relevance to the
analysis are indicated with arrows. The ones that are bold were fitted in
this analysis.

dent measurements of the projectile 0+
gs → 2+

1 excitation cross section in 102Cd
and 104Cd are denoted [Ag], [Zn], and [Zn(small-θcm)]. The excitation cross
section measurement for the 100Cd isotope is lower and the intensity of the RIB
was on the verge of what is sufficient for a successful experiment. Therefore
this isotope was Coulomb excited against the 109Ag target only. An upper limit
of 6.0(24) projectile excitation events is extracted from counting all detected
projectile γ-rays within Eγ = 1004± 100 keV. This energy interval is given by
the extreme values of the Doppler shifted energy. The complete list of deduced
cross section can be found in Tab. 3.10. Several comments are in order. As
mentioned, both the reorientation effect and the E2-coupling between the first
excited 2+ and the higher lying states are second order effects. Therefore, the
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Table 3.10: The Coulomb excitation cross sections of 100,102,104Cd mea-
sured in this work. The second column indicates which target isotope that
was used.

Projectile Target Projectile σE2 / mb
104Cd 64Zn 307(39)

109Ag 1013(61)
102Cd 64Zn 202(43)

109Ag 596(48)
100Cd 109Ag 201(64)

influence of the latter effect on the former is investigated. The lifetime of the
4+
1 states in 102,104Cd has been measured in fusion-evaporation based plunger

experiments, see Refs. [46, 47, 48]. The adopted lifetimes for these states are
> 5.6 ps and < 4.2 ps for 102Cd and 104Cd, respectively [37]. This is equivalent
to reduced matrix elements 〈2+

1 ||E2||4+
1 〉 < 0.44 eb and > 0.54 eb. This means

that the influence of the 4+
1 state on the 0+

gs → 2+
1 excitation cross section

is less than 0.4%. The low-lying states in the Cd isotopes can be explained
from a vibrational structure. Therefore, one can expect a second 2+ state at
approximately twice the energy of the first excited 2+ state. However, this two-
phonon state has not been observed in the 100,102,104Cd isotopes. Nevertheless,
the effect of the 2+

2 state on the excitation cross section can be inferred from
the 〈2+

1 ||E2||2+
2 〉 = 0.497 eb and 〈0+

gs||E2||2+
2 〉 = 0.190 eb matrix elements in

106Cd [49]. From this, it is concluded that virtual quadrupole excitations via
the higher lying 2+

2 state have a ∼2% impact on the projectile excitation cross
sections in the 100,102,104Cd isotopes. This corresponds to a ∼0.05 eb change
in the static quadrupole moment. Thus, the effects of a higher lying 2+

2 state
are not included in this analysis.

A likelihood-based combination of several cross sections

As mentioned, the simultaneous extraction of the Q(2+
1 ) and B(E2) values in

the 102,104Cd-isotopes requires an expanded analysis of the measured cross sec-
tions. The experimental uncertainties confine the range of possible B(E2; 0+

gs →
2+
1 ) values and Q(2+

1 ) values to a ’one-sigma’ band in the B(E2)−Q(2+
1 ) plane,

see Fig. 3.30. The one-sigma bands extracted from each of the 102,104Cd cross
section measurements and the single one-sigma band extracted from the 100Cd
cross section relative to the 109Ag target are shown in Paper III. Clearly, for
100Cd, a definite B(E2) value and Q(2+

1 ) value cannot be determined without
any auxiliary data such as another cross section or the value of the lifetime of
the 2+

1 state. However, from the proximity of 100Cd to the spherical 100Sn core
it is reasonable to assume that Q(2+

1 ) = 0.0 eb. This leads to an upper limit
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Figure 3.30: The ’one-sigma’ band of B(E2) and Q(2+
1 ) values that repro-

duce the experimentally determined cross section withing one sigma.

of B(E2) < 0.28 e2b2. On the other hand, from the 102,104Cd measurements it
is possible to extract the most probable pair of the B(E2) and Q(2+

1 ) values.
The coordinates, called (B,Q) for short, for each measurement are assigned a
statistical weight that reflects their distance from the measured cross section.
In the numerical analysis, this weight is approximated with a Gaussian prob-
ability distribution Pk directed along the gradient of the cross-section contour
curve, see Fig. 3.30. For 102Cd and 104Cd, the three cross sections are combined
into a two-dimensional likelihood distribution according to

L(B,Q) =
∏

measurements

Pk(B,Q) (3.17)

This function is evaluated for B ∈ [0, 1] e2b2 and Q ∈ [−2, 2] eb, which repre-
sents physically reasonable values compared to the heavier Cd isotopes. The
normalized likelihood function is calculated on a 200×200 grid. This generates
the likelihood surfaces in Fig. 3.31. The B(E2) and Q(2+

1 ) values with the
maximum likelihood are assigned as the final values. Furthermore, the one-
sigma boundary of the likelihood distribution is defined as the contour curve
L(B,Q) = 0.682, in accordance with the one-sigma probability mass of a Gaus-
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Table 3.11: The B(E2; 0+
gs)/e

2b2 and Q(2+
1 )/eb values in 100,102,104Cd.

Isotope B(E2; 0+
gs → 2+

1 ) Q(2+
1 ) 〈0+

gs||E2||2+
1 〉 〈2+||E2||2+

1 〉
104Cd 0.33(2) 0.06(15) 0.57(2) 0.08(20)
102Cd 0.28(3) 0.22(19) 0.53(3) 0.29(25)
100Cd ≤0.28 0.0 ≤0.53 0.0

sian distribution. The two-dimensional projection of the one-sigma surface for
each isotope is shown in the panels of Fig. 3.32. One can note that the likeli-
hood surface for 102Cd does not fall off as rapidly as it does for 104Cd. This
is primarily due to the lower statistical precision in the cross section deduced
from the 102Cd measurements. The probability distributions in Fig. 3.32 clearly
display the correlation between the dynamic and static quadrupole moments
measured in Coulomb excitation. The upper and lower uncertainties of the
B(E2) or Q(2+

1 ) values that are extracted from the point of maximum likeli-
hood are defined as the distances along the lines of the corresponding constant
Q(2+

1 ) or B(E2) value to the intersections with the border of the one-sigma
contour. If instead the full one-sigma contour is projected onto the respective
axis and taken as the final uncertainty it would contain a correlation com-
ponent leading to an over-estimation of the error. The resulting B(E2) and
Q(2+

1 ) values in 100,102,104Cd are listed in Tab. 3.11. These values are plotted in
Fig. 3.33 together with the known values in the heavier even-mass Cd isotopes
and a shell-model prediction, see Sec. 4.6. In contrast to the light Sn iso-
topes, the B(E2) values in 100,102,104Cd, see Fig. 3.33(a) exhibit a smooth and
decreasing trend as the proton drip-line is approached. This is in agreement
with the shell-model prediction presented in this figure. The amount of exper-
imental data on the neutron rich side is scarce but indicates a slightly steeper
decrease of the B(E2) values. The B(E2) value in 104Cd has previously been
measured two times using lifetime-based techniques. Muller et al. [48] report
a B(E2; 0+

gs → 2+
1 ) = 0.367+0.182

−0.092 e2b2. The precision of this value is ∼ 40%
and is clearly in agreement with the value presented here. Boelaert et al. [46]
report a very precise value, B(E2; 0+

gs → 2+
1 ) = 0.389(13) e2b2. This transition

probability is 2% larger than in 106Cd. Such an increase is not observed here.
The B(E2) value for 102Cd in Tab. 3.11 is in agreement with the results from
previously published lifetime measurements [46, 47]. The statistically very pre-
cise lifetimes of the 2+

1 states in 102,104Cd are also used in conjunction with the
probability distributions in Fig. 3.32 to obtain the corresponding Q(2+

1 ) values,
see Sec. 4.6. There, the results are also interpreted in the shell-model.
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Figure 3.31: The likelihood surfaces of the B(E2) and Q(2+
1 ) values in

102,104Cd.
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Transition Ei (keV) Ef (keV) Lifetime τm (ps) B(E2) (Wu)
7+ → 7+

gs 150.8 0.0 4 ≤ τm . 2000 < 196
6+, (7)+ → 7+

gs 247.7 0.0 15≤ τm . 2000 < 222
6+, (7)+ → (6, 7, 8) 247.7 96.9 15≤ τm . 2000 < 93

Table 3.12: Observed γ-ray transitions in 108In and the deduced limits on
the transition probabilities where possible.

3.7 Observed γ-ray transitions in 106,108In

The observed γ-ray transitions in 106,108In, see Tab. 3.2, are placed in the
known level schemes of these isotopes,see Fig. 3.34. The assignments are based
on the energies of the transitions. The excited states of 106,108In have previ-
ously only been investigated in decay studies, see e.g. Ref. [50], and reaction
experiments [51, 52, 53]. In Coulomb excitation the population of the excited
states is governed by the reduced matrix elements with respect to the initial
state. Therefore a different population pattern might be explored using this
technique as compared to the ones previously employed. Indeed, three previ-
ously unknown γ-ray transitions at 221.1(14), 367.1(2) and 658.7(4) keV are
detected in 106In. Regarding the first two of these, the low probability for
multiple Coulomb excitation favors a direct excitation from the 7+

gs state to
a (5+, 6+, 7+, 8+, 9+) state at 367.1(2) keV. However, according to the shell-
model calculations, see Sec. 4.7, this state is tentatively assigned with a spin
and parity 6+. Regarding the 221.1(14) keV γ-ray, this is placed as an 9(3)%
decay-branch from the 367 keV state to the (7+) state at 147.2 keV. This
further strengthens the existence of a state at 367 keV. The weak 658.7 keV
transition could not be placed. It should be pointed out that the low statistics
of the collected γ-ray yields exclude a reliable γ − γ coincidence analysis. It
is therefore stressed that the placement of the observed 367 keV transition in
106In is based on the observed energy sums. The 151 keV γ-ray yield in 108In is
a doublet, i.e. this yield is the sum of the (5)+ → (6, 7, 8) and 7+ → 7+

gs tran-
sitions. This doublet is separated using the previously known branching ratio
and the observed γ-ray yield of the 248 keV transition (5)+ → 7+

gs
3. A γ-ray

transition doublet at 123 keV is observed also in 106In. The yield is the sum
of the (2)+ → (2)+ and (6+, 7+, 8+, 9+) → 7+

gs transitions. However, the lack
of known branching ratios for this case removes the possibility of a separation
similar to that of 108In.

The GOSIA analysis of the γ-ray yields from 106In and 108In is hampered
by the lack of existing spectroscopic data such as branching ratios and mixing
ratios. Nevertheless, the χ2-minimization converged for the 108In case. The
determined B(E2) values are given in Tab. 3.12. The upper limit of the B(E2)

3Branching ratios of the (5)+ state at 247.7 keV. Eγ =151 keV (Iγ = 8.8(13)%) and
Eγ =248 kev (Iγ = 91.2(63)%)
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values provide a lower limit on the lifetime. Furthermore, the γ-ray yields are
extracted from peaks that are sensitive to and improved by the Doppler cor-
rection. This means the γ-rays are emitted from the nuclei in flight. Therefore,
an upper limit on the lifetime is given by the known flight time from the 58Ni
target to the DSSSD, i.e. ∼ 2 ns.

In Sec. 4.7, the observed de-excitation patterns in 106,108In are interpreted
using the shell-model. A set of E2 and M1 reduced matrix elements are calcu-
lated and used to simulate the strengths of the corresponding γ-ray transitions.
From the comparison with the experimental data a more detailed investigation
of the structure of the excited states is carried out. In particular, the excited
states of 108In are analyzed with respect to their π−1 ⊗ ν multiplet structure.
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Chapter 4

Theoretical
interpretation

The shell-model studies of 106,108,110Sn, 100,102,104Cd, and 106,108In carried out
in this thesis are based on realistic two-body effective interactions derived from
the G-matrix renormalized free nucleon-nucleon potentials CD-Bonn [54, 55] or
N3LO [56, 57]. The G-matrix renormalization and the subsequent many-body
perturbative expansion [58] of the nucleon-nucleon interaction as well as the
large-scale shell-model calculations [59] are carried out using the computational
codes provided by the theoretical nuclear physics group at Oslo University. The
underlying theory is discussed in Secs. 4.1-4.3. The results and interpretations
of the shell-model calculations in the Sn and the Cd isotopes are presented
in Secs. 4.4 and 4.6. The generalized seniority scheme and its application to
the Sn isotopes is described in Sec. 4.5. The shell-model calculations of the In
isotopes and the proton-neutron multiplet interpretation of the excited states
in 108In are presented in Sec. 4.7.

4.1 Shell-model calculations

The key ingredient in the many-body Schrödinger equation Eq. 1.1 is the resid-
ual interaction VR between two nucleons that are moving in the static one-body
field of the nucleus. The single-particle orbits of the shell-model are schemat-
ically shown in Fig. 4.1. As mentioned in the introduction, the shell-model
approach to the nuclear many-body problem is based on the weak strength of
VR. This enables a perturbative solution of the Schrödinger equation. The
interaction energy of two nucleons that scatter from the shell-model states a
and b into the states c and d is given by the two-body matrix element (TBME)
〈ab|VR|cd〉JT where J is the coupled angular momentum and T is the isospin.
The details of the construction of VR for the present cases are presented in
Sec. 4.2. A perturbative approach implies that the Schrödinger equation can
be solved in the unperturbed single-particle basis |Φi〉. In this work, this is con-
structed from Slater determinants [60] of harmonic oscillator wave functions.
The oscillator energy is given by ~ω = 45A−1/3 − 25A−2/3, where A is the
mass number of the nucleus. The Slater determinants represent multi-particle
configurations. However, the two-body interaction in a multi-particle configu-
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Figure 4.1: The proton and neutron energy levels in (a) the harmonic
oscillator potential (b) the harmonic oscillator potential without the `-
degeneracy (c) the harmonic oscillator without the `-degeneracy but with
the inclusion of a spin-orbit coupling. Notice how the single-particle or-
bits are bunched such that energy-gaps occur at the proton and neutron
numbers 2,8,20,28,50,82,126. These are sometimes referred to as ’magic
numbers’.
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Figure 4.2: Schematic illustration of the 88Sr and 100Sn shell-model cores
used in the calculations here. The energies, in MeV, of the single-particle
orbits of the proton and neutron model spaces are indicated. The 88Sr core
is used in the shell-model calculations of the Cd and In isotopes while the
100Sn core is used for the calculations in the Sn isotopic chain.

ration can be expressed as a linear combination of matrix elements of two-body
configurations [60]. In addition to the perturbative treatment of the residual
interaction, the Hilbert space of the A-body problem is truncated. The dimen-
sionality of the single-particle basis grows combinatorially with the number of
protons (nπ) and neutrons (nν) as(

Nπ

nπ

)(
Nν

nν

)
(4.1)

where Nπ and Nν are total proton and neutron degeneracies of the consid-
ered single-particle orbits. Therefore, the equations are solved in a subspace
referred to as the model space M. Two different model spaces are used in the
calculations presented here, see Fig. 4.2. The lower-energy orbits are referred
to as the core. The introduction of a model space requires the concept of an
effective interaction Veff. Indeed, the exclusion of certain nuclear configurations
|Φi〉 implies that if the model-space wave functions |ΨMi 〉 =

∑
i∈M |Φi〉 are to

reproduce the true energies Ei of the nuclear states, a similarity transformed
Hamiltonian Heff must be constructed such that

Heff|ΨMi 〉 = Ei|ΨMi 〉 (4.2)

The choice of model space is dictated by the configurations that are essential
for the construction of the low-lying excited states. The major shells offer a
natural limit of the model space boundaries. The dominating components of
the wave functions are the ones of the valence particles, i.e. the nucleons in
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the model space. The energy required for a particle to scatter across the gap
between two major shells is much larger than the energy splitting between two
single-particle states in the model space. The effective interaction should be
constructed so that it captures the dominating correlations between the nucle-
ons inside and outside the model space. Early examples that show the strengths
and validate the applicability of this approach includes e.g. Refs. [61, 62]. In
the current work, the effective interactions for the model spaces in Fig. 4.2 are
derived using many-body perturbation theory [58], see Sec. 4.2.

Even with an effective interaction in place, solving the many-body Schrödinger
equation poses a computationally challenging problem. It is evident that the
dimensionalities of the model-space single-particle basis for the present cases
(∼ 107) grow beyond the limits for an exact diagonalization. The memory re-
quirements alone prevent this. Instead, a numerical method called the Lanczos
algorithm [63] is used to extract the lowest eigenvalues and the corresponding
eigenvectors. The numerical computation of the results presented here are car-
ried out on the computational clusters Milleotto, at the LUNARC facility in
Lund, and on Neolith, at the National Supercomputer Centre in Linköping.

4.1.1 Single-particle energies

The single-particle energies (SPEs) serve as the second input to the shell-model
calculation. They are given relative to the specific core that is used, i.e. for
the present cases either 100Sn or 88Sr. However, the single-particle energies
can drift as the effective interaction is switched on and the nucleon number is
varied. This can affect the outcome of the calculations. Naturally, care must be
taken such that the magicity of the chosen core remains for the isotopes studied
in the calculation. The drift of the SPEs can be partially absorbed by tuning
the TBMEs of the effective interaction. In such cases, the tuning is done such
that the shell-model calculations reproduce the spectroscopy of a selected set
of nuclei in the vicinity of the employed core. This phenomenological approach
is widely used although it is not implemented here. It has several apparent
advantages but one drawback is that it obscures the bottom-up approach in
understanding the nucleon-nucleon interaction.

The proton and neutron SPEs relative to the 88Sr core, see Fig. 4.2, are known
from experiments. The neutron structure of the stable 89Sr nucleus is known
from Sr88(d, p)89Sr reactions [64, 65]. The first excited state in the 1π+88Sr
system, i.e. the 89Y nucleus, is a 9

2

+ state at 909 keV and originates from the
promotion of a proton from the 2p1/2 orbit to the 1g9/2 orbit, see Ref. [66] and
references therein. These proton and neutron SPEs have previously been used
together with realistic effective interactions in shell-model studies of e.g. the
neutron-rich 92−100Zr isotopes [67] and the 102In isotope [68].

The 100Sn core is unstable but still suitable as shell-model core, see Ref. [69]
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Figure 4.3: The lowest lying 5
2

+ and 7
2

+ states in the odd mass isotopes
101−115Sn. In the extreme single-particle picture the 2d5/21g7/2 neutron
orbits are filled at 114Sn. The right part of the figure shows the result from
a shell-model calculation of 107Sn using the 100Sn core, the SPEs from
Fig. 4.2, and the N3LO-based effective interaction.

and references therein. Very little is known regarding the neutron SPEs in the
major shell above 100Sn. The 2d5/2 − 1g7/2 single-neutron energy difference
was recently measured to 171.7(6) keV in decay studies of 101Sn [70]. The
corresponding energy difference in 103Sn is known from a fusion-evaporation
experiment [71]. For the present shell-model studies, a set of neutron SPEs,
see Fig. 4.2, are adopted according to Ref. [38]. These reproduce the low-lying
spectroscopy of the even-mass 102−130Sn isotopes. The

(
5
2

)+
1

and
(

7
2

)+
1

states in
the light Sn isotopes are estimated to be ∼80% of single-particle character [72].
The

(
3
2

)+
1

and
(

1
2

)+
1

states are more mixed. This allows one to approximately
follow the single-particle energy drift of the 1g7/2 and 2d5/2 orbits in the light
Sn isotopes, see Fig. 4.3. This indicates that the 2d5/2 and 1g7/2 orbits are
nearly degenerate in the light Sn isotopes. Less can be said about the location
of the 3s1/2, 2d3/2, and 1h11/2 orbits. The SPEs used in this region are tuned
to reproduce the low-lying spectra of the odd-mass isotopes. Since the results
also depend on the choice of effective interaction, various values can be found
in the literature, see Ref. [72] for a partial compilation. It can be noted that the
energy of the 3s1/2 orbit ranges between 1.6-2.5 MeV. Similarly the 2d5/2 and
1h11/2 SPEs range between 1.6-3.2 and 2.4-3.55 MeV, respectively. The neu-
tron single-hole states relative to the 132Sn core are known from β− and γ-ray
spectroscopy of 131In [73]. The heavy 120−130Sn isotopes have been investigated
relative to the 132Sn core using a realistic neutron-hole effective interaction [74].
The results are in agreement with the experimental B(E2; 0+

gs → 2+
1 ) values for

the heavy Sn isotopes.

The drift of the single-particle energies is exemplified in the difference between
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the single-neutron energies relative to the 88Sr core and the 100Sn core. The
underlying mechanism is to a large extent the monopole part of the nuclear
tensor force [75] between nucleons in nearly identical orbits. This phenomenon
dates back to the microscopic origin of the onset of deformation as explained
by Federman and Pittel [76, 77]. The most striking difference in the neutron
single-particle energies of the 88Sr core as compared to the 100Sn core is the
location of the neutron orbits 1g7/2 and 2d5/2. In the transition from 88Sr to
100Sn the protons gradually fill the 1g9/2 orbit. The tensor force is attractive
when acting between one nucleon in the j′ = `′ + 1

2 orbit and the other in the
j = ` − 1

2 orbit. Likewise, it is repulsive between nucleons in j′ = `′ ± 1
2 and

j = ` ± 1
2 orbits. Furthermore, the monopole tensor force is twice as strong

between unlike nucleons [75]. Therefore the neutron 1g7/2 orbit is lowered rel-
ative to 2d5/2 as the proton 1g9/2 is filled. It should be noted that this effect,
although in different orbits, is suggested as responsible for the weakening of
the N = 28 shell closure [78].

4.1.2 Effective charges

The electromagnetic quadrupole transition probability between two shell-model
wave functions |ΨMi 〉 are readily calculated as the overlap integral

〈ΨMi ||E2eff||ΨMj 〉 (4.3)

where an effective E2 transition operator E2eff is introduced on the same
grounds as the effective interaction i.e. that the transition probabilities cal-
culated using model-space wave functions should give the same result as when
using the true wave functions |Ψ〉. The renormalization of the E2 operator is
given by an effective charge eeff for the protons and the neutrons separately.
These retain their physical values eν = 0.0 e and eπ = 1.0 e if the Hilbert space
is not truncated. The concept of effective charges is physically relevant. It is
well-known that the same effective charges can be used for similar transitions
in different nuclei in the same shell or model space [3]. Physically, the effective
charge arises from the contributions of core excited particles that participate in
the transition between two states in the model space. In the collective model of
Bohr and Mottelson [79, 80] the effective charge is interpreted as a polarization
of the core by the valence nucleons. The core becomes deformed by the non-
spherical field generated by the valence nucleons and consequently acquires a
quadrupole moment. In this picture, the effective charge minus the bare charge
of the nucleon is called the polarization charge epol. In the isospin formalism1

the polarization charge is decomposed into an isovector e(1)pol and an isoscalar

e
(0)
pol component according to

epol = e
(0)
pol + e

(1)
pol · 2tz (4.4)

1The proton-neutron formalism is used otherwise throughout the presentation here.
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where tz is the projection of the isospin quantum number. The effective proton
and neutron charges can therefore be written as

eπ
eff = 1 + e

(0)
pol − e

(1)
pol

eν
eff = e

(0)
pol + e

(1)
pol

(4.5)

In this work, the need for a renormalization of the neutron effective E2 charge
is observed, in particular for the light Sn isotopes, see Secs. 4.4-4.6. It should
be pointed out that the j-dependence of the effective charge is neglected in
the calculations presented here. This could come to play an important role in
tracing the origin of the observed renormalization effects.

