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We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of
SOð5Þ=SOð4Þ composite Higgs models. We show how these relations can be used and must be modified
when modeling the spectral functions through a low-energy effective description of the strong dynamics.
We then use the dispersion relation for the parameter ϵ3 to estimate the contribution from spin-1 resonances

at the one-loop level. Finally, we show that the sign of the contribution to the Ŝ parameter from the lowest-
lying spin-1 states is not necessarily positive definite but depends on the energy scale at which the
asymptotic behavior of current correlators is attained.

DOI: 10.1103/PhysRevD.92.115010 PACS numbers: 12.60.Cn, 14.80.Ec

I. INTRODUCTION

Theories with strong electroweak symmetry breaking are
severely constrained by the electroweak precision observ-
ables measured at LEP, SLC, and the Tevatron. Large
corrections to vector boson polarizations, especially those
encoded by the Peskin-Takeuchi S parameter [1], were the
most severe problem of Technicolor theories [2], together
with flavor, before the discovery of a light Higgs boson. To
date, electroweak tests set the strongest constraints on
composite Higgs theories [3,4], and this is even more true
for their recent Twin Higgs realizations [5–9]. However,
while corrections to electroweak observables can be naively
estimated to be generally large, their precise determination
in the context of strongly interacting dynamics is a
challenge. A first-principle approach based on a non-
perturbative method such as lattice gauge theories is
possible but demanding in terms of theoretical efforts
and computational power (see, for example, Refs. [10]
for calculations of the S parameter on the lattice). Simpler,
though less rigorous, approaches include a variety of
perturbative methods like the inclusion of chiral logarithms,
effective models of the lowest-lying resonances, and the
large-N expansion. Especially powerful in this sense is the
five-dimensional perturbative approach of holographic
theories, which allows one to effectively resum the cor-
rections of a whole tower of states, the Kaluza-Klein
excitations, neglecting smaller effects from string modes.
An alternative strategy consists in making use of

dispersion relations to express an observable as the integral

over the spectral functions of the strong dynamics.
Extracting the spectral functions from experimental data
thus leads to a result which is, at least in principle, free from
theoretical ambiguities. The most successful application of
this idea is perhaps the determination of the correction from
the electromagnetic vacuum polarization due to QCD to the
muon g − 2 [11], though equally famous is the estimate of
the S parameter in Technicolor theories made by Peskin and
Takeuchi in their seminal paper [1] (where they also
computed the chiral coefficient l5 using the dispersive
formula first derived by Gasser and Leutwyler [12]).
Although the most powerful use of dispersion relations
is in conjunction with experimental data, in the absence of
the latter, one can make models of the spectral functions
based on theoretical considerations. Computing the spectral
functions through a low-energy effective theory of reso-
nances leads in fact to the same result obtained by a more
conventional diagrammatic technique, though the disper-
sive approach can simplify the calculation and gives a
different viewpoint.
The first application of dispersion relations to composite

Higgs theories was given in Ref. [13] by Orgogozo and
Rychkov, who derived a dispersion formula for the param-
eter ϵ3 defined by Altarelli and Barbieri [14]. A dispersive
one-loop calculation of the S parameter was later performed
by Ref. [15] (see Appendix B therein). The aim of this
paper is to give an alternative derivation and extend the
work of Ref. [13] by obtaining spectral representations for
the electroweak parameters Ŝ, W, and Y of Ref. [16]. We
will focus on SOð5Þ=SOð4Þ models as simple though
representative examples of composite Higgs theories; the
extension to other cosets is straightforward. We will then
use the dispersion formula for ϵ3 to estimate the contribu-
tion from spin-1 resonances at Oðm2

W=16π
2f2Þ by comput-

ing the spectral functions in a low-energy effective theory.
The result will be shown to coincide with the one we
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obtained in Ref. [17] through a diagrammatic calculation.
The different viewpoint offered by the dispersive approach
will allow us to clarify an issue on the positivity of Ŝ raised
in Ref. [13].
The paper is organized as follows. In Sec II, we review

the definition of ϵ3 by distinguishing between long- and
short-distance contributions. Short-distance contributions,
in particular, will be parametrized in terms of Ŝ, W, Y, and
X. We derive expressions for Ŝ, W, and Y in terms of two-
point current correlators of the strong dynamics, which can
be used for a nonperturbative computation on the lattice.
Section II B contains a derivation of the dispersion relation
for Ŝ,W, and Y, extending the work of Peskin and Takeuchi
to the case of SOð5Þ=SOð4Þ theories. A dispersive formula
for ϵ3 is then derived. The result is shown to agree with the
previous result of Orgogozo and Rychkov and improves on
it by reducing the relative uncertainty. In Sec. III, we show
how dispersion relations can be used and must be modified
in order to model the spectral functions in the context of a
low-energy effective description of the strong dynamics.
The dispersion relation for ϵ3 is then used in Sec. IV to
estimate the contribution from spin-1 resonances at the one-
loop level. We discuss the positivity of Ŝ in Sec. V, where
we also present our conclusions. Some useful formulas and
additional discussions are collected in the Appendix:
Appendix A contains a generalization of our derivation
to theories where the strong dynamics contains a small
breaking of the SOð5Þ symmetry; the expressions of the
spectral functions computed in the effective theory are
reported in Appendix B; finally, in Appendix C we
illustrate a simple model where the contribution to Ŝ from
the lightest spin-1 resonances is not definite positive.