4.2 The effective two-body interaction

There exists various approaches in obtaining an effective two-body interaction
for use within the model-space. In the empirical approach the two-body ma-
trix elements (TBME), of a rather small model space, is extracted from the
experimentally observed energy spectra in several nuclei, see e.g. Ref [61]. This
method circumvents the need for explicitly defining the effective interaction in
order to understand the regularities in the observed spectra. However, little
insight is gained about the microscopic features of the interaction. A second
approach is to define the interaction from observed properties and symmetries
of nuclei. This leads to e.g. the (modified) surface delta interaction [81] which
essentially captures the short-ranged nature of the nucleon-nucleon interaction.
A second exampled is the quadrupole-quadrupole interaction [82] which can be
used to describe the quadrupole deformation of nuclei.

The starting point of the many-body perturbative construction of the effec-
tive interaction is the renormalized free nucleon-nucleon interaction. Indeed,
the singular nature of the free nucleon-force, see Fig. 4.4, requires renormal-
ization before treating it perturbatively. The G-matrix technique is employed
for this purpose, see Sec. 4.3. The Hilbert space of single-particle basis states
is divided into a model space M and a remaining part. The corresponding
projection operators P and Q onto the respective spaces are defined as

P =
∑
i∈M

|Φi〉〈Φi| Q =
∑
i/∈M

|Φi〉〈Φi| (4.6)

Therefore, the model-space component of the true wave function |Ψ〉 is given
by P |Ψ〉. There exists a mapping from the model-space wave function to the
true wave function, i.e. |Ψ〉 = Ω|ΨM〉 where Ω is defined as the wave operator,
see Ref. [58]. Furthermore, the true wave function can be written as

|Ψ〉 = |ΨM〉+
∑
i/∈M

|Φi〉〈Φi|VR|Ψ〉
E − εi

(4.7)
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Figure 4.4: The 1S0 (Russell-Saunders notation) inter-nucleon potential
as a function of nucleon-nucleon separation. The singular nature of the
free nucleon interaction is here manifested as a repulsive core.

where VR is the residual interaction, and E and εi are the energy eigenvalues
of |Ψ〉 and |Φi〉, respectively. This can be written more compactly in operator
form

Ω(E) = 1 +
Q

E −H(0)
VRΩ(E) (4.8)

whereH(0) is the Hamiltonian of the unperturbed one-body field and the energy
dependence has been emphasized. According to e.g. Ref. [58], the effective
model-space interaction is given by Veff = VRΩ(E). Iterating this with the
above expression gives

Veff = VR + VR
Q

E −H(0)
VR + VR

Q

E −H(0)
VR

Q

E −H(0)
VR + ... (4.9)

This expansion contains the unknown energy E of the true wave function.2 The
expansion can be transformed into one containing only the unperturbed energy
Ev of the valence nucleons relative to the core and a corresponding model-space

2i.e. it is a Brillouin-Wigner expansion
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Hamiltonian H(0)
v [58]3

Veff = VR + VR
Q

Ev −H
(0)
v

VR + VR
Q

Ev −H
(0)
v

VR
Q

Ev −H
(0)
v

VR + ... (4.10)

In this work, the valence nucleon energies are degenerate and the expansion is
truncated at third order. Furthermore, the excitation energy of the interme-
diate particle-hole interactions are limited to 5~ω. The expansion in Eq. 4.10
introduce the correlations between the valence particles and the core as well
as with the unoccupied states at higher energy. The order-by-order effects
of Eq. 4.10 on the excited states in 108Sn and the B(E2; 0+

gs → 2+
1 ) values

are shown in Fig. 4.5 A detailed list of which interaction diagrams that are
taken into account at each order is given in Ref. [58]. The first order term
corresponds to the ’bare’ interaction as given by the G−matrix. This includes
only the particle-particle interactions. The important intermediate core-excited
states occur first at second order. The well-known 3p-1h core-polarization in-
teraction is one of them. This describes the interaction of two valence particles
via the intermediate creation of a particle-hole excitation of the core. The cor-
responding interaction diagram is included in the bottom of the second-order
calculation in Fig. 4.5. In this figure it is also noted that the excited spec-
trum of 108Sn does not change much when adding the third-order correlations.
However, from detailed investigations [83] it has been observed that in some
cases the third-order diagrams tend to cancel the second-order contributions.
It should also be pointed out that the expansion does not exhibit any general
order-by-order convergence. In Fig. 4.5 one of the third-order diagrams has
been included. This particular example can be interpreted as a renormaliza-
tion of the particle-hole propagator of the second-order core-polarization.

4.3 Renormalization of the free NN-interaction

From measurement of the phase shifts in nucleon-nucleon scattering experi-
ments it is evident that the free nucleon-nucleon interaction VNN has a strong
repulsive character at very short distances, see Fig. 4.4. Since the uncorrelated
nucleon wave functions |ψ〉 are non-zero for small nucleon-nucleon separations,
the interaction matrix elements 〈ψ|VNN |ψ〉 are very large in this region. The
G−matrix [84, 85] introduces a correlation such that the matrix elements are
limited and become suitable for a perturbative expansion. In a diagram in-
terpretation the G−matrix corresponds to summing up the particle-particle
ladder-diagrams. The G−matrix is obtained from the solution to the Bethe-
Salpeter equation

G(ω) = VNN + VNN
QF

ω −H(0)
G(ω) (4.11)

3i.e. a Rayleigh-Schrödinger expansion
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Figure 4.5: The low-lying states in 108Sn calculated from the N3LO
nucleon-nucleon potential. The different segments show the effects of suc-
cessively adding the first, second, and third order terms in Eq. 4.10. At
first order, only the bare interaction, i.e. the G−matrix, is included. At
second order, the well-known core-polarization term appears. This has a
large impact on the calculated spectrum as well as the transition probability
and clearly shows that intermediate core-excited states are needed in the
interaction. See the text for further details.

where QF is the Pauli operator that controls the summation of states in G such
that particles below the Fermi energy only scatter into states above it. The
starting energy ω represents the effects of the nuclear medium on the interac-
tion. It is demonstrated in Ref. [58] that the final two-body matrix elements
of the effective interaction and energy eigenvalues are relatively insensitive to
the choice of starting energies. Many of the details regarding the solution of
Eq. 4.11 are given in e.g. Refs. [58, 3]. For the present cases, the G−matrix
methods are employed using the computational codes provided by the Oslo
group.
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4.3.1 The CD-Bonn and N3LO potentials

The phase shifts from nucleon-nucleon scattering experiments with laboratory
energies ≤ 350 MeV and ` ≤ 6 have been fitted to a wide range of different
nucleon-nucleon potentials, see e.g. Ref. [86]. Here, the two recent momentum-
space nucleon-nucleon interaction models CD-Bonn [54, 55] and N3LO [56, 57]
are used as input to the G−matrix. These models reproduce the measured on-
shell phase shifts equally well. However, the off-shell behavior and in particu-
lar the physical interpretation of the N3LO potential differ from the CD-Bonn
potential. CD-Bonn is based on a multiboson-exchange while the N3LO inter-
action stems from the fundamental symmetries of quantum chromodynamics
(QCD). In addition, only pions are included as mediators of the nuclear force.

The idea of massive-particle exchange as responsible for the nucleon-nucleon in-
teraction was introduced by Yukawa in the 1930s. The meson-field ϕ(r) solution
to the Klein-Gordon equation is given by the well-known ’Yukawa potential’

ϕ(r) =
g

4π
e−mr

r
(4.12)

The effective range of the interaction can be estimated from the mass m of the
force-mediating particle. In this picture the intermediate region (1 fm . r . 2
fm) of the nucleon-nucleon interaction is described by two-pion exchange, while
one-pion exchange dominates in the longer range (r &2 fm). In the CD-Bonn
potential, several additional bosons, including the fictitious σ-boson, are in-
cluded in order to reproduce the experimentally determined phase shifts. It
is the most elaborate boson-exchange model ever constructed. The effective
interaction in the shell-model calculations of the Cd and In isotopes is derived
from a version of the CD-Bonn potential described in Ref. [54]. For the Sn
calculations the CD-Bonn potential of Ref. [55] is used. The latter and more
recent version is based on an extended and more sophisticated description of
the charge-dependence of VNN . The charge-symmetry breaking (CSB) in VNN ,
i.e. the fact that the proton-proton force is not equal to the neutron-neutron
force, originates in the proton-neutron mass difference [87]. The neutron-to-
proton mass ratio is 1.0014 and the absolute difference in 1.2933 MeV. It is
experimentally verified that e.g. in the 1S0 partial wave the neutron-neutron
force is slightly more attractive than the proton-proton force, disregarding elec-
tromagnetic effects [87]. The charge independence breaking (CIB) in VNN , i.e.
the fact that the proton-neutron force is not equal to the force between like
nucleons, originates primarily from the pion mass-splitting [88]. The effects of
CSB and CIB can be studied by e.g. comparing the energies of analogue states
in mirror nuclei and isobaric mass triplets, respectively. It was concluded in
Ref. [89] that CSB and CIB play an equally important role as the Coulomb
potential. All effective interactions employed here include CSB and CIB.

It is now also realized that spontaneously broken chiral symmetry [90] is crucial
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for an accurate description of nuclei. This is exploited in the N3LO nucleon-
nucleon interaction [57, 56]. The chiral (left-right handed) symmetry group of
the up-down quark sector of the QCD Lagrangian is broken by the non-zero
and non-equal quark masses. If the physical solutions to the nucleon-nucleon
Lagrangian were chiral invariant, which is not seen experimentally [90], there
would e.g. have existed opposite parity and equal-mass nucleons and pions.
The N3LO Lagrangian is an effective field theory (EFT) [91] in the sense that
it includes only pions and nucleons. The quark-gluon degrees of freedom are
integrated out. Weinberg showed [92] that it is possible to construct a sys-
tematic expansion, known as a chiral perturbation, of the free nucleon-nucleon
interaction in terms of (Q/Λ)ν , where Q is the pion momentum transfer, Λ
is ∼ 1 GeV, and ν = 1, 2, 3, . . .. For the chiral expansion to converge, Q
must be smaller than Λ. The number of terms in the expansion to order ν is
finite. Presently, ν = 4 is the highest-order chiral EFT nucleon-nucleon La-
grangian constructed. Three-nucleon forces are present at order ν ≥ 3, but
not included in the present N3LO interaction. The N3LO interaction contains
Npar = 29 parameters whereas CD-Bonn has 38. At ν = 4 the χ2/Npar of the
fit to neutron-proton scattering data is 1.1. The corresponding value for CD-
Bonn is 1.02. The χ2/Npar for NNLO (ν = 3) and NLO (ν = 2) are 10.1 and
36.2 [57, 93], respectively. This indicates a rapid convergence with increasing ν.
There are two arguments that make chiral EFT models appealing. First of all,
it stems from the underlying QCD making it the most fundamental approach as
of today, and secondly, many-body interactions come out systematically with
increasing chiral order ν.

In the shell-model calculations of the even-mass Sn isotopes, two effective in-
teractions are derived. One based on CD-Bonn and the other on N3LO. No
real difference could be observed in the final results. The difference between
different nucleon-nucleon potentials primarily appears in the off-shell momenta,
i.e. inelastic in scattering-matrix elements. The off-shell effects are certainly
present in the nuclear many-body problem as the intermediate states of nucleon
excitations violate energy conservation for a short period of time. The implica-
tions for nuclear structure calculations are predominantly in the bulk properties
of nuclei such as binding energies. There exists an important connection be-
tween the tensor force of the free nucleon-nucleon potential and the central
potential it generates in the nuclear medium. Namely, the G−matrix can ap-
proximately be decomposed as Vcentral + Vtensor [86]. In addition, all nuclear
interaction models reproduce very similar on-shell G−matrix elements. There-
fore, a weak (strong) central force implies a strong (weak) tensor force. The
strength of the tensor force is reflected in the magnitude PD of the D-state4

component of the deuteron wave function. The presence of this is essential
for the nucleon-nucleon interaction to reproduce the electric quadrupole and
magnetic dipole moments of the deuteron. For N3LO, PD is 4.51% whereas

4angular momentum L = 2
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Figure 4.6: Energies of the first excited 2+ and 4+ states in the even-mass
Sn isotopes. The shell-model calculation based on the N3LO interaction
gives ∼ 30 keV lower excitation energies than the one with the CD-Bonn
interaction. Both shell-model calculations give energies lower than the
experimental values. However, the overall agreement is good.

for CD-Bonn 4.85%. Thus, it is reasonable that they generate very similar
shell-model results.

4.4 Shell-model interpretation of the Sn isotopes

The shell-model calculations reproduce the approximate constancy of the en-
ergy spacing between the 2+

1 and 0+
gs states in the even-mass Sn isotopes, see

Fig. 4.6. This feature can be explained in the generalized seniority scheme,
see Sec. 4.5. On the neutron-rich side, the high excitation energy 4.04 MeV
of the 2+

1 state in 132Sn, measured in β−-decay studies of 132In produced in
fission [94], is a first indication of a strong Z = 50 N = 82 shell-closure. This
is further strengthened by the decreasing B(E2) values as one approaches the
isotope 132Sn, see Fig. 4.7. The experimental information regarding the excited
spectrum in the neutron-deficient Sn isotopes is more scarce. For instance, the
2+
1 energy in 100Sn is not known. From Hartree-Fock calculations [95] it is pre-

dicted to be of 4.3−5.2 MeV, depending on the parametrization of the Skyrme
interaction. Empirical estimates based on observations in the lighter doubly-
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Figure 4.7: The red squares represent the B(E2) values obtained in this
work. The red curve is a shell-model calculation based on the renormalized
N3LO nucleon-nucleon potential. This is tailored to the neutron model-
space above the 100Sn core, see Fig. 4.2, using third order perturbation
theory with inclusion of the intermediate excitations ≤ 5~ω. The shell-
model calculations based on the CD-Bonn nucleon-nucleon potential with
≤ 5~ω excitations is in principle identical, see Paper II, and therefore
omitted in this figure. The neutron effective charge is set to eeffν = 1.0 e.
The seniority truncated shell-model calculations outside the 90Zr core with
eeffν = 0.5 e and eeffπ = 1.5 e is from Ref. [38].

magic nucleus 56Ni leads to a somewhat lower excitation energy of 3− 4 MeV.
The N = Z = 50 shell-gap is estimated to be ∼ 6.5 MeV in calculations and
from indirect experimental observations [96, 97]. For instance, a 6.46(15) MeV
strong 100Sn shell-gap was inferred from a shell-model calculation by match-
ing the excitation energy of the 12+ core-excited isomeric state at 6.635 MeV
in 98Cd. Similarly, the excitation energies of the J ≥ 25

2

+ states in 101In is
sensitive to the energy of the neutron 1g9/2 orbit [68] and requires a neutron
N = 50 shell-gap of 6.5 MeV.

The B(E2) values in 106,108,110Sn reported here, see Fig. 4.7, are significantly
larger than the shell-model calculation predictions. Apparently, a sizable frac-
tion of the 0+

gs → 2+
1 excitation strength is not accounted for in the calcu-
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lations. The neutron effective charge eeffν = 1.0 e gives the best fit of the
B(E2; 0+

gs → 2+
1 ) values in the mid-shell and neutron-rich Sn isotopes. The

agreement on the neutron-deficient side is poor and indicates a strong renor-
malization of eeffν . Indications for a renormalized neutron effective charge is
apparent also from the experimental B(E2; 6+

1 → 4+
1 ) values in 102−110Sn, see

Tab. 4.1. The consensus from several shell-model calculations is that a neu-

Table 4.1: B(E2; 6+
1 → 4+

1 ) in 102−112Sn. The value for 102Sn is from
Ref. [98], 104Sn is from Ref. [99], and 106−112Sn is from Ref. [100].

Isotope E(6+
1 ) (MeV) E(4+

1 ) (MeV) B(E2; 6+
1 → 4+

1 )
102Sn 2.017 1.969 0.0116+0.0070

−0.0030
104Sn 2.257 1.943 0.0113(17)
106Sn 2.020 2.325 0.0074(15)
108Sn 2.364 2.111 0.0068(4)
110Sn 2.478 2.197 0.0055(6)
112Sn 2.549 2.248 0.00157(6)

tron effective charge of 1.6-2.3 e outside 100Sn is needed in order to reproduce
the experimental values. The large variation in the neutron effective charge
comes from variations in the estimated positions of the ν2d5/2 and 3s1/2 single
particle energies [98]. The significant discrepancy between the measured and
calculated B(E2) values in 106,108,110Sn could be interpreted as a weakening
of the N = Z = 50 shell-closure. In relation to this, it has also been ob-
served [101] that the excitation energies of the first excited 2+ and 4+ states
in the N = Z + 2 nucleus 110

54 Xe break the trend of increasing values as the
N = 50 shell gap is approached.

The enhanced B(E2) values can also be understood from nucleon-nucleon cor-
relations across the 100Sn gap that are not accounted for in the calculations.
The doubly magic nucleus 56Ni is located in a region of the nuclear chart that is
similar to the one of 100Sn. However, the 56−68Ni isotopic chain is more accessi-
ble for experimental studies since it does not stretch as far from stability as the
much longer 100−132Sn isotopic chain. The 56Ni nucleus is an `s-open core with
respect to the 1f7/2−1f5/2 splitting. This is similar to the 1g9/2−1g7/2 splitting
of the 100Sn core, see Fig. 4.1. This allows for 1f7/2 − 2p3/2 and 1f7/2 − 1f5/2

couplings across the 56Ni shell-gap. Indeed, the relatively large B(E2) value
in 56Ni, see Fig. 4.8, is explained from the large coherent 1f7/2 − 2p3/2 and
1f7/2 − 1f5/2 components in the wave function of its 2+

1 state [102]. It should
be pointed out that the neutron-magicity of the 68Ni nucleus is debated [103].
The B(E2) value is lower than in 58Ni, but it is argued that this is due to
the neutron-character of the 2+

1 state in 68Ni and that the B(E2; 0+
gs → 2+

1 )
only exhausts a fraction of the low-lying B(E2) strength. In addition, another
typical indication of a sub-shell closure, the measured two-neutron separation



94 Chapter 4. Theoretical interpretation

Ni mass number
54 56 58 60 62 64 66 68 70

)2 b2
) 

(e
1+ 2

→
gs+

B
(E

2;
0

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.5

1

1.5

2

2.5

3

3.5

4

N
=

Z
=

28

)
1

+E(2
)1

+ 2→ 
gs
+B(E2;0

) 
(M

eV
)

1+
E

(2

Figure 4.8: Experimental E(2+
1 ) and B(E2; 0+

gs → 2+
1 ) values in the even-

mass 56−68Ni isotopes. The data is taken from Refs. [41].

energy, does not peak for 68Ni compared to 66Ni and 70Ni.

In conclusion, on similar grounds as in 56Ni, one might explain the enhanced
B(E2) values in the neutron-deficient Sn isotopes as coming from core-excited
1g9/2−2d5/2 and 1g9/2−1g7/2 components of the 2+

1 wave function. The mag-
nitude depends in part on the strength of the 100Sn shell-closure. Indeed, it is
shown in paper II that the B(E2) values in the light Sn isotopes are directly
proportional to the 100Sn shell-gap.

4.5 Generalized seniority in the Sn isotopes

A convenient method, which also have practical implications, for classifying jn

configurations of n identical nucleons in an orbit with total angular momentum
j is offered by the seniority scheme5. The seniority quantum number ν was first
introduced for LS-coupled electron-configurations in 1943 by G. Racah [104].
In 1953 it was introduced for jj-coupled nuclear states, see e.g. references
in [60]. It is based on the notion of pairs coupled to a total angular momentum
J = 0. The quantum number ν is equal to the number of unpaired nucleons.

5For jn configurations with protons and neutrons in the same j-orbit, the seniority quan-
tum number does not play an equally important role [60].
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For instance, for a j2 configuration in the J = 0 state there is complete pairing,
thus ν = 0, whereas in the J = 2, 4, ..., 2j − 1 states there are no J = 0 pairs,
thus ν = 2. The pair-creation operator is defined in second quantization as [60]

S+
j =

√
2j + 1

2
A+(j2J = 0,M = 0) =

1
2

∑
(−1)j−ma+

jma
−
j,−m (4.13)

Similarly, the pair-annihilation operator is defined as S−j =
(
S+

j

)†
. Therefore,

a state with seniority ν in the jν configuration can be defined as

S−j |j
ν , ν, J,M〉 = 0 (4.14)

It should be noted that for e.g. the ( 9
2 )4 configuration there are e.g. two ν = 4

states with J = 4. Therefore, for a unique classification of these states an
additional quantum number α must be introduced. Note that for two such
orthogonal jν states, the application of S+

j preserves the orthogonality of the
seniority basis [60]. Also, in j < 9

2 , any two-body interaction is diagonal in
the seniority scheme. Therefore, in order to investigate the seniority proper-
ties of the nuclear interaction (j ≥ 9

2 )n configurations must be investigated,
e.g. (1h11/2)2 proton configurations in Z > 64 and N = 82 nuclei [60]. In all
cases, the two-body effective interaction between identical nucleons in jn con-
figurations is diagonal in the seniority scheme [60]. The usefulness of seniority
primarily lies in the several closed expressions for matrix elements of one-body
and two-body operators [60]. For the present case, the one of most interest is
the seniority relation for an electric quadrupole transition between states with
a seniority difference of 2, e.g. a J = 2+ state and a J = 0+ state

〈jnναJ ||E2||jnν − 2, α′J ′〉 =√
(n− ν + 2)(2j + 3− n− ν)

2(2j + 3− 2ν)
〈jνναJ ||E2||jνν − 2, α′J ′〉

(4.15)

The coefficient on the right hand side is symmetric between n and 2j + 1− n.
Therefore, the B(E2) values between states in the jn-configuration with a
seniority difference of two units follow a symmetric trend. It also turns out
that level spacings in the jn configurations are independent of n. Note that the
above considerations apply to even as well as odd nuclei. Turning the attention
to the even-mass Sn isotopes, the energies of the first 2+ states, and to some
extent the B(E2) values, exhibit the aforementioned features. However, the
wave function basis consists of several j-orbits. Conceptually, the seniority
model of a single-j orbit can be expanded to the case of several j-orbits. The
generalized seniority pair-creation operator can be written as

S+ =
∑

j

αjS
+
j (4.16)

where j runs over the j-orbits included in the construction of the state. For the
semi-magic Sn isotopes this implies the neutron 1g7/2, 2d5/2, 2d3/2, 1s1/2, 1h11/2
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Figure 4.9: Experimental binding energies and two-neutron separation en-
ergies in the even-mass Sn isotopes relative to the 100Sn core. The red
curve indicates the generalized seniority prediction using two-body forces
while the green dashed curve is the generalized seniority prediction with the
inclusion of effective three-body forces. See the text for details.

orbits. The creation and annihilation operators of the seniority model generates
the SU(2) group known as quasi-spin. Also, if all αj coefficients in Eq. 4.16
are equal this group structure remains. However, in generalized seniority the
αj coefficients are not equal. Therefore, the closed expressions of the seniority
model do not carry over to the generalized seniority model by default. How-
ever, several seniority-like features emerge in the generalized seniority scheme
if certain conditions of the nuclear Hamiltonian are fulfilled. Starting from the
vacuum |0〉, i.e. the magic-core, the addition of N generalized-seniority pairs
of nucleons is given by the state (

S+
)N |0〉 (4.17)

where the number of nucleons is n = 2N . The states in Eq. 4.17 are taken to
be the lowest energy states, i.e. the analogies of the J = 0 and ν = 0 states of
seniority. It turns out that these states are the eigenstates for a Hamiltonian H
that contain only one-body terms and a two-body interaction if the following
commutation relations are fulfilled [60]

1. [H,S+] = V0S
+

2. [[H,S+], S+] = W (S+)2

where V0 and W are numerical coefficients. Note that in the generalized senior-
ity scheme the coefficients αj are independent of N and do not change as the
major shell is being filled. It is shown in Ref. [60] that higher order expressions
such as H(S+)4|0〉 yield no further conditions on H. Thus, the eigenvalue of
H(S+)N |0〉 for any N is given by

H(S+)N |0〉 = (NV0 +
1
2
N(N − 1)W )(S+)N |0〉 (4.18)
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In turn, the binding energies of even semi-magic nuclei are given by

B.E.(n = 2N) = B.E.(n = N = 0) +NV0 +
1
2
N(N − 1)W (4.19)

Therefore, the two-nucleon separation energies are given by a linear expression

B.E.(N)− B.E.(N − 1) = V0 + (N − 1)W (4.20)

It should be pointed out that if the lowest eigenvalues of the Hamiltonian H
are given by Eq. 4.18 it does not follow that the lowest eigenstates are given by
Eq. 4.17 [105]. The binding energies and the two-neutron separation energies
B.E.(N)−B.E.(N − 1) for the even-mass Sn isotopes are shown in Fig. 4.9. In
this figure, the binding energies for 102−132Sn are fitted to Eq. 4.19. The ex-
tracted values of V0 and W are subsequently used to estimate the two-neutron
separation energies. The experimental two-neutron separation energies in the
even-mass Sn isotopes are not linear with respect to the particle number. It is
shown in Ref. [60] that the inclusion of three-body terms in the effective inter-
action gives rise to an additional cubic term in Eq. 4.19. This gives a quadratic
term in Eq. 4.20. The effect is small, but the fit to the two-neutron separa-
tion energies improves, see the green curve in Fig. 4.9. Note also that there
are no hints of any 1g7/22d5/2 − 1s1/22d3/2 sub-shell closure in the experimen-
tal two-neutron separation energies. In the generalized seniority scheme the
smoothness of the two-neutron separation energies originates in the constancy
of αj and their independence of N [60].

There is only one J = 0 state that can be assigned with generalized senior-
ity zero. This is taken to be the ground state in the even-mass Sn isotopes. In
a similar fashion it is possible to create only one state with generalized seniority
two which is the analogue of a ν = 2 state in the ordinary seniority scheme.
In the even-mass Sn isotopes this can be taken as the first excited 2+ state.
According to Ref. [60] a pair of identical nucleons with J = 2 is created by the
operator

D+
M = A+(jj′J = 2,M) =

1√
1 + δjj′

∑
mm′

(jmj′m′|jj′2M)a+
jma

+
j′m′ (4.21)

In the generalized seniority model the lowest J = 2 state is a mixture of D+
M

components created in the major shell of single particle orbits. Therefore the
lowest eigenstate is given by

D+
M =

∑
j≤j′

βjj′D
+
M (jj′) (4.22)

For instance, the energy of the first excited 2+ state in 102Sn is given by

HD+
M |0〉 = V2D

+
M |0〉 (4.23)
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This imposes some constraints on the choice of Hamiltonian. To be of any
practical interest the Hamiltonian should also have eigenstates given by

(S+)N−1D+
M |0〉 (4.24)

It is shown in Ref. [60] that for this to be an eigenstate of a Hamiltonian H
containing only one-body and two-body terms the following must be fulfilled

[[H,S+], D+
M ] = λS+D+

M (4.25)

Furthermore, it can be shown [60] that λ = W . From this it follows that the
eigenstates in Eq. 4.24 have eigenvalues E(2) which are independent of N . That
is, according to the generalized seniority scheme the energy spacings between
the J = 0 ground states and the first excited J = 2 states in the even-mass
Sn isotopes are independent of the number of neutrons outside the 100Sn core.
This is approximately true, as can be seen in Fig. 4.6. The expression ’ap-
proximately true’ should be compared to the energy variation of the low-lying
states in the odd-mass Sn isotopes, where a difference in 10 neutrons shift the
excited states with an energy of ∼ 1.0 MeV. It can be shown [60] that for a
(S+)Na+

jm|0〉 state to be an eigenstate of the shell-model Hamiltonian all the
αj coefficients must be equal. This reduces the generalized seniority scheme to
the quasi-spin scheme which is a generator of the SU(2) algebra and in this de-
scription the level spacing in even-mass as well as odd-mass semi-magic nuclei
is independent of the nucleon number. Therefore, looking at the experimental
data, it is not possible to assign the excited states in the odd-mass nuclei with
a generalized seniority quantum number equal to one.

In contrast to single j-orbit seniority, no clear predication can be made regard-
ing shape or symmetry of the reduced transition probabilities as a function of
particle number. For the actual case of an E2 transition between the general-
ized seniority zero J = 0 ground state and the seniority two J = 2 state the
following overlap should be calculated

〈0|D−M (S−)N−1Q(S+)N |0〉 (4.26)

where Q is a single-nucleon operator defined such that when it acts on the
seniority zero ground state (S+)N |0〉 it is transformed into a state proportional
to (S+)N−1D+

M |0〉 with seniority two. Thus, the action of the quadrupole
operator in generalized seniority is given by [60]

QM (S+)N |0〉 = N(S+)N−1D+
M |0〉 (4.27)

This gives for the transition matrix element in Eq. 4.26

〈0|D−(S−)N−1Q(S+)N |0〉 = N · 〈0|D(S−)N−1(S+)N−1D′+|0〉 (4.28)

where the index M on the D and Q operators has been dropped. Furthermore
it is noted that the operator Q might not exhaust the full transition strength.
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Therefore the J = 2 creation operator is denoted with a prime and might not
be equal to D+. This expression does not give any general prediction due to
its intricate normalization. Consider a generalized seniority model in a space
consisting of the two orbits j and j′. The transition matrix element becomes

〈0|D−(S−)N−1Q(S+)N |0〉 = N · 〈0|D−(S−)N−1(S+)N−1D′+|0〉 =

N · 〈0|(aD−j + bD−j′)(αS
−
j + βS−j′ )

N−1(αS+
j + βS+

j′ )
N−1(cD+

j + dD+
j′)|0〉

(4.29)

The normalization of this matrix element is not trivial. To see this, one can look
at the normalization of the ground and first excited states. The normalization
constants of a single j−orbit pair state with seniority ν = 0 or ν = 2 are given
by [60]

(ν = 0) : 〈0|(S−j )N (S+
j )N |0〉 =

N !
(

2j+1
2

)
!(

2j+1
2 − n

)
!

(ν = 2) : 〈0|D−j (S−j )N−1(S+
j )N−1D+

j |0〉 =
(N − 1)!

(
2j−3

2

)
!(

2j−1
2 − n

)
!

(4.30)

Therefore, Eq. 4.29 will be normalized by an expression which depends explic-
itly on the values of a, b, c, d, α, and β. The conclusion is that in a generalized
seniority model the B(E2; 0+

gs → 2+
1 ) values of the even-mass Sn isotopes does

not necessarily follow any simple expression depending on the nucleon number,
such as a parabola. In this respect, the experimental B(E2) values presented
here do not indicate the presence of any seniority violating components in the
nuclear Hamiltonian. Still, it is interesting to note that the shell-model calcu-
lations predict a close to symmetric and ’seniority-like’ parabola for the B(E2)
values. The generalized-seniority content or correlation in the shell-model wave
functions |SMASn(0+)ν = 0〉 and |SMASn(2+)ν = 2〉 can be estimated from the
squared overlaps with respect to the generalized seniority states, see Eqs. 4.17
and 4.24.

|〈SMASn(0+)ν = 0|
(
S+
)N= A−100

2 |0〉|2

|〈SMASn(2+)ν = 2|
(
S+
)N= A−100

2 −1
D+|0〉|2

(4.31)

Here, the expansion coefficients of the generalized seniority operators are fitted
to reproduce the calculated amplitudes of the ground and excited states in
102Sn, respectively. This pair-structure is then kept constant. The results for
the N3LO-based effective interaction are given in Tab. 4.2. These are very
similar to the results in Ref. [106] which are based on the Bonn B nucleon-
nucleon interaction. Thus, as more particles are added, a truncation of the
shell-model basis to a generalized seniority one and two basis does not capture
the pairing correlations in the shell model wave functions obtained from using
either the CD-Bonn or Bonn B realistic effective interactions.
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Table 4.2: Seniority zero and two overlaps for the ground and first excited
states, respectively, in the even-mass 104−110Sn isotopes. The values pre-
sented here come from a shell-model calculations based on the CD-Bonn
interaction. The Bonn B interaction was used in Ref. [106]. The seniority
content of the 2+ is slightly larger when using the CD-Bonn interaction.
However, on average both calculations give the same result to within ∼10%.

Jπ 104Sn 106Sn 108Sn 110Sn
0+
gs 0.937 0.838 0.750 0.687

2+
1 0.929 0.787 0.704 0.578

Ref. [106]
0+
gs 0.950 0.876 0.796 0.742

2+
1 0.931 0.787 0.663 0.438

4.6 Shell-model interpretation of the Cd isotopes

The isotopes 100,102,104Cd isotopes have a somewhat different structure than the
Sn isotopes, see Fig. 4.10. The 4+

1 , 6
+
1 , and 8+

1 states in 98Cd are pure (πg9/2)−2

configurations [107]. A 12+ core-excited isomeric state was reported in Ref. [96].
From this the 100Sn shell gap was determined to 6.46(15) MeV. A proton effec-
tive charge eeffπ < 1.4 e was inferred by matching a shell-model calculation to the
experimental data. That calculation is based on the πν(1g2d3s) model space
above an inert 80Zr core. A slightly larger proton effective charge of 1.45+0.20

−0.25 e
was determined when reducing the proton-model space to π(1g9/22p1/2). This
proton model-space is used also in the shell-model calculations presented here.
A G-matrix renormalized CD-Bonn [54] potential is tailored to the 88Sr core
shown in Fig. 4.2. With eeffπ = 1.6 e the B(E2; 0+

gs → 2+
1 ) value in 106Cd is

exactly reproduced, see Fig. 4.11. This is taken as the starting point for investi-
gating the neutron effective charge in the ν(1g7/22d5/22d3/23s1/21h11/2) model
space. The neutron degree of freedom in the light Cd isotopes is expected to
be similar to the one in the light Sn isotopes. The excited spectrum in 100Cd
differ from the one in 98Cd by the presence of states with a predominant neu-
tron character. The isomeric 8+

1 state as well as the 6+
2 and 4+

2 states have a
π1g−2

9/2 configuration while the 4+
1 and 6+

1 states are 82% and 84% pure neutron
configurations[108]. This indicates a weak coupling between the protons and
neutrons in the light Cd isotopes. The theoretical B(E2 ↑) and Q(2+

1 ) values
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Figure 4.10: The low-energy excited spectrum in the even-mass 98−120Cd
isotopes. With & 10 valence neutrons the Cd isotopes exhibit an excited
spectrum typical to that of a deformed vibrator.

in 106−100Cd in terms of the proton and neutron effective charges are given by

106Cd

B(E2 ↑) = (0.1356 · eeffπ + 0.4026 · eeffν )2 e2b2

Q(2+
1 ) = (−0.0529 · eeffπ − 0.1583 · eeffν ) eb

104Cd

B(E2 ↑) = (0.1374 · eeffπ + 0.3474 · eeffν )2 e2b2

Q(2+
1 ) = (−0.0530 · eeffπ − 0.1336 · eeffν ) eb

102Cd

B(E2 ↑) = (0.1378 · eeffπ + 0.2713 · eeffν )2 e2b2

Q(2+
1 ) = (−0.0514 · eeffπ − 0.0933 · eeffν ) eb

100Cd

B(E2 ↑) = (0.1458 · eeffπ + 0.1450 · eeffν )2 e2b2

Q(2+
1 ) = (−0.0531 · eeffπ − 0.0477 · eeffν ) eb

(4.32)
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Figure 4.11: Experimental and theoretical B(E2) values in the even-mass
Cd isotopes.

In the above expressions, the proton components are nearly independent of the
number of neutrons. This is a further indication of the weak proton-neutron
coupling in the light Cd isotopes. The variation of eeffν , while eeffπ = 1.6 e
is fixed, generates a trajectory in the B(E2) − Q(2+) planes of 102Cd and
104Cd, see Fig. 4.12. The best fit of eeffν along each trajectory is given at
the point of maximum likelihood. The likelihood reach 0.96 and 0.95 for the
trajectories in the 104Cd and 102Cd cases, respectively. The neutron effective
charges deduced in this way are 1.07 ± 0.05e and 1.27 ± 0.07e for 104Cd and
102Cd. In conclusion, this indicates a +25% eeffν -renormalization when going
from 106Cd to 102Cd. The similar need for a renormalized eeffν is observed also
in the light Sn isotopes. The B(E2) values based on these effective charges are
indicated with blue dots in Fig. 4.11. It is interesting to note that the effective-
charge trajectories reproduce nearly the same Q(2+

1 ) values independently of
the neutron as well as the proton effective charges, see Fig. 4.12. The Q(2+

1 )
values in the stable and even-mass 106−116Cd isotopes have been known since
long from reorientation measurements [109]. The shell-model calculation with
eeffπ = 1.6 e and eeffν = 1.0 e reproduces the experimental Q(2+

1 ) value in 106Cd,
see Fig. 4.13. Furthermore, the predicted trend of values for 100−106Cd is in
line with increasing sphericity as 98Cd is approached. This also strengthens
the assumption of setting Q(2+

1 ) = 0.0 eb in the analysis of the 100Cd data.
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Figure 4.13: Experimental and theoretical Q(2+
1 ) values in the even-mass

Cd isotopes.

The Q(2+
1 ) values in 102,104Cd indicated with red triangles in Fig. 4.13 are

deduced from the point of maximum likelihood in Fig. 4.12. The values are
shifted upwards with respect to the theoretical prediction but the increasing
trend remains. The Q(2+

1 ) values indicated with white triangles come from the
combination of the 1σ-contours in the B(E2)−Q(2+

1 ) plane with the plunger-
based lifetime measurements in Ref. [46]. The origin of the deviating Q(2+

1 )
value in 104Cd is due to the large B(E2) value of Ref. [46].

4.7 Shell-model calculations in 106,108In

101In is the lightest indium isotope where excited states have been observed [110].
The first excited 13

2

+ state most likely corresponds to a proton 1g9/2 hole cou-
pled to the 2+

1 state in 102Sn. Similarly, the low-lying excited states in 106,108In
can be related to the neutron structure in 107,109Sn. The low-lying states in
these nuclei are known from the β−decay of 107,109Sb. Both 107Sn and 109Sn
have a 5

2

+ ground state and a first excited 7
2

+ state, see Fig. 4.3. The states are
80% pure in terms of the 1g7/2 and 2d5/2 neutron configurations [72]. The mag-
netic dipole moments of the 7+ ground states in 106,108In and the isomeric 2+

state in 108In indicate a dominating πg−1
9/2 ⊗ d5/2 configuration [111, 112, 113].
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The configuration of the isomeric (2)+ state in 106In is less clear. However, most
likely it belongs to the same multiplet. The coupling of a proton hole in the
1g9/2 orbit to a neutron quasi-particle in the 1g7/2 or 2d5/2 orbits generates
the positive-parity spin sequences 1, 2, 3, 4, 5, 6, 7, 8 and 2, 3, 4, 5, 6, 7, respec-
tively. These exhaust almost all the low-lying states in 106,108In. The π−1 ⊗ ν
multiplets in these isotopes have been investigated in a set of (p,nγ) reaction
experiments [51, 52]. The multiplet character of the excited states is identified
from the measured angular distributions, branching ratios and γ-ray transition
intensities. The result for 108In is shown Fig. 4(a) in Paper IV and were com-
pared to an interacting boson-fermion-fermion calculation reproduced in Fig.
4(b) in Paper IV. In this work, the excited states in 106,108In are calculated in
the shell-model, see Fig. 4.14. The effective interaction is again derived from
a G-matrix renormalized CD-Bonn potential [54] and tailored to the 88Sr core
of Fig. 4.2. The agreement is rather good considering the odd-odd nature of
these isotopes. Furthermore, the shell-model E2/M1 matrix elements6 quali-
tatively reproduce the observed γ-ray de-excitation patterns. In particular the
observed coupling of the ground state to higher lying states in 106In as com-
pared to 108In. Also, it should be noted that the coupled decay-pattern of the
283 keV, 216 keV, 169 keV, and 236 keV γ-ray transitions in 108In appears
also in the calculation. From a comparison between the simulated and the ob-
served γ-ray de-excitation patterns some of the excited states in 106,108In could
be identified in the shell-model calculations. These are indicated with dashed
lines in Fig. 4.14. The detailed reasoning is given in Paper IV. This encourages
a further interpretation of the excited states in terms of their π−1⊗ν multiplet
character.

An indirect measure of the M1 matrix elements between the excited states
of 108In are provided via the shell-model based simulation. Between J ± 1
states of the same multiplet one can expect particularly large M1 matrix ele-
ments. Based on this principle, the shell-model identified states, and the known
πg−1

9/2 ⊗ νd5/2 multiplet configuration of the 7+ ground state and first excited
2+ state in 108In, one can trace out the remaining experimental states of this
multiplet. The members of the πg−1

9/2⊗νg7/2 multiplet are identified by starting
from the only low-lying 1+ state. A detailed discussion of how the states are
assigned is found in Paper IV. The multiplets that result from this investigation
are different from that of Ref. [51], see Fig. 4(c) in paper IV. The key reason
is in the multiplet identification of the 3+ states at 198 and 266 keV. Here, the
latter is identified with a dominating πg−1

9/2 ⊗ νd5/2 configuration whereas in
Ref. [51] it was identified as a πg−1

9/2⊗νg7/2 configuration. The reverse holds for
the 3+ state at 198 keV. As a consequence, the πg−1

9/2⊗νg7/2 and πg−1
9/2⊗νd5/2

multiplets presented here overlap in energy. This could possibly be traced back
to the nearly degenerate 5

2

+ ground state and 7
2

+ first excited state in 109Sn.

6Effective charges eeff
π = 1.5 e and eeff

ν = 1.0 and standard gyromagnetic ratios.
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Summary and outlook

Three Coulomb excitation experiments with postaccelerated RIBs consisting of
the light even-even Sn, Cd, or odd-odd In isotopes were carried out at the REX-
ISOLDE facility at CERN. It was concluded that the measured B(E2; 0+

gs →
2+
1 ) values in 106,108,110Sn are significantly larger than what is obtained from

shell-model calculations based on a G-matrix renormalized effective interaction
outside the 100Sn core. Theory predicts that the B(E2) values in 102−130Sn fol-
low a close to symmetric parabola that peaks at mid-shell. This is in excellent
agreement with the experimental B(E2) values in the even mass 116−130Sn iso-
topes. However, starting from 114Sn, the B(E2) values suddenly increase and
stay almost constant in the isotopes down to 108Sn. A decrease is observed
in 106Sn although this B(E2) value is still larger than the theoretical predic-
tion. From this it was concluded that the neutron effective charge shows strong
renormalization effects in the light Sn isotopes.

For 102,104Cd the B(E2) and the Q(2+
1 ) values were deduced simultaneously

by measuring the Coulomb excitation cross section for both isotopes relative to
a 64Zn target and a 109Ag target. For 100Cd a first upper limit on the B(E2)
value was extracted assuming a Q(2+

1 ) = 0.0 eb value. The correlation between
the Q(2+

1 ) and B(E2; 0+
gs → 2+

1 ) values was extracted from the data using a
likelihood function. The resulting 1σ-contours in the B(E2)−Q(2+

1 ) planes of
104Cd and 102Cd were used to benchmark the shell-model calculations. This
analysis showed that the measured B(E2) values in 102,104Cd also require a
renormalized neutron effective charge. However, the observed effect was not as
apparent as in the Sn case. The first excited states in the light Cd isotopes are
primarily built on configurations of neutrons above the 100Sn core. Therefore,
the observed renormalization effect could have the same origin as in the light
Sn isotopes.

The detected γ-ray de-excitation patterns from 106,108In were analyzed and
fairly well reproduced in the shell-model. The excited states in 108In were
interpreted in terms of the πg−1

9/2 ⊗ νd5/2 and πg−1
9/2 ⊗ νg7/2 multiplets. The

results differ from previously published works based on decay- and reaction-
spectroscopy. For the present case the energy of the multiplets overlap. This
could be explained from the coupling of a proton 1g9/2 hole to the nearly de-
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generate 5
2

+ ground state and first excited 7
2

+ state in 109Sn. Regarding 106In,
a (6+) state at 367 keV was observed. The spin and parity assignment was
based on a shell-model interpretation.

The B(E2; 0+
gs → 2+

1 ) value in 104Sn will be measured in intermediate energy
Coulomb excitation at GSI in 2010. In the light odd-odd Sn isotopes, Coulomb
excitation of the 5

2

+ ground state to the first excited 1
2

+ state can reveal infor-
mation regarding the position and evolution of the 3s1/2 orbit. Experimental
studies to this end was initiated at REX-ISOLDE earlier this year.

Further theoretical studies are required in order to understand the observed
0+
gs → 2+

1 transition strengths in the light Sn and Cd isotopes. A shell-model
calculation in a larger model-space that explicitly takes into account the proton
and neutron orbits above and below the N = Z = 50 shell-gap could provide
this. The reduced transition probabilities are also sensitive to the radial wave
functions. Here, they were given by the harmonic oscillator. Therefore, calcu-
lations based on e.g. Woods-Saxon wave functions would provide an interesting
and alternative approach. In addition, the j-dependence of the effective charges
is also something that could be explored.

Effective interactions are continuously improved upon and the inclusion of ef-
fective three-body forces could be of importance for the present case. However,
since this extension is not required for an accurate description in e.g. the
heavier Sn isotopes, the core-excitation component of the transition strength
deserves the immediate attention.



Chapter 6

Popularized summary in
Swedish

En atomkärna best̊ar av protoner och neutroner, vilka gemensamt kallas för
nukleoner, som är bundna av den starka kärnkraften1. Forskning inom funda-
mental kärnfysik syftar till att kartlägga och först̊a egenskaperna hos denna
kraft och därigenom kunna förklara alla de olika fenomen som en atomkärna
kan uppvisa t.ex. antagandet av olika icke-sfäriska former. Det är nu väl eta-
blerat att kärnans egenskaper till mycket stor del beror p̊a det exakta antalet
protoner och neutroner samt förh̊allandet sinsemellan. För vissa proton- och
neutron-tal kan kärnan bli instabil. Stabilitet uppn̊as genom emission av en el-
ler flera heliumkärnor (alfa-sönderfall), alternativt omvandlas en proton till en
neutron eller vice versa (beta-sönderfall). Större delen av den samlade kunska-
pen om atomkärnors struktur kommer fr̊an experimentella undersökningar av
stabila s̊adana. Det är dock av stort intresse att studera även instabila kärnor
eftersom en del egenskaper hos kärnkraften kommer till större uttryck i des-
sa. Sedan n̊agra år tillbaka är det möjligt att tillverka och accelerera instabila
isotoper och därigenom studera dem i väl kontrollerade experiment. Det är i
synnerhet denna tekniska utveckling som har möjliggjort den studie som pre-
senteras här.

I denna avhandling redovisas resultaten samt analysen av tre experiment som
genomförts p̊a CERN. Studien syftar till att undersöka den mikroskopiska
strukturen i lätta tenn och kadmium isotoper. Dessa har 50 respektive 48 proto-
ner och därtill ungefär lika m̊anga neutroner beroende p̊a isotop. De har en mik-
roskopisk struktur som lämpar sig mycket väl för detaljerade undersökningar av
kärnkraften i instabila atomkärnor. Dessutom innebär det ungefärliga ett-till-
ett förh̊allandet mellan proton- och neutron-talen att kraften mellan protoner
och neutroner renodlas.