II. DISPERSION RELATION FOR ϵ3

We start by deriving the dispersion relation for the ϵ3
parameter in the context of SOð5Þ=SOð4Þ composite Higgs
theories. Our analysis will be similar to that of Ref. [13],
although it differs in the way in which short- and long-
distance contributions from new physics are parametrized.
In this respect, our approach is closer to the original work of
Peskin and Takeuchi [1], where the S parameter is defined
to include only short-distance effects from the new
dynamics.

A. Short- and long-distance contributions to ϵ3
It is well known that universal corrections to the

electroweak precision observables at the Z pole can be
described by three ϵ parameters [14]. In this paper, we are
mainly interested in the ϵ3 parameter, which can be
expressed as [18]

ϵ3 ¼ e3 þ c2We4 − c2We5 þ ðnonoblique correctionsÞ ð2:1Þ

in terms of the vector-boson self-energies

e3 ¼
cW
sW

F3Bðm2
ZÞ; e4 ¼ Fγγð0Þ − Fγγðm2

ZÞ;

e5 ¼ m2
ZF

0
ZZðm2

ZÞ: ð2:2Þ

Here, sW (cW) denotes the sine (cosine) of the Weinberg
angle, and we have followed the standard convention
decomposing the self-energies (for canonically normalized
gauge fields) as

Πμν
ij ðqÞ ¼ −iημνðAijð0Þ þ q2Fijðq2ÞÞ þ qμqνterms: ð2:3Þ

We consider scenarios in which the new physics modifies
only the self-energies, i.e., its effects are oblique. The form
of the nonoblique vertex and box corrections in Eq. (2.1) is
thus irrelevant to our analysis, since these cancel out when
considering the new physics correction Δϵ3 ≡ ϵ3 − ϵSM3 . It
is useful to distinguish between a short- and a long-distance
contribution to Δϵ3. Heavy states with mass m� ≫ mZ
affect only the short-distance part. This latter can be
expressed as the contribution of local operators and is
generated also by loops of light [i.e., Standard Model (SM)]
particles. We define it to be

Δϵ3jSD ¼ Δē3 þ c2WΔē4 − c2WΔē5; ð2:4Þ

where Δēi ≡ ēi − ēSMi and

ē3 ¼
cW
sW

ðF3Bð0Þ þm2
ZF

0
3Bð0ÞÞ;

ē4 ¼ −m2
ZF

0
γγð0Þ; ē5 ¼ m2

ZF
0
ZZð0Þ: ð2:5Þ

It is convenient to express Δϵ3jSD in terms of the param-
eters Ŝ, W, Y, and X defined in Ref. [16],

Δϵ3jSD ¼ Ŝ −W − Y þ X
sWcW

; ð2:6Þ

where

Ŝ¼cW
sW

ðF3Bð0Þ−FSM
3B ð0ÞÞ W¼m2

WðF0
WWð0Þ−F0SM

WWð0ÞÞ

X¼m2
WðF0

3Bð0Þ−F0SM
3B ð0ÞÞ; Y¼m2

WðF0
BBð0Þ−F0SM

BB ð0ÞÞ:
ð2:7Þ

The S parameter originally introduced by Peskin and
Takeuchi in Ref. [1] is related to Ŝ by Ŝ ¼ ðαem=4s2WÞS.
The long-distance correction to ϵ3 arises from loops of

light particles only, as a consequence of their nonstandard
couplings. We define

Δϵ3jLD ¼ ½Δe3 − Δē3 þ c2WðΔe4 − Δē4Þ
− c2WðΔe5 − Δē5Þ�light particles; ð2:8Þ
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where Δei ≡ ei − eSMi and the expression in square brack-
ets is computed by including only the contribution of light
particles. In the scenario under consideration, the dominant
long-distance contribution arises from the composite
Higgs, as a consequence of its modified couplings to
vector bosons. At one loop, it is given by the diagrams
in Fig. 1. Working in the Landau gauge for the elementary
gauge fields (∂μWi

μ ¼ 0 ¼ ∂μBμ), we find1

Δϵ3jLD ¼ g2

96π2
sin2θ

�
f3ðxhÞ −

xh
2ð1 − xhÞ5

× ðx4h − 5x3h þ 19x2h − 9xh þ 36Þ log xh
−
5x4h þ 7x3h þ 21x2h þ 151xh þ 68

12ð1 − xhÞ4
�
; ð2:9Þ

where xh ¼ m2
h=m

2
Z and the function f3 is given by [17]

f3ðxÞ ¼ −x2 þ 3x −
31

6
þ 1

4
ð2x3 − 9x2 þ 18x − 12Þ log x

−
ð2x3 − 13x2 þ 32x − 36Þx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4 − xÞxp arctan

 ffiffiffiffiffiffiffiffiffiffiffi
4

x
− 1

r !
:

ð2:10Þ

Additional long-distance effects arise from the top quark
and are further suppressed by at least a factor ζ2t , where ζt is
the degree of compositeness of the top quark. They will be
neglected in the following.
From Eqs. (2.4), (2.6), and (2.8), we find

ϵ3 ¼ ϵSM3 þ Δϵ3jLD þ Ŝ −W − Y þ X
sWcW

þ � � � : ð2:11Þ

Together with Eq. (2.8), this is our master formula for the
calculation of ϵ3.