Experimenten som denna avhandling grundar sig p̊a gick till som följer. En
str̊ale best̊aende av n̊agon av de instabila 106,108,110Sn (tenn) eller 100,102,104Cd
(kadmium) isotoperna sköts genom en tv̊a mikrometer tunn folie best̊aende av

1Namnet leder till n̊agot som man förknippar med kärnkraftverk. Vad som avses här är
endast kraften mellan protoner och/eller neutroner i samma mening som t.ex. gravitations-
kraften mellan tv̊a massor.
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t.ex. 58Ni (nickel). Kollisionerna mellan kärnorna i str̊alen och de i folien medför
en viss sannolikhet för att en väl definierad mängd energi överförs mellan dem.
De blir exciterade. Väldigt kort därefter (ungefär 0.000000000001 sekunder)
utsänds exakt samma mängd energi i form av en ljuspartikel, en s.k. foton. Det
totala antalet detekterade fotoner speglar sannolikheten för excitation. Denna i
sin tur beror p̊a den mikroskopiska strukturen i just den typ av kärna som man
studerar. Därför kan man t.ex. fr̊an jämförelser av excitationssannolikheten
i olika kärnor gentemot teoretiska beräkningar sluta sig till hur den under-
liggande proton-neutron strukturen varierar. De experimentella resultat som
presenteras i denna avhandling kan ej förklaras med modeller grundade p̊a den
nuvarande beskrivningen av kärnkraften mellan protoner och/eller neutroner.
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Appendix A

γ-ray transitions

Ef

λO

O’ λ)mixing ratio λ+1/O(

Eγenergy of the emitted gamma ray

Oλ

Π

E   energy of the nuclear state

I   spin of the nuclear state

τ
δ

parity of the nuclear state

electromagnetic multipole order
mean lifetime of the nuclear state

γE

Π

Π

I i

I f

Ei
τ δ

(i)initial and (f)inal nuclear state

Figure A.1: The observables related to a γ-ray transition and an explana-
tion of the notation used here.

A.1 Selection rules

The total angular momentum is conserved

Ii = If + λ (A.1)

This leads to the triangle condition:

|Ii − If | ≤ λ ≤ Ii + If (A.2)

with the addition that λ 6= 0, since monopole radiation solutions to the elec-
trodynamic wave equation1 vanish.
The parity Πγ of the emitted radiation is given by

Πγ(Eλ) = (−1)λ Πγ(Mλ) = (−1)λ+1 (A.3)

The parity selection rule states that

ΠfΠγΠi = +1 (A.4)

1see e.g. Ref. [114]
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A.2 Transition rates

The transition rate T for a transition i→ f is given by

T (Oλ; Ii → If ) =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
q2λ+1

~
B(Oλ; Ii → If ) (A.5)

where the reduced transition probability is

B(Oλ; Ii → If ) =
1

2Ii + 1
|〈If ||Oλ||Ii〉|2 unit Eλ : e2bλ, Mλ : n.m.2bλ−1

(A.6)
and the wavenumber for a transition with energy Eγ = Ei − Ef is

q =
Eγ

197.327MeV · fm
(A.7)

The nuclear magneton, n.m., is given by

1n.m. = 0.105 e · fm (A.8)

Planck’s constant and the square of the electric charge are given by

~ = 6.58211889× 10−22 MeV · s , e2 = 1.440 MeV · fm (A.9)

This gives expressions for numerical use, see Tab. A.1.

The mean lifetime τ of the decaying nuclear state is related to the transition
rate via

τ(Oλ; Ii → If ) =
1

T (Oλ; Ii → If )
(A.10)

The width of a nuclear state is given by

Γ =
~
τ

=
658 fs
τ

meV (A.11)

Note that the total width for the gamma decay of a nuclear state is given by
the sum of the partial decay widths of each final state Ik

ΓTOT =
∑
Oλ,k

Γ(Oλ; Ii → Ik) (A.12)

The branching ratio of each state, Bk, is defined from the partial decay widths
Γk

Bk =
Γk

ΓTOT
=
∑
Oλ Γ(Oλ; Ii → Ik)

ΓTOT
(A.13)

The mean lifetime is related to the half-life of a nuclear state T1/2 by

T1/2 = τ ln(2) ≈ τ · 0.6931 (A.14)
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T (E1) = 1.587 · 1017E3
γ,MeV ·B(E1)e2b B(E1)sp = 6.446 · 10−4A2/3

T (E2) = 1.223 · 1013E5
γ,MeV ·B(E2)e2b2 B(E2)sp = 5.940 · 10−6A4/3

T (E3) = 5.698 · 108E7
γ,MeV ·B(E3)e2b3 B(E3)sp = 5.940 · 10−8A2

T (E4) = 1.694 · 104E9
γ,MeV ·B(E4)e2b4 B(E4)sp = 6.285 · 10−10A8/3

T (E5) = 3.451 · 10−1E11
γ,MeV ·B(E5)e2b5 B(E5)sp = 6.928 · 10−12A10/3

T (M1) = 1.779 · 1013E3
γ,MeV ·B(M1)n.m.2 B(M1)sp = 1.790

T (M2) = 1.371 · 109E5
γ,MeV ·B(M2)n.m.2b1 B(M2)sp = 1.650 · 10−2A2/3

T (M3) = 6.387 · 104E7
γ,MeV ·B(M3)n.m.2b2 B(M3)sp = 1.650 · 10−4A4/3

T (M4) = 1.899 · 100E9
γ,MeV ·B(M4)n.m.2b3 B(M4)sp = 1.746 · 10−6A2

T (M5) = 3.868 · 10−5E11
γ,MeV ·B(M5)n.m.2b4 B(M5)sp = 1.924 · 10−8A8/3

Table A.1: The transition rates T for E1−E5 and M1−M5 given in s−1.
The energies and transition probabilities should be expressed in units of
MeV, e2bλ for electric transitions, and n.m.2bλ−1 for magnetic transitions.
The right column gives the single-particle estimates, i.e. Weisskopf units,
for a γ-ray transition in the downwards direction.

A.3 Mixing ratios

Given the strong dependence of the transition rate on the multipole operator,
usually no more than two multipole radiations are mixed. The mixing ratio δ
is defined from

δ2(Oλ+ 1/O′λ) =
Γ(Oλ+ 1; Ii → If )

Γ(Oλ; Ii → If )
(A.15)

with the two most common transition mixings being E1 +M2 and E2 +M1.
The sign of δ depends on the adopted convention. The Condon-Shortley sign
convention2 for the angular part of the wavefunction, i.e.

Yλµ(r̂)∗ = (−1)µYλ,−µ(r̂) (A.16)

guarantees that the matrix elements of the electromagnetic transition operators
are real. The most common mixing ratios are

δ(E2/M1) = ± 1
10
q
√

3
〈If ||E2||Ii〉
〈If ||M1||Ii〉

(A.17)

δ(M2/E1) = ± 1
10
q
√

3
〈If ||M2||Ii〉
〈If ||E1||Ii〉

(A.18)

2Condon E. U. and G. H. Shortley, The theory of atomic spectra (Cambridge University
Press, 1953)
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Appendix B

Two-body kinematics

ψ = ψ
3 4

1 = projectile

2 = target

3 = ejectile

4 = recoil

E = energy

A = mass

center of mass

frame of reference

of reference

laboratory frame

1

2

3

3

4

4

2
1

θ

θ

4

3

4

3

BEFORE                 AFTER

CM

LAB

ψ

ψ
v = velocity

Figure B.1: Explanation of the variables used below. The frame of reference
is indicated with a superscript when needed.

The particle kinematics of the cases presented in this thesis are non-relativistic,
i.e. β < 0.1. The velocity (V ) of CM in LAB is given by

V =
m1

m1 +m2
vLAB
1 (B.1)

Velocities are additive in In non-relativistic kinematics, hence

vCM
1 = vLAB

1 − V, vCM
2 = V (B.2)

The total energy in the LAB system is always greater than the total energy in
the CM system.

ELAB
TOT =

A1 +A2

A2
ECM

TOT

(
= ELAB

1

)
(B.3)
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The energy of the projectile/ejectile and target/recoil in CM is given by

ECM
1,3 =

A2

A1 +A2
ECM

TOT, E
CM
2,4 =

A1

A1 +A2
ECM

TOT (B.4)

The energy of the ejectile and recoil in the LAB system is given by

ELAB
3 =

[
A2

1 + 2A1A2 cosψ +A2
2

(A1 +A2)2

]
ELAB

TOT (B.5)

ELAB
4 =

[
2A1A2(1− cosψ)

(A1 +A2)2

]
ELAB

TOT (B.6)

where ψ = ψ3 = ψ4. The CM and LAB angles of the ejectile and recoil are
given by

tan θ3 =
sinψ

cosψ +A1/A2
(B.7)

tan θ4 =
sinψ

1− cosψ
= tan

(
π

2
− ψ

2

)
⇒ θ4 =

π

2
− ψ

2
(B.8)

For A1 ≥ A2, i.e. for inverse kinematics there exists a maximum value of the
scattering angle θ3 given by

θMAX
3 = sin−1

(
A2

A1

)
(B.9)

If A1 < A2 then 0 ≤ θ3 ≤ π. Note that 0 ≤ θ4 ≤ π/2, always. Also note
that in inverse kinematics there exists two solutions to the ELAB

3 (θ3) function,
i.e. one in the forward direction in CM (high energy in LAB) and one in the
backward direction in CM (low energy in LAB).

B.1 Transformation of the cross section

The differential cross section in the LAB system differs from the one in the CM
system. However the cross sectional area is conserved

dσ
dΩCM

dΩCM

dΩLAB
=

dσ
dΩLAB

(B.10)

where the solid angle ratio is given by∣∣∣∣ dΩCM

dΩLAB

∣∣∣∣ = |2π sinψdψ|
|2π sin θdθ|

=
|d cosψ|
|d cos θ|

(B.11)

According to Ref. [115], where a general Jacobian transformation method for
both relativistic and non-relativistic kinemtaics is derived, the transformation
between a fixed (F ) and a moving (M) frame of reference is equal to

dΩM

dΩF
=
EF

EM
cos δ (B.12)
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where E is the kinetic energy of the particle in the respective frame and δ is
the angle between momentum vectors describing the motion of the projectile
as seen from the two different frames. For the special case of the fixed and
moving frames being the LAB and the CM, respectively, the angle δ is zero,
thus

dΩCM

dΩLAB
=
ELAB

ECM
(B.13)

B.2 Relativistic transformation

If the γ-ray is emitted at an angle θγ in the rest frame of the nucleus, it is
detected at an angle θ̄γ in the laboratory frame. These angles are related as

cos θγ =
cos θ̄γ − β

1− β cos θ̄γ
(B.14)

or

tan
(

1
2
θγ

)
=

√
1 + β

1− β
tan

(
1
2
θ̄γ

)
(B.15)

The relativistic transformation of solid angles is given by∣∣∣∣ dΩCM

dΩLAB

∣∣∣∣ = |d cos θCM
pγ |

|d cos θLAB
pγ |

=
1

γ2(1− β cos θLAB
pγ )2

(B.16)

This in turn can be simplified to∣∣∣∣ dΩCM

dΩLAB

∣∣∣∣ =
(
ELAB

γ

ECM
γ

)2

=
1.

γ2(1− β cos θLAB
pγ )2

(B.17)
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O. Ivanov,13 J. Iwanicki,14 O. Kester,6 U. Köster,1 B. A. Marsh,15,16 O. Niedermaier,17 T. Nilsson,18 P. Reiter,10 H. Scheit,17

D. Schwalm,17 T. Sieber,17 G. Sletten,19 I. Stefanescu,13 J. Van de Walle,13 P. Van Duppen,13

N. Warr,10 D. Weisshaar,10 and F. Wenander16

1PH Department, CERN 1211, Geneva 23, Switzerland
2Physics Department, University of Lund, Sweden

3Oliver Lodge Laboratory, University of Liverpool, United Kingdom
4Physics Department and Center of Mathematics for Applications, University of Oslo, Norway

5TRIUMF, Vancouver, Canada
6Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany

7Institute for Nuclear Physics, University of Mainz, Germany
8Department of Physics and Astronomy, University of Edingburgh, United Kingdom

9Saha Institute of Nuclear Physics, Kolkata 700064, India
10Institute of Nuclear Physics, University of Cologne, Germany

11IPN Orsay, Orsay, France
12Physics Department, Ludwig-Maximilian University, Munich, Germany

13Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Belgium
14Heavy Ion Laboratory, Warsaw University, Poland

15Department of Physics, University of Manchester, United Kingdom
16AB Department, CERN 1211, Geneva 23, Switzerland

17Max-Planck Institute of Nuclear Physics, Heidelberg, Germany
18Fundamental Physics, Chalmers University of Technology, Gothenburg, Sweden

19Physics Department, University of Copenhagen, Denmark
(Received 23 January 2007; published 27 April 2007)

The first excited 2� state of the unstable isotope 110Sn has been studied in safe Coulomb excitation at
2:82 MeV=u using the MINIBALL array at the REX-ISOLDE post accelerator at CERN. This is the first
measurement of the reduced transition probability of this state using this method for a neutron deficient Sn
isotope. The strength of the approach lies in the excellent peak-to-background ratio that is achieved. The
extracted reduced transition probability, B�E2 : 0� ! 2�� � 0:220� 0:022e2b2, strengthens the obser-
vation of the evolution of the B�E2� values of neutron deficient Sn isotopes that was observed recently in
intermediate-energy Coulomb excitation of 108Sn. It implies that the trend of these reduced transition
probabilities in the even-even Sn isotopes is not symmetric with respect to the midshell mass number
A � 116 as 100Sn is approached.

DOI: 10.1103/PhysRevLett.98.172501 PACS numbers: 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j

Substantial interest has recently arisen in the shell
structure of atomic nuclei with only a few nucleons out-
side the double shell closure at 100Sn. As an example, a
series of experiments aiming at isotopes in this region has
been carried out using fusion-evaporation reactions in
the recent past [1]. With the advent of radioactive ion
beams these studies are now taken further using sub-barrier
and intermediate-energy Coulomb excitation [2,3]. In this
Letter we present the only sub-barrier or ‘‘safe’’ Coulomb
excitation experiment in this region to date. The study of
the reduced transition probability—the B�E2�—of the
first excited 2� state in an even-even nucleus gives a direct
handle on the collectivity of that state. It can thus be used to
measure systematic changes in the strengths of shell gaps.
The general motivation for this kind of study goes back to
our incomplete knowledge of the mechanisms that govern
shell formation and their implications for the structure of

nuclei far from stability. It is well known that a strong spin-
orbit force was introduced into the nuclear shell-model on
Fermi’s suggestion by Goeppert Mayer [4] and indepen-
dently by Haxel, Jensen, and Suess [4] to explain the
observed shell gaps. However, these papers were substan-
tially predated by the consideration of a nuclear spin-orbit
force by Inglis [5] who noted that the relativistic Thomas
term which arises as a consequence of the noncommutation
of Lorentz transformations should act also in atomic nu-
clei. This term, given by the vector product of the velocity
and acceleration of the bound nucleon, gives rise to nuclear
LS coupling, a result which can be derived from the Dirac
equation [6]. In this picture, the acceleration is propor-
tional to the derivative of the potential experienced by the
bound particle, a notion still used in mean-field approaches
today. As a consequence, the splitting of the shell gaps
becomes density dependent and may change with the

PRL 98, 172501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
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distribution of nucleons in the nucleus. Thus, already on a
more fundamental level, changes in shell-gap structure
could occur for exotic neutron-proton combinations. It
should be added that the size of the Thomas term appeared
too small to account for the splitting suggested by
Goeppert Mayer and in a later paper Inglis conjectured
an addition to spin-orbit partner splitting from meson
exchange [7]. In a microscopic description of residual
forces in the shell model, other considerations also become
important. In particular, close to a self-conjugate shell
closure correlations will arise between neutrons and pro-
tons that occupy orbits with the same quantum numbers.
An example of this is so-called neutron-proton pairing [8].
Furthermore, as has been discussed by Otsuka et al. [9] one
expects a particularly strong interaction between neutrons
and protons occupying spin-orbit partner orbits. In this
context, the so-called monopole drift of single-particle
energies with respect to mass number becomes important
[10]. A main motivation for a study of shell evolution is
thus to see if the shell closures that are strong at stability
remain so far from stability as the distribution of nucleons
changes. This question is particularly interesting in the
self-conjugate case. Coulomb excitation of radioactive
beams at safe energies is a new and unique tool to address
this topic.

The radioactive 110Sn beam used in the experiment was
produced by bombarding a 27 g=cm2 LaCx target at
ISOLDE, CERN, with a 1.4 GeV proton beam from the
PS booster. The Sn atoms, after having diffused through the
heated target material and effused into an ionization cavity,
were ionized by a three-step laser ionization scheme
whereafter the beam was extracted and separated in the
general purpose separator of the facility. This method
provides a high degree of mass and element selectivity.
Samples were collected with the laser beams switched on
and off to identify the components of the beam. Collection
of 110Sn is possible as its half-life is 4.1 h. The � rays
emitted following � decay in the sample were measured
offline using �-spectroscopic methods. It was concluded
that Sn ions were implanted only when the laser beams
were switched on. Furthermore, surface ionized 110In was
identified as the main beam contaminant. A yield of 2:5�
108 atoms=�C of 110Sn was established from this mea-
surement. The yield of ionized contaminant 110In was 1
order of magnitude smaller. The intensity of the post-
accelerated beam was set to �106 p=s on the secondary
target. Because of the high production yield the beam
current could be measured using pico-am meters with the
lasers switched on and off, respectively. This was done at
ten different occasions during the experiment in order to
determine possible variations in beam composition. The
measurements rendered a beam purity, consistent with the
offline measurements, of 90:0� 1:4%. Decay � rays as
well as Coulomb excitation � rays from other contami-
nants than 110In were searched for in the final data set but
were not observed. As has been discussed previously [11]
the REX-ISOLDE post accelerator relies on charge breed-

ing in an electron beam ion source (EBIS) as a first step.
The charge breeder and the preceding beam cooling, ac-
complished by catching the ion bunch from the separator in
a gas-filled Penning trap, set the repetition frequency of the
beam. In this case the beam was charge bred to the 27�
charge state over an EBIS confinement time of 98 ms. The
extracted beam pulse had a duration of approximately
100 �s with a decaying exponential time profile. The
beam was accelerated to 2:82 MeV=u in the REX-
ISOLDE linac before hitting a 2 mg=cm2 and 99.9%
pure 58Ni target. Because of the characteristic inverse kine-
matics of the experiment, beam and target particles emerge
in a significantly forward-focused cone after scattering.

Coulomb excitation experiments at REX-ISOLDE use a
setup that measures the energies and angles of emitted �
rays and scattered charged particles. The secondary target
position is surrounded by a set of Ge detectors, in a close
geometry, called the MINIBALL array [12]. The Ge de-
tectors run independently using sampling ADCs with a
common clock. The setup comprises 24 high-purity Ge
crystals with a total of 144 segments. The typical photo-
peak efficiency is �10% at 1.3 MeV. A circular double
sided silicon strip detector (DSSSD) is located 30.6 mm
downstream of the target. It registers the energy and angle
of a scattered beam and/or target particle (see Fig. 1). To
remedy possible dead-time effects the trigger for the par-
ticle detector included a raw particle trigger downscaled a
factor of 26, and a � ray and charged particle coincidence
trigger. The DSSSD comprises 16 annular (front face) and
24 radial (back face) strips. It is subdivided into four
separate quadrants. The combined segmentation of the
Ge detectors and the DSSSD makes it possible to recon-
struct the kinematics of individual Coulomb excitation
events for Doppler correction. At 2:82 MeV=u the incom-
ing beam travels at �� 8% which results in a complete
broadening of the raw �-ray spectrum. The effect can be
seen in Fig. 2.
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FIG. 1. Scattered beam and target particles as detected in the
DSSSD. The upper branch corresponds to scattered 58Ni and the
lower branch to 110Sn particles, respectively. The kinematical
cuts used for the identification of beam and target particles are
also indicated in the figure.
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In this experiment we selected the beam and target such
that the kinematical difference in angle and energy of the
two can be used for particle identification (Fig. 1). The
scattered beam reaches its maximum scattering angle at
�31:8	 and scattered target particles at �84:1	. All angles
in this experiment correspond to safe collisions; i.e., there
is no internuclear overlap. One can also note that the
multiple-step excitation probability, or the probability to
excite any other state than the first 2�, is negligible with
this choice of kinematics. Two features of Fig. 1 can be
commented on. First, the energy used for Doppler correc-
tion was calibrated using energy loss simulations and the
known maximum scattering angle for 110Sn. The main
effect of this improved calibration is to reduce the half-
width of the Doppler-corrected �-ray peaks. Second, the
broadening of the Sn and Ni branches in Fig. 1 is almost
entirely caused by differences in emission angle due to the
finite size of the beam spot. The two-body kinematics of
the experiment was such that every Ni ion scattered within
the angular range of the DSSSD is coincident with a beam
particle scattered between 24	 and 31.8	. Thus a substan-
tial part of the data set contains 2-particle � �-ray (2p�
�) coincidences. This is advantageous as it gives a direct
correlation between the number of scattered 110Sn ions,
58Ni ions, and emitted � rays. It also provides for Doppler
correction for both particles using the energy detected in

the DSSSD. The Doppler-corrected spectra for these events
are shown in the central panel of Fig. 2. A subset of events
contains only 1-particle � �-coincidences (1p��). These
correspond either to the range for scattered beam below
24	 or to events where only one hit could be uniquely
reconstructed from the DSSSD. This is, e.g., due to noise
or double hits. Note that in a true 2p event the particles
come back to back in the c.m. system and are thus detected
in opposite quadrants in the DSSSD and cannot cause
double hits. Furthermore, two-body kinematics can be
completely reconstructed by detecting one of the particles.
As seen in Fig. 2 reconstruction leads to a slightly larger
half-width. The intensities obtained in this fashion were
used to extract the B�E2� for the first 2� state in 110Sn. The
method relies on the fact that the B�E2� for the first 2� state
in 58Ni is known. The cross section for exciting target and
beam particles is proportional to the corresponding B�E2�.
The angular distribution of the cross section was calculated
for the relevant angular ranges using the code CLX [13].
Taking into account the beam purity, a small angular
correction and the �-ray detection efficiency, the B�E2�
for the first 2� state in 110Sn was determined to be B�E2� �
0:220� 0:022e2b2 (see Table I). The method and the
proof-of-principle have been described in Refs. [14,15].
The new result (see Fig. 3) corroborates the published
result from intermediate-energy Coulomb excitation of
108Sn [2]. The two results imply that the first 2� states in
the even-even neutron deficient Sn isotopes retain a rela-
tively large part of collectivity compared to the neutron
rich isotopes. These states have a constant energy of
�1200 keV which has been explained from the seniority
scheme. We note that a recent safe Coulomb excitation
measurement for 114Sn at GSI has reduced the error bar of
the B�E2� for that 2� state to same range as for 116Sn but
that a shift towards a higher B�E2� remains [16]. In the
following, we compare the measured B�E2� value in 110Sn
to the results of two large-scale shell-model calculations
(see Ref. [2] ). As a starting point, note that the 1d5=2 and
0g7=2 orbits are neutron valence orbits from 114Sn towards
100Sn. The main proton valence orbit is 0g9=2. The calcu-
lations, carried out by the Oslo and Strasbourg groups, used
effective interactions defined for two different cores,
namely 100Sn and 90Zr, but using the same nucleon-
nucleon interaction. Details on how to derive the effective

 

FIG. 2. Single and particle-� coincindence �-ray spectra be-
fore Doppler correction (top panels). Doppler-corrected �-ray
spectra for 2-particle �-ray coincident events (central panel) and
the corresponding Doppler-corrected �-ray spectra for the sum
of 2-particle and 1-particle reconstructed events for 110Sn and
58Ni (bottom panel). See text for detailed discussion.

TABLE I. The second and third rows give the intensities for
the Doppler-corrected Coulomb excitation peaks of 58Ni and
110Sn from the sum of hits per bin with corresponding back-
ground subtraction and from fitting a Gaussian with linear
background. The last row gives the B�E2; 0� ! 2�� in e2b2

for 110Sn using these numbers, respectively.

Energy (keV) Bin area Fitted area
58Ni 1454.4 237� 15 222� 15
110Sn 1211.9 579� 24 588� 24
B�E2�e2b2 0:220� 0:022 0:238� 0:024
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interactions are given in [17]. The 90Zr case includes
protons in the 1d5=2, 0g7=2, 0g9=2, 1d3=2, and 2s1=2 and
neutrons in the 1d5=2, 0g7=2, 1d3=2, 2s1=2, and 0h11=2 single-
particle orbits. For a 100Sn core, neutrons confined to the
1d5=2, 0g7=2, 1d3=2, 2s1=2, and 0h11=2 single-particle orbits
define the shell-model space. In the calculation of the
B�E2� systematics, an effective neutron charge of 0:5e
and proton charge 1:5e were used for the 90Zr core while
an effective neutron charge of 1:0e was used for the 100Sn
case. The results are displayed in Fig. 3. In the case of a
100Sn core, the experimental B�E2� values are reproduced
for all isotopes down to 116Sn. Starting with 114Sn, the
theoretical results display the expected parabolic behavior
but are at askance with the experimental result for 110Sn
and the result for 108Sn [2]. Similar results have emerged
for 110;108;106Sn [3] from intermediate-energy experiments
during the preparation of this Letter. To reproduce the
experimental values one needs a larger effective charge.
Furthermore, the experimental values seem to deviate from
a good seniority picture for the lighter Sn isotopes. The
transition rates are almost independent of the mass number
A. Thus the effective charges for the lighter Sn isotopes
show stronger renormalization effects. This implies larger
core polarization due to particle-hole excitations and a
different character of core excitations in the N � Z and
N 
 Z regions of the Sn isotopic chain. To further inves-
tigate the variation and intrinsic ph structure of the polar-
ization charge in the pure neutron space, Ref. [2] included

a calculation with 90Zr as core with up to four-particle-
four-hole proton excitations (current computational limit).
In this way, one can reproduce the same trend as for the
100Sn core but with an effective charge for neutrons of 0:5e
and protons of 1:5e. These nonrenormalized charges are
discussed by, e.g., Bohr and Mottelson [18]. However, still
the enlarged calculations deviate from the new experimen-
tal data for lighter Sn isotopes. We note that the current
result indicates that further core-polarization effects may
be needed and/or a better effective interaction introduced.
Here the proton-neutron interaction plays an essential
role. In particular, the ��0g9=2����0g7=21d5=21d3=22s1=2�
monopoles, responsible for the evolution of the spectros-
copy between 91Zr and 101Sn, govern the evolution of the
proton Z � 50 gap with the neutron filling. These mono-
poles were fitted to reproduce the experimental spectra of
nuclei around A� 100. Here the ��0g9=2� � ��1h11=2�
monopole, in particular, suffer from experimental uncer-
tainties. In conclusion, we note the present experimental
result, using safe energy Coulomb excitation deviates from
current theoretical descriptions of the Z � 50 shell gap.
Further experiments investigating the reduced transition
probability of the corresponding states in lighter even-
even Sn isotopes are clearly of importance to further
illuminate this question.

This work was supported by the European Union
through RII3-EURONS (Contract No. 506065).

[1] M. Gorska et al., Phys. Rev. Lett. 79, 2415 (1997);
M. Lipoglavsek et al. Phys. Lett. B 440, 246 (1998).

[2] A. Banu et al., Phys. Rev. C 72, 061305(R) (2005).
[3] C. Vaman et al., nucl-ex/0612011.
[4] M. Goeppert Mayer, Phys. Rev. 75, 1969 (1949);

O. Haxel, J. H. D. Jensen, and H. E. Suess, Phys. Rev.
75, 1766 (1949).

[5] D. R. Inglis, Phys. Rev. 50, 783 (1936); S. Dancoff and
D. R. Inglis, Phys. Rev. 50, 784 (1936).

[6] W. H. Furry, Phys. Rev. 50, 784 (1936).
[7] D. R. Inglis, Phys. Rev. 75, 1767 (1949).
[8] A. L. Goodman, Adv. Nucl. Phys. 11, 263 (1979).
[9] T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

[10] P. Federman and S. Pittel, Phys. Rev. C20, 820 (1979).
[11] D. Habs et al., Nucl. Instrum. Methods Phys. Res., Sect. B

139, 128 (1998).
[12] P. Reiter et al., Nucl. Phys. A701, 209 (2002).
[13] H. Ower, computer program CLX.
[14] O. Niedermaier et al., Phys. Rev. Lett. 94, 172501 (2005),

and references therein.
[15] A. M. Hurst et al., Phys. Rev. Lett. 98, 072501 (2007).
[16] P. Doornenbal et al. (to be published).
[17] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep.

261, 125 (1995).
[18] Aa. Bohr and B. Mottelson, Nuclear Structure (Benjamin,

New York, 1969), Vol. 1.

 

Sn Mass Number
100 110 120 130

)2 b2
) 

 (
e

1+
 2

→ 1+
B

(E
2;

0

0

0.05

0.1

0.15

0.2

0.25

0.3
NNDC
REX-ISOLDE
GSI

Sn-core100Theory: 
Zr-core90Theory: 
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and �2
3 � 1:9 for the 90Zr core. The corresponding values for the

100Sn core is �2
1 � 3:3, �2

2 � 4:2, and �2
3 � 4:4, respectively.

Consequently, due to the rather small error the current measure-
ment is statistically a more significant test of the deviation from
theory than the previous measurement of 108Sn.
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The reduced transition probabilities, B�E2; 0�gs ! 2�1 �, have been measured in the radioactive isotopes
108;106Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation � rays
were detected by the highly segmented MINIBALL Ge-detector array. The results, B�E2; 0�gs ! 2�1 � �
0:222�19�e2b2 for 108Sn and B�E2; 0�gs ! 2�1 � � 0:195�39�e2b2 for 106Sn were determined relative to a
stable 58Ni target. The resulting B�E2� values are �30% larger than shell-model predictions and deviate
from the generalized seniority model. This experimental result may point towards a weakening of the
N � Z � 50 shell closure.

DOI: 10.1103/PhysRevLett.101.012502 PACS numbers: 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j

Precision measurements in unstable nuclei together with
recently developed models of the nucleon-nucleon inter-
action, stemming from many-body techniques and QCD,
show promise to improve our understanding of the finer
aspects of the dynamics of the atomic nucleus. One ap-
proach to this question is to measure reduced transition
probabilities—B�E2; 0�gs ! 2�1 �—for specific nuclei in the
vicinity of a shell closure and to compare these results with
calculations based on such models. In particular, one of the
pressing questions in nuclear physics today is whether the
shell closures, that are well established close to � stability,
remain so also for isotopes with a more extreme proton-to-
neutron ratio. Intuitive models, such as the generalized
seniority scheme [1], predict that these B�E2� values fol-
low a parabolic trend, that peaks at midshell, for a se-
quence of isotopes between two shell closures. In the
following we address the 100Sn shell closure and conse-
quently present results from measurements in the sequence
of neutron-deficient even-mass Sn isotopes. This approach

has been made possible by newly developed facilities that
produce high-quality radioactive ion beams. Recent mea-
surements in 110;108Sn [2–4] consistently deviate from the
broken-pair model as given by the generalized seniority
scheme and from current large-scale shell-model calcula-
tions [2]. Parallel work [4], using intermediate energy
Coulomb excitation, suggests a constant trend of the re-
duced transition probabilities extending to 106Sn. In this
Letter we report results from the first measurements of
108;106Sn using subbarrier Coulomb excitation. This is the
only experiment so far for 106Sn that has permitted for
complete control of the scattering process and thus explic-
itly fulfills the conditions for safe Coulomb excitation. Our
result still deviates significantly from theoretical predic-
tions but indicates a decreasing trend of the B�E2� with a
decreasing number of valence particles outside of the 100Sn
core. Note that with this Letter three different isotopes have
been used for normalization as 112Sn [2] and 197Au [4] have
been used previously. All three experiments yield similar
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results for 110;108Sn. Thus, it appears that the difference
between theory and observation is of physical origin. Our
result for 106Sn now clearly shows that the seniority model
describes the structural evolution of the neutron-rich Sn
isotopes well, but for the light Sn isotopes this interpreta-
tion appears to break down.

The experiment was carried out at the REX-ISOLDE [5]
facility at CERN. The radioactive beams were produced by
bombarding a 27 g=cm2 LaCx primary target by 1.4 GeV
protons delivered by the CERN PS Booster. Atomic Sn was
singly ionized using a resonant three-step laser scheme and
extracted by an electric potential. Beams with mass num-
bers A � 108 or A � 106 were selected by electromag-
netic separation. The half-lives of 108Sn and 106Sn are
10:30�8�min and 115�5� s [6], respectively. The beam
was charge bred for 67 ms in an electron beam ion source
[7] in order to reach the 26� charge state used for post-
acceleration. The final energy was 2.82 and 2:83 MeV=u
for the A � 108 and A � 106 beams, respectively. This is
well below the safe bombarding energy [8] of
�3:6 MeV=u, corresponding to a 5 fm separation of the

nuclear surfaces. The 2 mg=cm2 58Ni target was isotopi-
cally enriched to 99.9%. The first excited 2� state in 58Ni,
used for normalization, is located at 1454 keV, and has an
adopted B�E2; 0�gs ! 2�1 � � 0:0705�18�e2b2 [6]. Emitted
� rays were registered in the MINIBALL [9] detector array
which surrounds the target in a close to 4� configuration.
Energy and scattering angle of ejectiles and recoils were
detected by a circular double sided silicon strip detector
(DSSSD) [10] placed 30 mm downstream from the target
(see Fig. 1). Data were recorded using two trigger con-
ditions. The first one was generated by particle-� coinci-
dence events with a time window of 800 ns and the second
one by events arising from one or more particles detected
in the DSSSD. The latter trigger was downscaled by a
factor of 26. Ejectiles and recoils were easily separated
offline due to the kinematics. In brief, the results presented
in this Letter were obtained with the following conditions
on the data: (a) coincident particle-� events; (b) kinematic
separation of ejectiles and recoils; (c) selection of two-
particle (2p) events and kinematic reconstruction using
one-particle (1p) events.

Figure 2 shows the Coulomb excitation �-ray peaks after
imposing the analysis conditions and correcting for
Doppler broadening. The lasers were switched on and off
with 14.4 s intervals for 1 h every 3 h throughout the
experiments in order to measure the composition of the
scattered beam over time. Using this information, in com-
bination with the constant cross section for the Coulomb
excitation of the contaminants, the respective Sn fractions
could be determined over the full duration of the experi-
ments and were 59.0(27)% and 29.2(42)% for the 108Sn and
106Sn beams, respectively. Further details will be published
in a forthcoming paper [11]. The B�E2� values were ex-
tracted from the experimental data using the coupled-
channels Coulomb excitation code GOSIA2 [12]. Note that
the static quadrupole moment Q�2�1 � in 112Sn is consis-
tently 0b [13]. For this reason a Q�2�1 � � 0b was used also
in the current analysis. Input parameters and results are
displayed in Table I and in Figs. 2 and 3. As can be seen in
Fig. 3 the results deviate from the theoretical prediction by
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FIG. 1. Energy and angle of the scattered beam and target
particles as detected by the DSSSD. The kinematic cuts used
to distinguish between ejectiles and recoils have been applied to
the data. The corresponding plot for the 106Sn case is similar.
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more than 1�. According to the seniority model the B�E2�
values naturally decrease with a decreasing number of
particles outside the closed core. This trend can be noted
in our data for 106Sn. The precision of our result can be put
in perspective in the following way. The relative uncer-
tainty for our 108Sn and 106Sn measurements are 9% and
20%, respectively. The uncertainty for the 108Sn measure-
ment reported in Ref. [2] was 25% whereas the correspond-
ing total uncertainty for the 108Sn and 106Sn measurements
in Ref. [4] was 17% and 24%. We again note that the
present experiment for 106Sn is currently the only one to
explicitly fulfill the safe condition. As stated in Ref. [4], the
reported B�E2; 0gs ! 2�1 � � 0:240� 0:050� 0:030e2b2

value for 106Sn in that study was extracted with a relaxed
constraint on the impact parameter. Interestingly, our value
for 106Sn measured with safe Coulomb excitation does not
render a constant trend.

The relative purity of the low-energy excited states in the
even-mass Sn isotopes makes them suitable for a shell-
model analysis. The relevant model space for neutrons and
protons outside of the 100Sn core consists of the

1d5=20g7=22s1=21d3=20h11=2 orbits. The first orbit below
the N � Z � 50 shell gap is 0g9=2. It is natural to assume
that the missing 0�gs ! 2�1 transition strength, for the 100Sn
core calculation (see Fig. 3), can partly be accounted for by
proton core excitations. Similarly, neutron excitations
across the shell gap would also increase the E2 strength.
These excitations would be enhanced by a strong E2
coupling between the 0g9=2 and 1d5=2 orbits. Since the
0g7=21d5=2 orbits start to dominate the configurations
with a decreasing number of neutrons outside the core
the available phase space for excitations of this kind in-
creases. However, as the experimental B�E2; 0�gs ! 2�1 �
increases already when going from 116Sn to 114Sn, it ap-
pears that proton excitations play an important role in the
transition. A shell-model calculation based on an extended
model space that includes a limited number of 0g9=2 pro-
tons and neutrons is on the verge of computational feasi-
bility. A coupling to orbits outside of the model space is
approximately accounted for in many-body theory by the
perturbative construction of the effective interaction [14].
Previous calculations based on a 100Sn core indicated the
need for an explicitly expanded model space. Banu et al.
[2] included this effect up to 4p-4h proton core excitations
by means of a seniority truncated model space outside of a
90Zr core. Because of the seniority truncation in that cal-
culation the symmetric trend of the B�E2� values was
retained. The impact of core excitations on the 0�gs ! 2�1
transition probability depends in part on the 0g9=2 	 1d5=2
energy separation, Eg. In a limited 0g9=20g7=21d5=2 neutron
model space a �50% increase of the B�E2� can be noted
with a �50% reduction of Eg from 6 to 3 MeV. Neither the
proton nor the neutron 0g	1

9=21d5=2 coupling strength is
known from experiment. The so-called monopole drift of
the single-particle orbits can play a key role in self-
conjugate nuclei.
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FIG. 3. Left panel: Experimental and theoretical B�E2� values. The dashed curve represents the result from a shell-model calculation
using 100Sn as core and a ��g7=2; d; s; h11=2� model space with a neutron effective charge e�eff � 1:0e. The solid line corresponds to
using 90Zr as core and a ��g; d; s� 	 ��g7=2; d; s; h11=2� model space with e�eff � 0:5e. Right panel: Enlarged version of the left panel.
Only experimental results fulfilling the safe condition are shown in the two panels.

TABLE I. The two rightmost columns give background infor-
mation as well as results for the two cases discussed in the text.
The last row gives the B�E2� values.

Data A � 108a A � 106b

E�2�� (keV) 1206 1206
�-ray yield (Ni) 577 (34) 207(15)
�-ray yield (Sn) 994(38) 133(14)
FWHM (Sn) (keV) 19.3(8) 22.5(26)
FWHM (Ni) (keV) 33.1(18) 26.5(24)
B�E2; "� (e2b2) 0.222(19) 0.195(39)

a2:82 MeV=u 108Sn on 2:0 mg=cm2 58Ni.
b2:83 MeV=u 106Sn on 2:0 mg=cm2 58Ni.
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It was shown in Ref. [15] that the interaction between
neutrons and protons in j � ‘� 1=2 orbits modifies the
effective single-particle energies, as observed for instance
in Ref. [16]. With this line of reasoning, the neutron-
deficient Sn isotopes could exhibit a tendency for the
proton 0g9=2 to become less bound as the number of
neutrons in 0g7=2 decreases. This type of single-particle
drift was also observed in the Zr isotopes [17]. Further
experimental evidence for monopole drift along isotone
chains come from �d; p� and �d; t� reactions [18]. Analysis
of isomeric core excited states in 98Cd gives a 100Sn shell
gap of �6:5 MeV for both neutrons and protons [19]. Also,
the energy of the 25=2� level, with a dominating �0g	1

9=2

component, in 99Cd points towards a shell gap of the same
size [20]. However, recent experimental results for the
three first excited states in the N � Z� 2 nucleus 110Xe
instead point towards a possible weakening of the N �
Z � 50 shell closure [21]. For this Letter we have ex-
panded the shell-model calculations in Ref. [2] by using
two more recent nucleon-nucleon interactions (see Fig. 4).
One, which is based on chiral effective field theory, N3LO
[22], includes pions and nucleons as the only effective
degrees of freedom. The other one is a more recent type
of charge-dependent (CD)-Bonn interaction [23]. In con-
trast to the calculations in Ref. [2], we have added here the
Coulomb interaction as well and explicitly break the
charge symmetry and charge independence between the
nucleons. The divergent two-body matrix elements were
renormalized using G-matrix theory and tailored to the
model space using many-body perturbation techniques

[14]. Interaction terms of two-body matrix elements up
to third order were included in this treatment and the
maximum energy of intermediate excitations was in-
creased to a limit of 5@!. As can be seen in Fig. 4 the
trend of the B�E2� values is sensitive to the coupling to
orbits outside of the model space. With these new micro-
scopic interactions the calculations show a deviation from
the symmetry expected in the seniority model. Further
progress involves using these interactions in an explicitly
expanded model space which relies on parallelized calcu-
lations carried out on a computational cluster. Work to-
wards this end has recently been initiated.

In this Letter we have reported on Coulomb excitation
experiments using 108;106Sn beams at REX-ISOLDE. With
this the B�E2� systematics from safe Coulomb excitation
now extend down to 106Sn. Calculations using the N3LO
nucleon-nucleon interaction and a recent CD-Bonn inter-
action show an interesting deviation from the symmetric
trend predicted by the seniority model but still do not
reproduce the experimental data. This observed increase
in transition strength clearly shows the need for further
theoretical investigations of the nucleon-nucleon interac-
tion as applied to the 100Sn shell closure.

This work was supported by the European Union
through RII3-EURONS (Contract No. 506065) and the
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FIG. 4. Theoretical B�E2� values given in e2b2 for the even-
mass Sn isotopes. The first two calculations are identical to
Fig. 3. The 90Zr core calculation was seniority truncated and
based on a monopole corrected CD-Bonn interaction [2]. The
remaining calculations are based either on the N3LO interaction
or a more recent CD-Bonn interaction. The number of excita-
tions allowed in the perturbative scheme is here 5@!. Whether
the interaction incorporated charge symmetry breaking (CSB)
and charge independence breaking (CIB) is indicated in the
legend.
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Using the REX-ISOLDE facility at CERN the Coulomb excitation cross sections for the 0+
gs → 2+

1 transition
in the β-unstable isotopes 100,102,104Cd have been measured for the first time. Two different targets were used,
which allows for the first extraction of the static electric quadrupole moments Q(2+

1 ) in
102,104Cd. In addition

to the B(E2) values in 102,104Cd, a first experimental limit for the B(E2) value in 100Cd is presented. The data
was analyzed using the maximum likelihood method. The provided probability distributions impose a test for
theoretical predictions of the static and dynamic moments. The data are interpreted within the shell-model using
realistic matrix elements obtained from a G-matrix renormalized CD-Bonn interaction. In view of recent results
for the light Sn isotopes the data are discussed in the context of a renormalization of the neutron effective
charge. This study is the first to use the reorientation effect for post-accelerated short-lived radioactive isotopes
to simultaneously determine the B(E2) and theQ(2+

1 ) values.

DOI: 10.1103/PhysRevC.80.054302 PACS number(s): 23.20.Js, 21.60.Cs, 25.70.De, 27.60.+j

I. INTRODUCTION

The isotopes 100Cd, 102Cd, and 104Cd belong to a region
of the Segrè chart where excited states at low energy evolve
from being governed by single-particle effects to be dominated
by collective motion. The gradual alignment of the angular
momentum vectors of the two proton holes in 98Cd [1,2]
describes the principal part of its wave function up the
first 8+ state. In contrast, vibrational and rotational behavior
develop in the surrounding isotopes. At N ∼ 60 the Cd
isotopes are weakly deformed with β2 ∼ 0.1 [3] and exhibit a
low-energy structure of vibrational character [4,5] manifested
by a 0+

2 , 2+
2 , 4+

1 triplet at nearly twice the energy of the
2+
1 state. As a consequence, several previous studies of the
Cd isotopes [6–10] have focused on interpretations within
a multiphonon picture with excitations of quadrupole and
quadrupole-octupole type.
Theoretically, the spectra of 98−106Cd have been described

in the spherical shell model and in a variety of interacting
boson models [11,12]. In a recent series of measurements
several groups [13–16] report reduced excitation probabilities
for the 0+

gs → 2+
1 transition in 106,108,110Sn, which deviate

from predictions based on realistic effective nucleon-nucleon
interactions. The observed B(E2) discrepancy in the light Sn
isotopes appears to originate from an incomplete description
of the residual nucleon-nucleon interaction outside the 100Sn
core. As a complement to a study of the interaction as
a function of the neutron degree of freedom, the neutron-
deficient Cd isotopes lend themselves to a similar study where
the proton degree of freedom is invoked as well. This aspect is
the principal motivation for the work presented here. We also
present the results from shell-model calculations based on a
realistic effective interaction.
In general, the reduced transition probability for elec-

tromagnetic de-excitations between nuclear states is a very
sensitive probe of the nuclear wave function. The lifetimes
of the low-lying states in 102,104Cd were recently visited
employing a plunger device in a recoil distance Doppler-
shift (RDDS) measurement, see Refs. [17,18]. In sub-barrier
Coulomb excitation the 2+

1 state can be populated via a direct
transition from the ground state, circumventing issues related
to feeding through higher lying states. However, the extracted
B(E2) value is connected to the sign and magnitude of
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the static quadrupole moment Q(2+
1 ) via the total Coulomb

excitation cross section. Therefore, this study and the lifetime-
based investigations are complementary.
In this article we present the results from the first sub-

barrier Coulomb excitation measurements of the 0+
gs → 2+

1

cross section in 100,102,104Cd. From these measurements the
B(E2; 0+

gs → 2+
1 ) value in

100,102,104Cd was determined and
the Q(2+

1 ) in
102,104Cd was extracted using the reorientation

effect [19,20]. The technique of combined cross-section mea-
surements was explored for the first time using a short-lived
radioactive ion beam thus providing a test of the intensity limit
for this method for future radioactive beam measurements.

II. RADIOACTIVE ION BEAM PRODUCTION AND
DETECTOR EQUIPMENT

The first excited state in 100,102,104Cd was populated by
bombarding the respective Cd isotope onto target foils of either
1.8 mg/cm2 64Zn or 1.9 mg/cm2 109Ag. The experiment was
carried out at the ISOLDE facility at CERN. The methods of
production, postacceleration, and data collection are similar to
that of Ref. [21]. The radioactive ion beams were produced
by impinging a 1.4 GeV proton beam delivered by the
CERN PS-Booster on a 27 g/cm2-thick LaCx target. The Cd
atoms were ionized using a resonant laser ionization scheme
providingCd+ ions for subsequent electrostatic extraction. The
isotope mass was selected using the high-resolution separator
of the facility. Contaminating In isobars were suppressed
using a primary target with a temperature controlled quartz
transfer line [22]. Due to the different vapor pressures of In
and Cd at the chosen target temperature a relative reduction
of the contaminant of two orders of magnitude was reached.
The intensity of the contaminant was determined from the
number of elastically scattered particles at the secondary target
during laser on/off measurements [15,16,21]. Postacceleration
in the REX-LINAC requires a mass-to-charge ratio less than
4.5 that was fulfilled after approximately 62 ms of charge
breeding in the REX-EBIS [23]. At the final beam energy of
2.87 MeV/u the scattering occurs below the Coulomb barrier
for any combination of projectiles and targets used here [19].
Ejectiles and recoils were detected by a circular

double-sided silicon strip detector (DSSSD) placed 32.5 mm
downstream of the secondary target covering laboratory angles
θ ∈ [15◦, 52◦]. The 16 annular strips covering each quadrant
of the detector have a pitch per strip of 1.9 mm, whereas,
for the current experiment, the 24 radial strips were coupled

pairwise, resulting in a 6.8◦ radial pitch. For further details see
Ref. [24]. The γ rays were detected by the Miniball detector
array that comprised 21 sixfold segmented germanium crystals
at the time of the experiment. The absolute efficiency was 6%
at a γ -ray energy of 1 MeV. Data collection was triggered by
a particle-γ coincidence condition. An overview of the exper-
imental parameters is given in Table I. The magnitude of the
isobaric contamination of the 100Cd beam was found to be
consistent with zero within an experimental uncertainty of
less than 10%. The upper limit is motivated by the systematics
of the other measurements shown in Table I and by similar
measurements in Refs. [15,16]. The intensity of the Cd beams
fell with decreasing mass of the isotope. This in combination
with the increasing excitation energy of the 2+

1 state and the
expected decrease of the corresponding B(E2) value required
longer measuring times for isotopes closer to the proton drip
line.

III. EVENT STRUCTURE AND DATA REDUCTION

Time-coincident particle-γ data were collected with an
800 ns coincidence window. A pure particle trigger, down-
scaled by a factor of 64 to reduce the amount of surplus
data and acquisition dead time, was used outside of this gate.
Prompt coincidences were selected offline using a 125 ns
gate in the particle-γ time spectrum; see Fig. 1. The γ -ray
detection efficiency was increased (10% gain atEγ = 1MeV)
by using an offline add-back scheme [15,16]. The angular
position of the germanium detectors was fine tuned in the
offline analysis with the condition of minimizing the full
width at half maximum (FWHM) of the Doppler corrected
peaks. The DSSSD was energy calibrated based on the known
target thickness and theoretical energy loss curves calculated
by SRIM [25]. Assuming the particle interaction point to be in
the center of the target resulted in a good Doppler correction
of the detected γ rays. The physics events stored on disk are of
two types: (i) a 1p event, which is ejectile or recoil detected,
and (ii) a 2p event, which is ejectile and recoil detected.
A discussion related to the 2p and 1p event structure in

REX-ISOLDE experiments can be found in Refs. [15,16,26].
In brief, the probability that the ejectile and the recoil
simultaneously scatter into a given annular range of theDSSSD
is limited by kinematics and by the distance between the
secondary target and the DSSSD. A 2p event is constructed
when two particles are detected in diametrically opposite
quadrants within 100 ns. A 1p event occurs when one of

TABLE I. The experimental parameters for each of the measurements in this work.
The measurements were carried out in the order they appear below. It should be noted
that the 104Cd beam intensity had to be reduced to avoid damage to the particle detector.

Beam Target Beam energy (MeV) Beam intensity (pps) Isobaric contamination (%)

104Cd 109Ag 298.5 1× 106 0.8± 0.1
102Cd 109Ag 292.7 5× 105 0.4± 0.1
102Cd 64Zn 292.7 5× 104 2.7± 0.3
104Cd 64Zn 298.5 6× 105 0.4± 0.1
100Cd 109Ag 287.0 3× 103 0.0± 10.0
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FIG. 1. Particle-γ time-difference spectrum. The prompt
particle-γ coincidence window is indicated with vertical lines.

the particles either scatters outside of the annular range of
the detector or when it penetrates the DSSSD undetected due
to dead-time effects. Given the two-body kinematics of the
scattering process, the missing particle in a 1p event can be
reconstructed.

IV. DATA ANALYSIS

The spin and parity sequence of the first two excited
states in 100,102,104Cd are given in Fig. 2. The 2+

1 → 0+
gs

transitions treated in this work have energies of 1004, 777,
and 658 keV, respectively. A reorientation measurement of
the reduced transition probability and the static quadrupole
moment requires at least two measurements under different
conditions. This was accomplished here by adopting two
different target materials, 64Zn and 109Ag, as well as different
angular ranges for detection. In 64Zn the 2+

1 state is located
991 keV above the 0+ ground state. The 2+

2 state at 1799 keV is
at a too-high energy to be visible in the data under the current
experimental conditions. The 109Ag nucleus exhibits a more
complicated level structure; see Fig. 2. The ( 52

−
)1 → ( 12

−
)gs

and ( 31
−
)1 → ( 12

−
)gs transitions at 415 and 311 keV were

observed in the present data set. A summary of the E2
matrix elements for the 64Zn target is given in Table II and
similarly for the 109Ag target in Table III. For an extended
discussion of the adopted values see below. The experimentally
determined γ -ray yields are presented in Table IV. In the
following sections the method used in the analysis is expanded
on followed by the specific results for different measurements.

TABLE II. The level index, spin, parity, level energy, and reduced
matrix elements 〈i||E2||j〉 = Mij , in units of e b, for 64Zn, used in
the analysis Refs. [27–30].

Level Iπ Energy (MeV) 1 2 3

1 0+ 0 0.0 0.400(19) 0.043(2)
2 2+ 0.991 −0.420(79)a 0.545(28)
3 2+ 1.799 0.0

aPositiveM12M23M13 interference value.

A. Method

1. The Coulomb excitation cross section

The 0+
gs → 2+

1 Coulomb excitation cross section is given
by

σE2 = σR[κ1(θc.m., ξ )B(E2)(1+ κ2(θc.m., ξ )Q(2
+
1 ))] (1)

in second-order perturbation theory. It depends on the Ruther-
ford cross section, σR , the reduced transition probability,

B(E2; 0+
gs → 2+

1 ) = |〈0+
gs||E2||2+

1 〉|2 ≡ M2
12, (2)

and the spectroscopic quadrupole moment,

Q(2+
1 ) = 4

5

√
2π

7
〈2+
1 ||E2||2+

1 〉 ≡ 0.75793M22. (3)

The product of the B(E2) and Q(2+
1 ) terms describes the

reorientation effect. The positive definite coefficients κ1 and
κ2 are known from perturbation theory [19] and depend on
the center-of-mass scattering angle, θc.m., and the adiabaticity
parameter, ξ . Generally, this dependence leads to an increase
in the excitation cross section with increasing beam energy,
atomic number, and scattering angle. However, at small θc.m.,
the cross section becomes less sensitive to the sign and
magnitude of the static moment. For the 104Cd and 102Cd
measurements relative to the 64Zn target the statistics made
it possible to extract the cross section also for very small
scattering angles, i.e., corresponding to the first two or three
of the innermost annular strips of the DSSSD. This provides a
third set of data in addition to the 109Ag data and the 64Zn data
measured at larger scattering angles.
As mentioned above, lifetime data exist for the 2+

1 state
in 104,102Cd [18,30]. The B(E2) value is, however, still not
well established as the number of measurements remains
small. The approach adopted here provides two options. The
measurements for the two targets can be used independently of
previous lifetime measurements to extract a new B(E2) value
and a static moment, or the measurements can be combined
with previous lifetime measurements to improve the accuracy
of the static moment, Q(2+

1 ), see e.g., Ref. [33]. We present
results using both these approaches.
The projectile excitation cross section, σP , is determined by

normalization against the corresponding known cross section
for a given target, σT . The introduction of the two measured
γ -ray yields for projectile and target, NP

γ and NT
γ , gives;

σP (B,Q) = NP
γ

NT
γ

εT
γ

εP
γ

W (θ )T

W (θ )P
1

1− q
σT . (4)

In practice this procedure provides a measure of the incoming
beam intensity. The relative γ -ray detection efficiencies, εγ ,
were obtained using a known 152Eu calibration source. W (θ )
represents the integrated angular distribution of de-excitation
γ rays and q represents the fraction of isobaric contamination
present in the beam. The cross sections were calculated using
the computer code CLX [34] and included effects of energy
loss in the target.

054302-3
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TABLE III. The level index, spin, parity, level energy, and reduced matrix elements 〈i||E2||j〉 = Mij , in units of e b, for
109Ag, used in the analysis Refs. [30–32].

Level Iπ Energy (MeV) 1 2 3 4 5 6

1 1
2

−
0.0 0.0 0.0 0.0 0.666(27) 0.800(33) 0.042(5)

2 7
2

+
0.088 0.0 3.046(15) 0.0 0.0 0.0

3 9
2

+
0.133 0.0 0.0 0.0 0.0

4 3
2

−
0.311 −0.905(388) 0.219(112) 0.0

5 5
2

−
0.415 −0.423(423) 0.0

6 3
2

−
0.702 0.0

2. The maximum likelihood estimator

The projectile matrix elements 〈0+
gs||E2||2+

1 〉 and
〈2+
1 ||E2||2+

1 〉 are extracted using a maximum likelihood
approach. This method has the advantage that all data are
treated on an equal footing and are weighted only by their
uncertainties. The likelihood, L, is a function of the nuclear
parameters B(E2) and Q(2+

1 ). It is defined as a product of
probability distributions, Pk , one for each measurement.

L(B,Q) =
∏

k∈[Zn,Ag,τ ]

Pk(B,Q). (5)

In the numerical analysis, Pk is approximated by a Gaussian
probability distribution along the gradient of the contour
curve of the k-th measurement. The statistical errors in the
γ -ray yield measurements and the known uncertainties in
the target matrix elements can be propagated to give the
uncertainty in the total cross section. The standard deviation

TABLE IV. Experimental γ -ray yields as extracted from the data
analysis.

Measurement Transition γ -ray yield

104Cd+ 64Zn
104Cd: 2+

1 → 0+
gs 1487(59)

64Zn: 2+
1 → 0+

gs 471(28)
104Cd+ 109Ag

104Cd: 2+
1 → 0+

gs 1028(47)
109Ag: 32

−
1

→ 1
2

−
gs

2753(95)
109Ag: 52

−
1

→ 1
2

−
gs

2289(84)
102Cd+ 64Zn

102Cd: 2+
1 → 0+

gs 308(28)
64Zn: 2+

1 → 0+
gs 156(23)

102Cd+ 109Ag
102Cd: 2+

1 → 0+
gs 486(34)

109Ag: 32
−
1

→ 1
2

−
gs

2249(83)
109Ag: 52

−
1

→ 1
2

−
gs

1985(65)
100Cd+ 109Ag

100Cd: 2+
1 → 0+

gs �6.0(24)
109Ag: 32

−
1

→ 1
2

−
gs

101(17)
109Ag: 52

−
1

→ 1
2

−
gs

75(14)

of the cross section in turn provides a 1-σ band in the
B(E2)− Q(2+

1 ) plane. In short, the likelihood function for
the Cd isotope of interest represents the total probability of
(B,Q) being the pair of parameters that best reproduces the
experimental projectile cross sections and the lifetime τ (2+

1 ).
The L is evaluated for B ∈ [0, 1]e2 b2 and Q ∈ [−2, 2] e b.
This corresponds to static and dynamic quadrupole moments
that are in line with existing data in the Cd isotopic chain.
The final B(E2) and Q(2+

1 ) values, B̂ and Q̂, maximize
the normalized likelihood function, i.e., L(B̂, Q̂) = 1.0. The
corresponding uncertainties are extracted from the contour
curve L(B,Q) = 0.682 projected on the respective axis.

B. γ -ray yields and transitions

1. 102,104Cd measurements

With the 64Zn target it is possible to identify the scattered
projectile and target nuclei directly; see Fig. 3. Typical Doppler
corrected γ -ray spectra, for the 102Cd+ 64Zn case, are shown
in Fig. 4. The satellite peak next to the 2+

1 → 0+
gs target

transition comes from two γ -ray transitions at 1025.0 and
1036.6 keV in the 102Cd → 102Ag → 102Pd decay chain.
Exactly the same satellite peak is present in the data from the
104Cd+ 64Zn measurement and is due to remnant radioactive
102Cd isotopes in the target chamber. The analyses of
the 104Cd+ 109Ag and 102Cd+ 109Ag measurements are more
elaborate. Given the approximately equal masses of these
nuclei the kinematic distributions of the scattered particles
overlap as can be seen in Fig. 3. This in turn eliminates the
possibility of direct particle identification. As an example, sim-
ulations using the Rutherford cross section, σR , for the 104Cd
case show that 97% of the particles scattered into the DSSSD
are 104Cd nuclei. Thus a significant number of 109Ag γ rays will
be Doppler corrected using the experimental kinematics of a
detected 104Cd nucleus. Correspondingly, Doppler correcting
all experimental 1p events using the respectivemasses gives the
γ -ray spectra shown in Figs. 5(a) and 5(b). The broad structure
present at the bottom part of the Doppler corrected γ -ray
peaks arises from the effect mentioned above. The magnitude
of this pedestal is proportional to the number of target γ

rays detected in coincidence with scattered beam nuclei and
vice versa. This effect was analyzed further by simulating
the Coulomb excitation cross section σE2 = σR · P (θ ), where
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FIG. 2. Experimental level schemes for the projectile and the target isotopes. The relevant diagonal and nondiagonal E2 transitions are
indicated with arrows. Transitions marked with a bold arrow are fitted in the analysis.

P (θ ) is the known Coulomb excitation probability [19] for
the 109Ag target nuclei. The following effects were taken into
account in the simulation: the energy loss of the particles as
they traversed the target foil, the adiabaticity parameter ξ ,
the angular distributions W (θ ), the Doppler shift of emitted
γ rays, the experimental γ -ray detection efficiency, and the
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FIG. 3. Energy versus angle of the scattered beam and target par-
ticles detected by the DSSSD in the (a) 104Cd+ 109Ag measurement
and (b) 104Cd+ 64Zn measurement.

exact DSSSD geometry. Furthermore, a Gaussian distributed
beam spot with a standard deviation of 1 mm was used. The
simulated γ -ray energy spectrum is shown in Fig. 5(c). The
simulation agrees with the experimental data. In detail,
the γ rays from the 415 keV (52 )

−
1 → ( 12 )

−
gs transition are

registered in coincidence with a projectile particle in 76%
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FIG. 4. The Doppler corrected γ -ray energy spectra from the
102Cd+ 64Zn measurement. (a) The 102Cd projectile de-excitation
peak and (b) the 64Zn target de-excitation peak.
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FIG. 5. [(a) and (b)] The Doppler-corrected γ -ray energy spectra
from the 104Cd+ 109Ag measurement. The pedestal comes from the
ambiguity in the particle identification process. (c) Monte Carlo
simulation of the effects of incomplete particle identification in the
Doppler correction process. (d) Doppler-corrected γ rays from the
109Ag target using the reconstructed momentum vectors of these
particles.

of the Monte Carlo events. According to the fit in Fig. 5(c),
the size of the corresponding simulated pedestal is 77(5)%.
The experimental pedestal is 78(4)%. Furthermore, it can be
verified that the total number of events estimated by the fit
routine is accurate within one standard deviation.
Turning to the experimental data set again, it is possible

to Doppler correct the transitions in 109Ag using reconstructed
momentumvectors of these particles. As expected, this reduces
the pedestal of the corresponding peaks, see Fig. 5(d). How-
ever, note that the integrated γ -ray yields remain unchanged
within one standard deviation. The reconstructed data thus
shows consistency but was not used further in the analysis.

2. The 100Cd + 109Ag measurement

Within the time constraint of the experiment, a few 100Cd
events were detected. In this measurement the 109Ag target
was chosen over the 64Zn target due to the higher Z of the
former. As mentioned, the particle count rate in the DSSSD
vanished when the laser ionization was switched off. The
Doppler corrected spectrum, Fig. 6, is virtually free from
any radioactive background due to the limited beam intensity.
However, with the available statistics, only an upper limit on
the number of 2+

1 → 0+
gs transitions in

100Cd can be extracted.
For this analysis all events within E(2+

1 ) = 1004± 100 keV
in the Doppler corrected γ -ray spectrum in Fig. 6 are assigned
to the projectile transition of interest. This energy region is
defined from the maximum Doppler shift of the projectile
γ -ray energy.

3. Matrix elements and transitions in the targets

The adopted value of the diagonal matrix element,
M22 = −0.42(8) e b, in 64Zn [29] depends on the sign
of the second-order interference term, 〈0+

gs||E2||2+
1 〉

〈2+
1 ||E2||2+

2 〉〈0+
gs||E2||2+

2 〉. However, this ambiguity affects
only the 102,104Cd cross sections on the level of 3%, which
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FIG. 6. Doppler-corrected γ -ray energy spectrum from the
100Cd+ 109Ag measurement. All events present in the insert are
assigned to the 2+

1 → 0+
gs transition in

100Cd. This leads to an upper
limit of the corresponding B(E2).
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FIG. 7. The dashed line indicates the contour curve of the
measured cross section of 100Cd relative to 109Ag. The B(E2) value
is extracted under the assumption that the Q(2+

1 ) = 0.0 e b. This is
in line with the observed experimental trend seen in the light Cd
isotopes. The arrows indicate the extracted uncertainty.

is below the experimental precision. The positive interference
term is used in this work due to its lower relative uncertainty.
In 109Ag there exists an 8(1)% γ -decay branch from the

415.2 keV 5/2− state to the 311.4 keV 3/2− state [30]. This
feeding of the 311.4 keV γ -ray yield is corrected for in the
extraction of theCoulomb excitation cross sectionswhen using
109Ag as target.

V. RESULTS

In this section we present the contour curves, Fig. 7,
Fig. 8(a), and Fig. 9(a), that result from the measured cross
sections. The measurements relative to 64Zn and 109Ag are
given by the black and red curves, respectively. The range
of possible B(E2) values is clearly limited by the 64Zn cross
section for small center-of-mass angles, θc.m., given by the blue
curve in the same figure. The resulting likelihood distributions
for 102,104Cd are given in Fig. 8(b) and Fig. 9(b). The
correlation between the static and dynamic moments is clear
from these figures. The maximum likelihood estimator for the

dynamic moments are B(E2;↑) = 0.33± 0.01± 0.02 e2 b2

andB(E2;↑) = 0.28± 0.02± 0.02 e2 b2 for 104Cd and 102Cd,
respectively. The uncertainties are evaluated at the point of
maximum likelihood in the (B,Q) plane. They are separated
into statistical and systematic components. The primary source
of the systematic error is the precision with which the B(E2)
values are known for the target isotopes. For 100Cd a B(E2) �
0.21± 0.07 e2 b2 is extracted for aQ(2+

1 ) = 0.0 e b. The basis
for this assumption is discussed further below. Note that the
error in this case includes statistic and systematic effects. The
results are summarized in Table V. A higher-lying second
2+ state has not been observed experimentally in the present
Cd isotopes. However, assuming that its energy is equal to
that of the second 2+ state in 106Cd, a direct calculation
shows that virtual quadrupole excitations via this state has
an impact of<2% on the cross section. This will not affect the
B(E2) values. The resulting effect on the static quadrupole
moments in the present Cd isotopes is <0.05 e b. Thus this
systematic effect of a 2+

2 state was not included in this work.
In this investigation the 〈0+

gs||E2||2+
2 〉 and 〈2+

1 ||E2||2+
2 〉matrix

elements were taken from 106Cd [35].

VI. SHELL-MODEL INTERPRETATION AND DISCUSSION

The first reorientation measurement was made in 114Cd
by J. de Boer et al. [36] and the finding of a large negative
Q(2+

1 ) in that nucleus stimulated much discussion, see, e.g.,
Ref. [37–39] and references therein. One aim of the current
work is to independently establish the trend of B(E2) values
for the light Cd isotopes using Coulomb excitation to compare
this to the corresponding trend in the light Sn isotopes. The
experimental trend of B(E2) values in the Cd isotopic chain
that results from this work shows a gradual, almost linear,
increase starting with a B(E2) = 0.28 e2 b2 in 102Cd toward
a B(E2) = 0.57 e2 b2 in 118Cd, see Fig. 10. The data on
the neutron-rich side of stability remains scarce. The first
measurements of the B(E2) value have recently been carried
out in 122,124Cd [40] but theQ(2+

1 ) remains unknown in those
isotopes. Current results seem to indicate a somewhat more
rapid decrease in the B(E2) values on the neutron-rich side.
Still, it is not yet possible to draw a firm conclusion based

TABLE V. The experimental results obtained in this work as extracted from the maximum
likelihood point. The uncertainties are statistical and systematical in origin. If only one uncertainty
is quoted this corresponds to the total error. The second column indicates whether the lifetimes
from Ref. [18] were included in the likelihood function. The correlation between the B(E2) and the
Q(2+

1 ) values is shown in Figs. 8(b) and 9(b).

Projectile Incl. τ (2+
1 ) B(E2; 0+

gs → 2+
1 ) (e

2 b2) Q(2+
1 ) (e b) Target Projectile σE2 (mb)

104Cd No 0.33± 0.01± 0.02 0.06± 0.10± 0.11 64Zn 307(39)
Yes 0.39± 0.01 −0.52± 0.19 109Ag 1013(61)

102Cd No 0.28± 0.02± 0.02 0.22± 0.11± 0.15 64Zn 202(43)
Yes 0.28± 0.04 0.20± 0.43 109Ag 596(48)

100Cd No �0.28a 0.0b 109Ag 201(64)

aThe precision of this value is 33%.
bFixed in the analysis to extract the corresponding B(E2); see Fig. 7.
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FIG. 8. (Color online) The final likelihood-interpreted results
for 104Cd based on the cross-section measurements presented here.
(a) The contour curves in the B(E2)− Q(2+

1 ) plane for each
measurement. The dashed curves indicate measured values and the
solid curves the corresponding uncertainties. (b) The 1-σ contour
of the likelihood function. The point of maximum likelihood is
indicated with a red star together with horizontal and vertical lines
for the corresponding uncertainty. The shell-model prediction with
eπ = 1.6 e and eν = 1.0 e for the location of the B(E2 ↑) andQ(2+

1 )
values is indicated with a blue square. The black curve marks the
calculated trajectory of the B(E2 ↑) and Q(2+

1 ) values as a function
of eν keeping eπ = 1.6 e. The point of maximum likelihood along
this trajectory gives the shell-model interpreted values presented in
Table VI. The horizontal lines, marked with “Lifetime Data,” indicate
the B(E2) value (dashed line) with uncertainties (solid lines) as
extracted from the lifetime presented in Ref. [18].

on existing data for the neutron-rich isotopes. An interesting
contrast between the Sn and Cd chains is that the apparent
onset of collectivity observed in 106,108,110Sn is not reproduced
in an obvious way in 102,104,106Cd. The reported high-precision
measurement in Ref. [18] does indicate an increase in the
B(E2) value in 104Cd but this appears not to be maintained for
the lighter isotopes. However, this increase is not observed in
our measurement.
In the following we discuss our results starting from a

shell-model calculation based on a realistic interaction, i.e.,
without any phenomenological modifications, derived from a

G-matrix-renormalized CD-Bonn nucleon-nucleon potential.
This interaction reproduces fairly well the high spin states
in 101,102In and 99Cd [6,7]. The nucleus 88Sr is used as an
inert core and the location of the single-particle energies
were taken from Ref. [41]: ε(π1p1/2) = 0.00, ε(π0g9/2) =
0.90, ε(ν1d5/2) = 0.00, ε(ν2s1/2) = 1.26, ε(ν1d3/2) = 2.23,
ε(ν0g7/2) = 2.63, and ε(0h11/2) = 3.50 in units of MeV.
The calculated E(2+

1 ) and E(4+
1 ) are almost identical to

experimental values. Further, the theoreticalB(E2) andQ(2+
1 )

values for 106Cd are well within the experimental uncertainties
of the adopted values; see Table VI and Fig. 10.
One may now test the predictive power of the shell-

model calculation using the probability distributions shown
in Fig. 8(b) and Fig. 9(b). One approach to this issue is to
keep either the proton effective charge (eπ ) or the neutron
effective charge (eν) constant while varying the other. For
the present case the magnitude of the relevant diagonal and
nondiagonal matrix elements results in a three times larger
sensitivity of the predictedB(E2) to a variation in eν compared
to an equal variation in eπ . To facilitate a comparison with
the light Sn isotopes it is primarily interesting to investigate
renormalization effects in eν keeping eπ fixed. As a starting
point one needs to select a pair of neutron and proton effective
charges. The proton effective charge has been extracted from a
previous lifetime measurement in 98Cd [1]. However, a recent
study [2] of a core-excited isomer in that nucleus indicates
that systematic effects might have influenced the value of the
extracted proton effective charge. Similarly newmeasurements
of the de-excitation strength of the 6+ isomer in 102Sn [43]may
lead to an improved neutron effective charge. Thus, awaiting
further data for the lightest isotopes in the vicinity of 100Sn we
instead take 106Cd as the starting point for our investigation.
As can be seen in Fig. 10 the effective charges eπ = 1.6 e

and eν = 1.0 e reproduces the B(E2) value in this nucleus.
These values are also well in line with those used in previous
calculations in this mass region [41,44,45]. The shell-model
prediction for 102,104Cd using these effective charges are
indicated with squares in Fig. 8(b) and Fig. 9(b). For the 104Cd
case the prediction borders the 1-σ contour of the probability

TABLE VI. Shell-model interpretation (SM+exp) of the mea-
sured B(E2; 0+

gs → 2+
1 ) and Q(2+

1 ) values in units of e2 b2 and e b,
respectively. The energies of the first two excited states, E(2+

1 ) and
E(4+

1 ), are also given in units of MeV. The effective proton and
neutron charges of the shell-model (SM) values are eπ = 1.6 e and
eν = 1.0. See text for details.

102Cd 104Cd 106Cd

E(2+
1 )SM 0.773 0.626 0.566

E(2+
1 )exp 0.777 0.658 0.633

E(4+
1 )SM 1.541 1.446 1.409

E(4+
1 )exp 1.638 1.492 1.494

B(E2)SM 0.24 0.32 0.38
Q(2+

1 )SM −0.18 −0.22 −0.24
B(E2)SM+exp 0.32± 0.03 0.35± 0.02 0.384± 0.004a
Q(2+

1 )SM+exp −0.20± 0.01 −0.23± 0.01 −0.28± 0.08a
aAdopted experimental value, see Ref. [30].
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FIG. 9. (Color online) The final likelihood-interpreted results for
102Cd based on the cross-section measurements presented here. The
two plots (a) and (b) are identical to the ones shown for the 104Cd
case; see the caption of Fig. 8.

distribution while for the 102Cd case the deviation is larger. A
variation of eν will trace out a trajectory in the (B,Q) plane.
The point of maximum likelihood along this trajectory gives
the neutron effective charge that reproduces the experimental
result with highest probabilitywithin themodel. Consequently,
tracing this trajectory, keeping eπ = 1.6 e fixed, gives a direct
measure of the renormalization required for the shell-model
to reproduce the data in 102,104Cd. For 104Cd the maximum
likelihood is reached for eν = 1.07± 0.05 while for 102Cd
the corresponding number is eν = 1.27± 0.07. Thus, for the
latter case the renormalization of the neutron effective charge
amounts to 27% within 3σ . Repeating this investigation with
the proton effective charges eπ = 1.4 and eπ = 1.8 e requires
eν = 1.07 e and eν = 0.93 e to reproduce the experimental
B(E2) value in 106Cd. For 102Cd the maximum likelihood is
then reached for eν = 1.37± 0.07 e and eν = 1.17± 0.07 e.
In total, this investigation indicates a ∼25% renormalization
of the neutron effective charge when moving from 106Cd
to 102Cd. The corresponding B(E2) values extracted with
maximum likelihood are given in Table VI and with blue
dots in Fig. 10(b). It is interesting to note that the predicted
Q(2+

1 ) are limited to a very narrow range. It is therefore
clear from the picture that the presented values are close to
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FIG. 10. (Color online) (a) Experimental and theoretical
B(E2; 0+

gs → 2+
1 ) and values in the Cd isotopes. The “REX-ISOLDE”

values (red triangles) are the maximum likelihood estimators ex-
tracted in this work. The Boelaert et al. lifetime data is Ref. [18],
the Boelaert et al. shell-model calculation is Ref. [11], and the
mean-field calculation is Ref. [42]. (b) Same figure expanded around
the neutron-deficient region. The blue dots represent theB(E2) values
obtained using the shell-model interpretation of the measured data.
See text for details.

the ones that would be obtained from an interpretation based
on a fix Q(2+

1 ) value from the shell-model. In conclusion, a
renormalization of the neutron effective charge in the light Cd
isotopes appears necessary although the effect on the observed
B(E2) values is not as conspicuous as suggested in the light
Sn isotopes [13–16].
It should be mentioned that theoretical predictions

for the light Cd isotopes have also been presented
in two recent works [11,42]. The shell-model calcula-
tions in Ref. [11] were carried out with a valence
space consisting of the proton π (1p1/2, 0g9/2) and neutron
ν(1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2) orbits outside an inert
88
38Sr50 core. For further details see Ref. [11]. The results from
this calculation are shown in Fig. 10 where the results from
a beyond mean-field calculation [42] using the Gogny force
is also plotted. Earlier theoretical models [12] of the neutron-
deficient Cd isotopes include taking 100Sn as a core and using
a neutron-proton interaction of quadrupole-quadrupole type.
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FIG. 11. (Color online) The experimentally knownQ(2+
1 ) values

in the even-mass Cd isotopes. The results of the shell-model
calculation carried out in this work are indicated with a magenta
line. Invoking the previously published lifetime data [18] in the
likelihood function gives the Q(2+

1 ) values marked with diamonds.
The numerical values for these are given in Table V. See text for
details.

As can be seen in Fig. 11 the experimentalQ(2+
1 ) in

104Cd
is lower than that in 106Cd when invoking the previously pub-
lished lifetime data [18]. While the value from our likelihood
analysis lies closer to zero for 104Cd and also somewhat closer
to the shell-model prediction the values extracted using both
methods almost identical for 102Cd. This may be a further

indication of a slightly too-large B(E2) value extracted from
the lifetime measurement in Ref. [18]. The shell-model cal-
culation also indicates aQ(2+

1 ) ≈ 0 e b in 100Cd and therefore
strengthens the grounds on which the B(E2) value in 100Cd is
extracted.
In a spherical harmonic vibratormodel the static quadrupole

moment is also predicted to be identical to zero [46]. In a article
by Alaga [47], the particle-vibrator model was shown to give
aQ(2+

1 ) = −0.33 b for the Cd isotopes in the midshell region,
which is in agreement with the later adopted experimental
value, see Fig. 11 and Refs. [37,38]. Within that model the
quadrupole moment in vibration-like nuclei is a consequence
of the interaction between the proton degree of freedom and
the vibrator here given by the neutrons. Moreover, energy-
weighted sum-rule calculations [48] and investigations [49]
using the interacting boson approximation are in agreement
with the experimentalQ(2+

1 ) values in
106−116Cd.

Evidently, experimental transition probabilities in the two
proton-hole, N = 50, nucleus 98Cd are of importance in the
investigation of the nucleon-nucleon interaction in the 100Sn
region. Expanded theoretical investigations and shell-model
calculations relating to this question have been initiated [50].
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Abstract. The low-lying states in the odd-odd and unstable isotopes 106,108In have been Coulomb excited
from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With
the additional data provided here the πg−1

9/2
⊗ νd5/2 and πg−1

9/2
⊗ νg7/2 multiplets have been reanalyzed

and are modified compared to previous results. The observed γ-ray de-excitation patterns were interpreted
within a shell-model calculation based on a realistic effective interaction. The agreement between theory
and experiment is satisfactory and the calculations reproduce the observed differences in the excitation
pattern of the two isotopes. The calculations exclude a 6+ ground state in 106In. This is in agreement
with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is
also concluded that the ordering of the isomeric and ground state in 108In is inverted compared to the
shell-model prediction. Limits on B(E2) values have been extracted where possible. A previously unknown
low-lying state at 367 keV in 106In is also reported.

PACS. 23.20.Js Multipole matrix elements – 21.60.Cs Shell model – 25.70.De Coulomb excitation –
27.60.+j 90≤A≤149

1 Introduction

The low-lying states in 106,108In can be interpreted as the
coupling of a proton (π) hole in the g9/2 orbit to the neu-

tron (ν) states in the corresponding 107,109Sn isotopes [1,
2]. Here we aim to expand the knowledge of the low-lying
energy spectrum in 106,108In using Coulomb excitation for
the first time. According to measurements of the magnetic
dipole moment in 108In [3–5], the 7+ ground state and the
T1/2 = 39.6 min isomeric 2+ state are dominated by the

πg−1

9/2
⊗ νd5/2 configuration. The higher lying states have

previously been identified in terms of the πg−1

9/2
⊗ νd5/2

and πg−1

9/2
⊗ νg7/2 multiplets [5] based on the observed

decay-pattern following the 108Cd(p,nγ)108In reaction. In
106In the identification of the states is less clear. Accord-
ing to Refs. [3,4,6] the 7+ ground state has a dominating
πg−1

9/2
⊗νd5/2 configuration. The first excited state in 106In

is also isomeric with T1/2 = 5.2 min. However, the spin
measurements are inconsistent. For instance, (p,nγ) mea-
surements report this state as a 3+ state [7], while decay
studies suggest a spin and parity of 2+ [8,9].
It is well known that the γ-ray decay pattern following
e.g. a compound reaction is largely governed by the yrast
sequence, whereas for β-decay it depends on the nature of
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Table 1. Yields and relative intensities of the observed γ-ray
transitions in 108In.

Transition Eγ (keV) γ-ray Yield Intensity

7+
→ 7+

gs 151 377(66) 23(4)

3+
→ 2+ 169 1536(64) 100(4)

(5)+ → 7+
gs 248 631(50) 50(5)

(5)+ → (6, 7, 8) 151 79(14) 5(1)
3+

→ 2+ 236 1106(67) 86(6)
4+

→ 3+ 283 192(60) 17(5)
4+

→ 3+ 216 150(50) 11(4)

Table 2. Yields and relative intensities of the observed γ-
ray transitions in 106In. The two yields given for the 123 keV
doublet transition correspond to the yield of the observed γ-ray
peak.

Transition Eγ (keV) γ-ray Yield Intensity

(6+7+8+9+) → 7+
gs 123 897(41) 100(5)

(7+) → 7+
gs 147 566(61) 68(8)

(2)+ → (2)+ 123 897(41) 100(5)
(6+) → 7+

gs 367.1(2) 321(29) 64(6)

(6+) → (7+) 221.1(14) 38(14) 6(2)
6 → (6+7+8+9+) 267 105(21) 17(4)
(8+) → 7+

gs 821 59(16) 18(5)

(8+) → (7+) 673 128(24) 36(7)
(8+) → 7+

gs 1118 66(23) 25(9)

(8+)
→ (7+) 970 81(21) 28(7)

(9)+ → 7+
gs 1307 40(12) 17(5)

not placed 658.7(4) 42(11) 12(3)

the initial state of the parent nucleus. In Coulomb exci-
tation the excited states are populated from below. The
probability to populate a state is determined by the re-
duced transition matrix element for the initial and final
states. Therefore, for the case at hand, this method offers
the possibility to investigate the π−1

⊗ ν multiplets start-
ing from a specific initial state that couples to the higher
lying excited states in a manner different from the tech-
niques used before.
In the following the data is interpreted using a two-step
approach. First, the spectrum of the low-energy states in
the two isotopes was calculated in the shell-model. The re-
sults of this calculation, including the transition probabili-
ties, were used as input to the coupled-channels Coulomb-
excitation code GOSIA [10]. Secondly, the de-excitation
patterns simulated in this way were compared to the corre-
sponding experimental observations. From this, the π−1

⊗

ν multiplet character of some of the excited states could
be inferred. It should be noted that the shell-model inter-
action used here reproduces the energy spectrum of 106In
and 108In well.

2 Experimental technique

The measurements were carried out at the REX-ISOLDE
facility using RIBs consisting of both Sn and In isotopes.
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Fig. 1. Doppler corrected γ-ray energy spectrum for 108In
showing the decay of the levels populated in Coulomb exci-
tation.
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Fig. 2. Doppler corrected γ-ray energy spectrum for 106In
showing the decay of the levels populated in Coulomb exci-
tation. The transitions indicated with empty diamonds were
detected for the first time in this work.

The results for the Sn isotopes have been published, see
Ref. [11]. The definition of the physical events and the of-
fline data analysis for the present case is identical to that
of the Sn experiment and therefore treated very briefly
here. The In isotopes were produced by bombarding a
LaCx target with 1.4 GeV protons. The produced species
effused into an ion-cavity where the In isotopes were singly
ionized through surface ionization against the cavity walls.
Singly charged isotopes were subsequently extracted from
the cavity by an applied electric field and the mass of in-
terest was selected using electromagnetic separation. The
low-energy RIB was post-accelerated to a final energy of
2.8 MeV/u and bombarded onto a 2.0 mg/cm2 thick 58Ni
target. At this beam energy the inelastic collision process
was safe in the meaning that the target and the projectile
nuclei did not penetrate their mutual Coulomb barrier.
Scattered beam and target particles were detected in a
double sided silicon strip detector (DSSSD) [12]. The γ-
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rays were detected by the MINIBALL spectrometer [13]
which consists of 24 highly segmented Ge-detectors sur-
rounding the secondary 58Ni target in a spherical configu-
ration. Particle-γ events were time-correlated by a 100 ns
gate applied in the particle−γ coincidence spectrum.

3 The observed γ-ray de-excitation patterns

The Doppler corrected γ-ray energy spectra and the ex-
tracted γ-ray yields for 108In and 106In are shown in Figs. 1-
2 and Tables 1-2. All but three γ-ray transitions observed
in 106In could be assigned to known levels in this nucleus
whereas all of the observed γ-ray transitions in 108In are
known from before, see Fig. 3. The 151 keV γ-ray yield
in 108In is the sum of the yields from the (5)+ → (6, 7, 8)
and 7+

→ 7+
gs transitions. One of the 151 keV transi-

tions originates from a (5)+ state with a known 248 keV
(5)+ → 7+

gs branch. From this, the 151 keV doublet was
resolved, see Table 1. The yield of the 123 keV γ-ray
transition in 106In is also a doublet. It is the sum of the
(2)+ → (2)+ and (6+, 7+, 8+, 9+) → 7+

gs transitions. How-

ever, a separation similar to that in 108In was not possible.
Three previously unknown γ-ray transitions at 221.1(14),
367.1(2) and 658.7(4) keV were detected in 106In. The 367
keV γ-ray peak is rather prominent, see Fig. 2. The low
probability for multiple Coulomb excitation favors a di-
rect excitation from the 7+

gs state to a (5+, 6+, 7+, 8+, 9+)

state at 367.1(2) keV. According to the shell-model calcu-
lations, see Sec. 3.1, this state likely has spin and parity
6+. From the energy sums, the 221.1(14) keV γ-ray peak
was placed as an 9(3)% decay-branch from the 367 keV
state to the (7+) state at 147.2 keV. This further strength-
ens the existence of a state at 367 keV. The weak 658.7
keV transition, see Table 2, could not be placed.

3.1 Shell-model based GOSIA simulations

From inspection of the experimental de-excitation pat-
terns of 106In and 108In shown in Fig. 3, one can conclude
that the states at higher energy couple more strongly to
the 7+ ground state in 106In than in 108In. In order to
investigate this further a set of theoretical E2 and M1
transition matrix elements were derived using a realistic
effective interaction [14] based on a G-matrix renormal-
ized CD-Bonn nucleon-nucleon potential [15]. The model
space included the orbits ν(1g7/2, 2d5/2, 3s1/2, 2d3/2) and

π(1g9/2, 2p1/2) outside the 88Sr core. The single particle
energies were taken from Ref. [16], the effective charges
were set to eπ = 1.5 e and eν = 1.0 e, and the standard
gyromagnetic ratios were used. The negative parity orbit
ν(1h11/2) was excluded for computational gain since it has
a very small amplitude in the wave functions that describe
the low-energy positive-parity states. The transition ma-
trix element were then used to simulate the γ-ray yield
using the coupled-channels code GOSIA [10]. The simu-
lation included the geometry of the setup, the thickness
of the target foil, and the theoretical internal conversion

coefficients [17].
The shell-model calculation for 106In predicts a 6+ ground
state instead of the previously experimentally assigned 7+

ground state. In addition, in order for the GOSIA simula-
tions to reproduce the coupling to the higher lying states
the 6+ ground state must be replaced by the theoretical
first excited 7+

1 state. Indeed, a GOSIA simulation based
on a 6+ ground state leads to an intense 8+

1 →7+

1 transi-
tion and only one transition to the ground state, namely
from the 7+

1 state. However, experimentally other transi-
tions are observed as well which corroborates the 7+

1 shell-
model state as the ground state. The 1307 keV state was
tentatively assigned as 9+ in Ref. [18]. Most likely, it cor-
responds to the 9+ state at 1271 keV in the shell-model
calculation. The observed decay of the (8+) state at 821
keV has two branches, one to the 7+ ground state and the
other to the (7+) state at 147 keV. The shell-model cal-
culation predicts a similar transition between an 8+ state
and the 7+ ground state. However, the branch to the sec-
ond 7+ state is not reproduced. Nevertheless, the tentative
8+ assignment seems plausible.
The simulated γ-ray intensities for transitions to the iso-
meric 2+ state and the 7+ ground state in 108In are con-
sistent with data if the isomeric fraction of the indium
component of the RIB is 50%, see Fig. 4. However, the
current analysis is independent of the exact beam com-
position although the isomeric fraction of the RIB can be
resolved using the γ-rays following the decay of the beam
particles implanted at the experimental setup [21]. In or-
der to reproduce the adopted data in 108In, the 2+ ground
state and first excited 7+ state of the shell model has to
be interchanged. This conclusion is based on the intensity
of the transition between the 3+ state at 198 keV and the
isomeric 2+ state at 30 keV. The 3+ state can be identified
as the 262 keV state in the shell-model. The shell-model
correctly describes the feeding of this state from above
by a 4+ state at 482 keV, corresponding to the 4+ state
at 796.4 keV in the calculation. Furthermore, both the
shell-model state and the experimental counterpart have
a decay branch to a lower lying second 3+ state which then
decays to the first excited isomeric 2+ state. We stress that
the coupled decay-pattern of these four states is, apart
from the energies of the involved states, very well repro-
duced in the shell-model calculation. Therefore, the ex-
perimental 3+ state at 266 keV most likely corresponds to
the 501 keV state in the shell-model calculation. As men-
tioned, the (6,7)+ at 248 keV has a 91.2% decay branch
directly to the 7+ ground state. The only similar transi-
tion in the shell-model calculation is from the 5+ state
at 392 keV. Therefore the 248 keV state is here tenta-
tively assigned as having spin and parity 5+, see Fig. 3. It
should be pointed out that the 97 keV transition from the
low-lying (6, 7, 8) state to the 7+ ground state was not ob-
served since at this energy the de-excitation is dominated
by internal conversion and the detection threshold of the
MINIBALL Ge-detectors was ∼ 100 keV.
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3.2 Multiplet interpretation

In two previous efforts [5,20], the excited states of 108In
have been interpreted in terms of the πg−1

9/2
⊗ νg7/2 and

πg−1

9/2
⊗νd5/2 multiplets, see Fig. 4(a). However, the previ-

ous measurements were not directly sensitive to the tran-
sition matrix elements but had to rely on branching and
mixing ratios. These were based on decay data, angular
distributions from a (p,nγ) reaction, and from a high-spin
study of 108In. The results were compared [5] with an in-
teracting boson-fermion-fermion calculation (IBFFM)[19],
see Fig. 4(b). The residual interaction of the corresponding
Hamiltonian was fitted to reproduce the energy spectrum
of 108In. Here, we interpret parts of the experimental en-

ergy spectrum of 108In starting from a realistic shell-model
interaction without phenomenological modifications, see
Fig. 4(c)-(d). The theoretical multiplets were extracted in
the following way. Between neighboring I → I + 1 states
of the same π−1

⊗ ν multiplet one can expect a large M1
matrix element, which we in the following refer to as the
M1-overlap. Starting with the 2+ ground state of the shell-
model calculation, which has a dominating νd5/2 compo-

nent, a sequence of states belonging to the πg−1

9/2
⊗ νd5/2

multiplet can be identified by following the strongest M1
matrix elements. Similarly, the theoretical πg−1

9/2
⊗ νg7/2

multiplet was traced out by starting with the only 1+ state
in the shell-model calculation. In detail, the 2+ ground
state of the calculation has a large M1-overlap with the
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3+ shell-model state at 501 keV. Invoking the similarities
in the simulated and observed de-excitation patterns, it is
concluded that the experimental 3+ state at 266 keV also
belongs to this multiplet, see Fig. 4(c). This assumption
is strengthened by this state being fed by the 4+ state at
482 keV. This assignment differs from the one in Ref. [5]
and Fig. 4(a). We suggest that the experimental 3+ state
at 198 keV does not belong to the πg−1

9/2
⊗νd5/2 multiplet.

The reason is that the corresponding shell-model state at
262 keV has an M1-overlap with respect to the 2+ shell-
model ground state which is 20% smaller than the overlap
with the 3+ shell-model state at 501 keV. In the previous
section, the observed 4+ state at 482 keV was identified
as the calculated 4+ state at 796 keV. The M1-overlap
of this state with the 3+ shell-model state at 501 keV is
twice that of the overlap with the 3+ state at 262 keV.
This makes a πg−1

9/2
⊗ νd5/2 assignment of the 4+ state at

482 keV plausible. Continuing, the 5+ and 6+ states of
this multiplet would correspond to the shell-model states
at 1020 keV and 935 keV. In the shell-model, these states
are the fourth and the second states with these spins and
parities. Therefore, assuming an equivalent sequence of
the spins and parities in the experimental spectrum, the
states at 633 keV and 598 keV are suggested to belong
to the πg−1

9/2
⊗ νd5/2 multiplet. In the shell-model, the

6+ state at 935 keV has the largest M1 overlap with the
7+ shell-model state that corresponds to the experimental
ground state.
Regarding the πg−1

9/2
⊗ νg7/2 multiplet, the only low-lying

1+ state in the experimental spectrum is located at 699
keV. In the shell-model calculation, the 1+ state has the
largest M1-overlap with the low-lying 2+ state at 251 keV.
The only experimental low-lying 2+ state, apart from the
isomeric state at 30 keV, is located at 303 keV. Therefore,
it is reasonable to assign this state to the πg−1

9/2
⊗ νg7/2

multiplet. From the discussion above, we assign the ex-
perimental 3+ state at 198 keV to the πg−1

9/2
⊗ νg7/2 mul-

tiplet. The (4)+ state of this multiplet is according to the
shell-model the second state with this spin and parity.
Therefore, the next non-assigned (4)+ state at 231 keV is
tentatively assigned to the πg−1

9/2
⊗ νg7/2 multiplet. Simi-

larly, the 5+ and 6+ states of the shell-model correspond
to the experimental (5)+ state at 289 keV and the (6, 7, 8)
state at 97 keV. It is noteworthy that the 3+

−(4)+−(5)+

sequence of states of the πg−1

9/2
⊗ νg7/2 multiplet were all

assigned to belong to the πg−1

9/2
⊗νd5/2 multiplet in earlier

efforts, see Fig. 4(a). The lowest 7+ and 8+ states in the
shell-model calculation can be assumed to correspond to
the experimental 7+ and 8+ states at 151 keV and 808
keV.
The π−1

⊗ ν multiplets cover the same energy range. This
could be interpreted as originating in the nearly degen-
erate 5/2+ ground state and first excited 7/2+ state in
109Sn, with an energy difference of only 13 keV [1,2].
The IBFFM calculations and the 108Cd(p,nγ)108In reac-
tion data in Ref. [5] predict a larger energy splitting be-
tween the πg−1

9/2
⊗ νg7/2 and πg−1

9/2
⊗ νd5/2 configurations

than the one deduced in this work. It is worth pointing out
that the parameters for the neutron-core coupling in the
IBFFM calculations of Ref. [5] were fitted to the energies
of the experimentally determined π−1

⊗ ν multiplet.

4 Coulomb excitation analysis

For completeness we present upper limits of three B(E2)
values extracted from the 108In data using the computer
code GOSIA [10]. The E2 and M1 couplings between the
states shown in Fig. 3 were included in the analysis as well
as the small set of known branching ratios and mixing ra-
tios from Ref. [5]. For the cases where several tentative
spin assignments exist, the lowest spin was chosen. How-
ever, the solution was not sensitive to any variation of
tentative spin assignments for the present case. The prop-
erties of the χ2-minimum were tested by initiating the
minimization routine with a wide range of starting con-
ditions using randomization and rescaling of the matrix
elements. The statistical uncertainties of the γ-ray yields
and the large number of free parameters rendered final
matrix elements with large correlated uncertainties. How-
ever, the extremes of the uncertainties for three of the
E2 matrix elements in 108In were reasonable, see Table 3.
They provide a first estimate of the lower limits of the
lifetimes of two of the excited states in 108In. Further-
more, the flight time between the secondary target and
the DSSSD was ∼ 2 ns. This provides an upper limit of
the lifetimes of all the states observed in 106,108In since
the de-excitation γ-ray peaks appear only in the Doppler
corrected spectra. These values can be compared to the
lifetimes of some of the low-lying states in 110In, deter-
mined from the 107Ag(α,nγ)110In reaction [22], which are
in the order of �5-10 ps.

5 Conclusions

In conclusion, the radioactive isotopes 106,108In have been
Coulomb excited from their ground states and first excited
isomeric states. The multiplet structure of 108In has been
reanalyzed in view of the de-excitation patterns observed
here. The realistic residual interaction based on the CD-
Bonn potential does not predict the correct ground state
spins of 106,108In but it reproduces the observed transi-
tion patterns in general. Further Coulomb excitation stud-
ies accompanied with high-statistics decay- and reaction-
studies are needed in order to improve the precision of the
transition matrix elements in 106,108In. This information
will provide a good benchmark for studies of the nucleon-
nucleon interaction in the vicinity of 100Sn, and the π-ν
two-body matrix-elements in particular.

This work was supported by the Swedish Research Coun-
cil, the European Union through RII3-EURONS (Con-
tract No. 506065), and the German BMBF through Grant
No. 06 KY 205 I.
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Table 3. Observed γ-ray transitions in 108In and the deduced limits on the transition probabilities where possible.

Transition Ei (keV) Ef (keV) Eγ (keV) Lifetime τm (ps) B(E2) (Wu)

7+
→ 7+

gs 150.8 0.0 150.8 4 < τm � 2000 < 196

5+
→ 7+

gs 247.7 0.0 247.7 4 < τm � 2000 < 222

5+
→ (6) 247.7 96.9 150.8 4 < τm � 2000 < 93
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Abstract

A method based on the coupled decay-chain equations for extracting the isotopic and the isomeric composition of a
postaccelerated radioactive ion beam is presented and demonstrated on a data set from a Coulomb excitation experi-
ment. This is the first attempt of analyzing the content of a postaccelerated radioactive ion beam using this technique.
The beam composition is required for an absolute normalization of the measurement. The strength of the method, as
compared to present online-based methods, lies in the determination of the isomeric fraction of a partially isomeric
beam using all data accumulated during the experiment. We discuss the limitations and sensitivity of the method with
respect to the γ-ray detection efficiency and the accumulated flux.

Keywords: Postaccelerated radioactive ion beam, Isomeric beam, Decay-chain analysis, GEANT4
PACS: 29.38.Gj, 29.85.Fj, 29.30.Kv

1. Introduction

Technical advances in the postacceleration of ra-
dioactive ion beams (RIBs) produced in ISOL-facilities
enable high-precision studies of many exotic isotopes
using well-known techniques such as Coulomb excita-
tion or transfer reactions. Still, even though significant
advances are beingmade in targetry and separation tech-
niques, the incident RIBs very often contain additional
isobaric species apart from the one under study. Conse-
quently, in many experiments a time-varying beam com-
position must be investigated for the purpose of normal-
ization. A variety of techniques based on lasers [1] or
ionization chamber methods are in use to extract this in-
formation. Such measurements are usually carried out
several times during an experiment and provide an in-
stantaneous measure of the isobaric composition of the
beam. We will concentrate on an offline method that
uses the γ-rays detected following the decay of the un-
stable components of the RIB. In particular, this method
allows for the extraction of the isomeric to ground state
fraction of a partially isomeric beam. See Fig. 1 for the
case under study here. This approach also serves as a
valuable consistency check for the methods mentioned

above. The sensitivity with respect to the uncertainties
in the γ-ray detection efficiencies and branching ratios is
investigated using a data set from a Coulomb excitation
experiment that was carried out at the REX-ISOLDE fa-
cility.

2. The experiment and the production of the RIB

The method has been tested in parallel with the anal-
ysis of Coulomb excitation data taken at the REX-
ISOLDE facility at CERN. In this experiment a 2.82
MeV/u RIB consisting of 108Sn (T1/2 = 10.30(8) min),
108In in the ground state (T1/2 = 58.0(12) min), and
108In in the first isomeric 2+ state (T1/2 = 39.6(7) min)
was Coulomb excited against a stable 2.0 mg/cm2 thick
58Ni target. The primary aim of this experiment was to
investigate the low-lying collective properties of 108Sn.
The main results from the data analysis can be found in
Ref. [2] and is independent of the method investigated
here. The scattered particles were detected by a circu-
lar double-sided silicon-strip detector (DSSSD) placed
3 cm downstream of the 58Ni target and positioned in a
spherical target chamber. The γ-rays were detected by
the 8 MINIBALL HPGe triple-clusters [3] surrounding
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Figure 1: This figure schematically shows the different types of γ-
rays, γ1 , γ2, γ3, that were used as a signature for identifying the Sn,
Ings, and Inm parts of the beam. The decay branches of 108Sn only
populate states in 108In that feeds the 2+ isomeric state. The 108In 7+
ground state decays into certain states in 108Cd and comes from the
beam component only.

No. Eγ (keV) Iγ (%) Exp. Yield Yγ Parent
1 272.75 45.5(6) 6801282(6229) 108Sn
2 396.43 64.3(6) 9788686(5212) 108Sn
3 669.11 22.6(4) 2383319(3667) 108Sn
4 730.87 9.3(10) 467648(2737) 108In
5 1032.92 35(3) 1017867(2096) 108In
6 1056.79 29(3) 1309156(2076) 108In
7 1529.72 7.3(4) 802648(1596) 108Inm

Table 1: The most intense observed γ-ray yields from the different
decay chains of the beam components. They γ-ray intensities Iγ [5]
are normalized to the decay of the parent nucleus.

the target chamber in a spherical configuration. Each
triple-cluster consisted of three individual Ge-crystals.
The RIB was produced by bombarding a thick primary
target consisting of LaCx with 1.4 GeV protons pro-
vided by the PS Booster of the CERN accelerator com-
plex. The isotopes produced in the induced fission, spal-
lation, and fragmentation reactions effused into an ion-
ization cavity where the Sn isotopes were singly ionized
using resonant laser ionization [4]. The In and Inm iso-
topes were singly ionized from surface ionization on the
walls of the cavity. The A=108 isotopes of the extracted
1+ ions were subsequently separated in the high resolu-
tion mass-separator of the facility. After initial cooling,
trapping, and charge breeding the RIB was postacceler-
ated by the REX-linac to its final energy.

3. Method: Coupled decay-chain analysis

After passing the target the unstable beam particles
are stopped in the target chamber and the downstream

time (hours)
0 10 20 30 40 50 60 70 80

pa
rti

cl
e-

tri
gg

er
s 

pe
r s

ec
on

d

200

400

600

800

1000

1200

Figure 2: (color online) The particle-trigger rate provides a measure
of the variation in the incident beam flux. For several periods of time
the beam was switched off. However, with the method presented here
this is taken into account.

beam dump where they decay and populate excited
states in the daughter nuclei. The composition of the
beam is reflected in the total number of detected γ-
rays from transitions that can be uniquely coupled to
a certain isotopic/isomeric component of the beam. See
Fig. 1 for a schematic illustration of this concept. For
this particular case it was possible to identify at least one
individual decay-path for each component, see Table. 1.
Here one should note that postacceleration of a RIB typ-
ically requires several orders of magnitude higher inten-
sity than is required to establish the decay scheme. Con-
sequently, isotopes studied using postaccelerated RIBs
have well-known decay schemes. The data presented
in Table 1 were collected over the 75 hours in which
the experiment was running. The coupled-decay chain
method makes it possible to analyze the γ-ray yields
using different half-lives of the components and time-
periods without any incident beam. The content of the
RIB can be written as;

P ·108 Sn + Q ·108 Ings + R ·108 Inm (1)

where 0 ≤ P,Q,R ≤ 1 represent the magnitude of each
component. The primary aim of the analysis is to ex-
tract Q and R. The time-dependence of the Sn-fraction
P(t) can be removed by introducing a time-average 〈P〉
according to;

〈P〉 =

∫
P(t)F (t) dt∫
F (t) dt

(2)

In the following the time-averaged value is referred to
as P. The fluctuations of the incident beam flux F (t)
is provided by the number of particles detected in the
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DSSSD, see Fig. 2. The ratio α of indium in the meta-
stable state (108Inm) to the total indium fraction of the
beam (108Ings+108Inm) , i.e. α ≡ R/(Q + R), was as-
sumed to be constant. This assumption is reasonable
since the heating and the chemical properties of the pri-
mary target does not change during the experiment in
any respect that would influence this ratio. It should be
pointed out that the variations of P originates in fluctu-
ations of the ionization efficiency, caused by e.g. a drift
in the positions of the laser beams. The activity of the
beam components that were deposited in the experimen-
tal setup over time is described by the following set of
differential equations;

Ṡn = −λS nSn(t) + PF (t)
İnm = +λS nSn(t) − λInm Inm(t) + (1 − P)αF (t)
İngs = −λIngs Ings(t) + (1 − P)(1 − α)F (t)

(3)

where the amount of each isotope is denoted by Sn(t)
etc., and the dot indicates the time-derivative. The cou-
pled differential equations in Eq. 3 were solved by a
fourth-order Runge-Kutta routine with a step-length of
100 seconds and with the initial conditions;

Sn(t = 0) = Ings(t = 0) = Inm(t = 0) = 0 (4)

The equations were integrated over the entire experi-
ment and took into account the periods when the data
acquisition system was switched off. The final number
of deposited isotopes of a certain kind depends on the
values of P and α. For each combination of these, the
expected γ-ray yield Yγ was calculated from the known
γ-ray intensities in Table 1, the known decay constants,
and the γ-ray detection efficiency, see Sec. 3.1. The
overall normalization constant was removed by forming
ratios Ri of the type

Yγ(Ings)
Yγ(Sn)

,
Yγ(Inm)
Yγ(Sn)

,
Yγ(Inm)
Yγ(Ings)

(5)

and were subsequently compared to its experimental
counterparts using a χ2-type penalty function given as;

X2/ν =
1
ν

∑

i

⎛⎜⎜⎜⎜⎝
Rexpi − R

calc
i

σi

⎞⎟⎟⎟⎟⎠
2

(6)

where ν represents the total number of degrees of
freedom. In total, the 2 parameters of the model and
the 15 ratios that could be formed from Table 1 gives
ν = 13. The uncertainty σi of each ratio comes from
the uncertainties in the γ-ray intensities, the detection
efficiencies, the decay constants, and the experimental
γ-ray yields. These errors were propagated using
Gaussian error propagation.

 (keV)γE
0 200 400 600 800 1000 1200 1400 1600 1800

re
la

tiv
e 

ef
fic

ie
nc

y

0.2

0.4

0.6

0.8

1

1.2

1.4

Eu in target position (GEANT4)152
Eu in target position (exp)152

internal calibration (exp)
internal calibration (GEANT4)

Figure 3: (color online) Simulated (GEANT4) and experimental rel-
ative γ-ray detection efficiencies. The blue curve is obtained from an
internal calibration of the observed yields from the 108Ings →108Cd
decay. The green solid dots represent the result from a measurement
with a 152Eu source placed in the target position, i.e. nearly the center
of the target chamber. The black dashed curve represents the corre-
sponding simulation. The red dashed curve shows the simulated result
when using a scattered beam. See the text for details.

3.1. The γ-ray detection efficiency of a scattered parti-
cle source

The γ-rays that are listed in Table 1 were detected by
the MINIBALL spectrometer. The corresponding ac-
tivity was distributed over the scattering chamber, the
downstream beam dump, and on the inside of the beam
pipes. The implementation of the collected γ-ray yields
in the decay-chain model requires the knowledge of
the detection efficiency of the MINIBALL to radiation
emitted from the Rutherford-distributed particle source.
This is provided by an internal calibration that is based
on the observed γ-rays from the 108Ings →108Cd decay
of the scattered beam. Note that additional and less in-
tense γ-rays, not included in Table 1, were used for this
purpose in order to expand the interval of detected en-
ergies as much as possible. Most of the correspond-
ing intensities were known to a precision of ∼ 10%.
Therefore, the uncertainty of the internal calibration is
of the same size. The data points were fitted to an ex-
ponential function and the result is shown as the blue
solid curve in Fig. 3. Compared to the experimental ef-
ficiency obtained from a 152Eu source placed in the cen-
ter of the chamber, represented by the green solid dots in
Fig. 3, the internal calibration indicates a stronger atten-
uation of low energy γ-rays. This appears to be consis-
tent with the intuitive reasoning that the γ-rays emitted
from particles that were stopped in the beam dump, ∼
1.4 meters downstream, have to penetrate more material
before reaching any of the MINIBALL Ge-detectors.
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Figure 4: (color online) GEANT4 geometry of the setup showing the
8 MINIBALL triple-clusters (yellow). The spherically shaped target
chamber was located in the center and consisted of 2 mm thick alu-
minum. The beam dump was 1.4 m further downstream and cov-
ered by shielding bricks made of lead (red). The γ-ray detection effi-
ciency was simulated for a source of 108In particles Rutherford scat-
tered against a 2.0 mg/cm2 cm thick 58Ni target. A transverse beam
emittance of 0.3 mm·mrad was included as well as the energy loss
dE/dx of the 108In particles as they traversed the target. See the text
for details.

However, given the uncertainty of the internal calibra-
tion, the form of the internal efficiency-curve was in-
vestigated further using a GEANT4 simulation. The
eightMINIBALL triple-clusters were positioned around
the target chamber according to the experimental con-
figuration, see Fig. 4. A 108In beam with an energy
of 2.82 MeV/u was Rutherford scattered against a 2.0
mg/cm2 thick 58Ni target inside the target chamber in
the simulation. The energy loss of the projectiles as
they traversed the target foil was also included. Ac-
cording to measurements and simulations [6] the trans-
verse phase space properties of the beam can be ade-
quately described by an emittance of 0.3π· mm · mrad
(normalized at 3.0 MeV/u) and a Gaussian distributed
diameter of 4 mm. From the Rutherford cross section it
is clear that 99.9% of the scattered beam continues to-
wards the beam dump. The particles in the center of
the beam that scatter at an angle θlab > 9.5◦ do not
pass through the hole of the particle detector placed 3
cm downstream in the target chamber. However, due to
the Gaussian width distribution of the beam, 17% of the
particles that scatter with θlab > 9.5◦ will pass through
the hole and be stopped within 3 cm behind the target
chamber. Nearly all, 99.7%, of the beam particles that
Rutherford scatter θlab < 9.5◦ will end up in the beam
dump, the remaining 0.3% are stopped along the path
towards the beam dump. The simulations show that the
absolute detection efficiency for a γ-ray emitted from
this region is on the order of 0.02%, which is 1/500 of
the detection efficiency of a γ-ray emitted from inside
or in the immediate vicinity of the target chamber, see
Fig. 5. Still, the fraction of the detected γ-rays that orig-
inate from the beam dump is comparable to the fraction
that was emitted from the target chamber since the par-
ticle density in the beam dump is ∼1000 times higher.
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Figure 5: Simulated (GEANT4) γ-ray detection efficiency of the
MINIBALL spectrometer for (a) γ-rays that were emitted from the
beam dump and (b) γ-rays that were emitted from inside the target
chamber.

Furthermore, the efficiency curve belonging to the beam
dump increases with increasing γ-ray energy, a compo-
nent which is also present in the experimental internal
calibration-curve of Fig. 3. Therefore the experimental
internal calibration-curve can be understood from the
properly weighted linear combination of the simulated
absolute efficiency curves of the beam dump and the tar-
get chamber in Fig. 5. This linear combination is repre-
sented by the red solid curve in Fig. 3. In this model, the
scattered particle fraction residing on the inner surface
of the beam pipes between the target chamber and the
beam dump is neglected. The exact amount depends on
the spatial width of the beam and the transverse emit-
tance. The agreement between the simulated and the
experimental versions of the internal calibration-curve
was improved if the efficiency component of the target
chamber was shifted from 0.1% to 0.2%. Effectively,
this can be interpreted as incorporating the particles that
were stopped between the target chamber and the beam
dump. This shift has been included in Fig. 3. Given that
the shape of the internal calibration curve can be under-
stood from the effects described above it was used in the
current application of the coupled decay-chain model.

4. Results

The X2 value per degrees of freedom depends on α
andP. A variation of these generates a two-dimensional
distribution in the R-P plane. The location of the global
minimum of the X2/ν-statistic determines the isomeric
fraction as well as the Sn-fraction of the beam that best
fits the data. The extent of the X2min/ν+1 contour, which
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defines the uncertainty of the result, is governed by the
precision of the terms in Eq. 6. A dominating system-
atic effect comes from the γ-ray intensities Iγ in Table 1.
This is seen when the X2/ν expression is truncated such
that only one signature transition per beam component
is included. For the present case, this reduces the num-
ber of degrees of freedom to ν = 1. The result of using
e.g. the transitions of Table 1 with indices 3, 5, and
7 is shown in Fig. 6(a). The global minimum X2 = 0
indicates a perfect fit to the data. However, the choice
of transitions introduces a bias in the result due to the
fluctuating precision of the previously reported γ-ray in-
tensities. Indeed the X2/ν-surface based on all the data
listed in Table 1, see Fig. 6(b), gives a wider minimum
with a X2/ν statistic closer to one. Clearly, circum-
venting the fluctuations in the γ-ray intensities comes
at the expense of the precision in the final result. One
can note that the linear dependence between R and P
present in Fig. 6(a) remains when the uncertainties of
the efficiency calibration are set to zero. However, the
extent of the X2-minimum in the linear direction shrinks
with a factor of two and covers 54% ≤ P ≤ 64% and
18% ≤ R ≤ 28%.
The X2min/ν + 1 region in Fig. 6(b), i.e. the green
area, delimits the optimal set of values of R and P to
0% � R � 30% and 50 � P � 80%. This is con-
sistent with the value obtained using the online laser
methodPlaser = 59±3% [2], which is also indicated in
Fig. 6(c). For the present case the precision of R is im-
proved when the decay-method is used in conjunction
with the laser on/off technique, as shown in Fig. 6(b).
Along the Plaser = 0.590 path in the R − P plane the
lowest X2/ν value is 1.18 and occurs for R = 0.20.
The uncertainty of this value can be estimated from the
X2/ν + 1 intersections of the Plaser = 0.590 ± 0.027
paths, leading to an isomeric fraction R = 0.20+0.07

−0.09.
The uncertainties in the efficiency curve are propagated
to the final result in a standard fashion. Typically the
efficiency can be determined to a level below ∼ 1%.
For the present case the uncertainty of the internal cali-
bration is 10-20% and therefore impacts the final result
accordingly. However, this uncertainty is comparable to
the overall precision of the γ-ray intensity ratios. The
interplay of these two quantities will determine the pre-
cision of the final result for the case under study. The
impact of the uncertainties δλi of the decay constants λi
in Eq. 3 is negligible in the present context. This was in-
vestigated numerically by solving the equations for the
two combinations of λi ± δλi that maximally perturb the
position of the X2 minimum in theR-P plane, see Fig. 7.
The effect of the uncertainties of the decay constants in
Eq. 3 can easily be included in a maximum likelihood
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Figure 6: (color online) (a) The X2/ν-surface based on one transition
per beam component. Here, transitions 3,5, and 7 of Table 1 were
used. The number of degrees of freedom for this case is ν = 1. The
one-sigma contour for this case is defined by the X2/ν + 1(= 0.0 + 1)
contour, i.e. where the red region begins. This panel shows that the
extent of the total X2min/ν + 1 surface depends on the precision of the
quoted γ-ray intensities. In panels (b) and (c) the X2/ν distribution
per number of degrees of freedom (ν) for varying 108Sn and 108Inm
fractions of the beam. The input data are shown in Table 1 and the
γ-ray efficiencies were obtained from the internal calibration curve in
Fig. 3. The obtained valley of optimal X2/ν is consistent with the
laser on/off value 0.590±0.027 for the 108Sn fraction [2]. The one-
sigma contour for this case is defined by the X2min/ν + 1(= 0.82 + 1)
value. Along the path Plaser = 0.590, the optimal 108Inm fraction is
0.20+0.07

−0.09.
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Figure 7: (color online) The panels show the X2 curves for a given
(a) R and (b) P value. The impact of the uncertainties in the decay
constants of Eq. 3 are indicated by the dashed curves. See the text for
details.

method or in a conservative approach using the resulting
extreme positions of the of the X2min + 1 values.

5. Conclusion

A method for deducing the isotopic and isomeric
composition of a postaccelerated radioactive ion beam
was presented. The strength of this method lies in its
ability to determine the isomeric as well as the isotopic
ratios of the beam in an offline analysis using all the
accumulated data. This is an improvement over meth-
ods that e.g. determine the isotopic ratio using instanta-
neous online measurements and consequently influence
the beam flux. The methodwas successfully applied to a
real case. The optimal scenario for this type of analysis
would be if the scattered beam particles were deposited
in a simple, small, and well-defined geometry. Natu-
rally, the outcome of the analysis depends on the avail-
ability of at least one well-known decay transition that
is completely independent from the other components
of the beam. Also, the half-lives of the beam compo-
nents must be short enough that the investigated species
have had time to decay within the duration of the mea-
surement, i.e. the measurement time should be at least
three times the half-life.
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