2 It is accurate up to corrections (denoted
by the dots) of relative order ðm2

Z=m
2�Þ, which are not

captured by our definition of short- and long-distance

contributions in Eqs. (2.4) and (2.8). We will assume the
mass scale of the new resonances to be much higher than
the electroweak scale, m� ≫ mZ;mh, and neglect these
corrections.
As a consequence of the gap between m� and mZ, the

contribution of the new heavy states to ϵ3 is local and
encoded by the Ŝ;W; Y; X parameters. Loops of light SM
particles, in particular the Higgs boson, lead to an addi-
tional new physics correction through their modified
couplings which is of both short- and long-distance types.
In the composite Higgs theories under examination, the
shifts to the Higgs couplings are of order ðv=fÞ2, where f is
the Higgs decay constant. Since f is related to m� through
the coupling strength of the resonances, m� ∼ g�f, one
could in principle get large modifications to the Higgs
couplings for f ∼ v while still having a mass gap provided
g� ≫ g. In fact, current experimental data on Higgs
production at the LHC disfavor large shifts and constrain
ðv=fÞ2 ≲ 0.1 at 95% C.L. [19] (see also Refs. [20–22] for
previous theoretical fits). In the limit of a large compos-
iteness scale, f ≫ v, all the new physics contributions to
low-energy observables can be conveniently computed by
matching the UV theory to an effective Lagrangian built
with SM fields (including the Higgs doublet) at the scale
m�. The leading contribution of light fields to Δϵ3 then
arises from one-loop diagrams with one insertion of a
dimension-6 operator. The divergent part of these diagrams
is associated with the renormalization group (RG) running
of the operators’ coefficients, while the finite part is
interpreted as a long-distance threshold correction at the
scale mZ. This shows that the contributions from heavy
modes and light modes are not individually RG invariant,
as only their sum is independent of the renormalization
scale at the one-loop level. Clearly, no issue with the RG
invariance arises if one works at the tree level, and in that
case, it makes perfect sense to define the Ŝ, W, Y, and X
parameters to include only the contribution of heavy
particles. When one-loop corrections are considered, how-
ever, any RG-invariant definition of the short-distance
contribution must include at least the divergent correction
from loops of light fields. According to our definition of
Eq. (2.4), Ŝ, W, Y, and X include such a divergent part as
well as a finite one.

B. Dispersion relations for the
short-distance contributions

We are now ready to derive the dispersion relations for Ŝ,
W, and Y in terms of the spectral functions of the strongly
interacting dynamics. We start by considering Ŝ.
The strong dynamics is assumed to have a global SOð5Þ

invariance spontaneously broken to SOð4Þ ∼ SUð2ÞL×
SUð2ÞR. The elementary Wμ and Bμ fields gauge an
SUð2ÞL ×Uð1ÞY subgroup contained into an SOð4Þ0 mis-
aligned by an angle θ with respect to the unbroken SOð4Þ

FIG. 1. One-loop diagrams relative to the Higgs contribution to
Δϵ3. Wavy, continuous and dashed lines denote respectively
gauge fields (W� and Z), Nambu-Goldstone bosons of
SOð4Þ=SOð3Þ (π1;2;3) and the Higgs boson.

1The same formula holds in a generic theory with Higgs
coupling to vector bosons cV , provided one replaces the factor
sin2 θ with ð1 − c2VÞ.2An analogous formula was given in Eq. (6c) of Ref. [16],
where, however, the long-distance term Δϵ3jLD is omitted.
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(see Refs. [17,23] for details). They couple to the following
linear combinations of SOð5Þ currents,3

Lint ¼ WaμJa½W�
μ þ BμJ½B�μ ð2:12Þ

Ja½W�
μ ¼ Tr½TaLð0ÞTAðθÞ�JAμ
J½B�μ ¼ Tr½T3Rð0ÞTAðθÞ�JAμ ; ð2:13Þ

where TAðθÞ are the SOð5Þ generators, while Tað0Þ are the
generators of the gauged SOð4Þ0. Using the expressions for
the generators given in Appendix A of Ref. [23] [see
especially Eq. (88) therein], we find

J3½W�
μ ¼

�
1þ cos θ

2

�
J3Lμ þ

�
1 − cos θ

2

�
J3Rμ þ sin θffiffiffi

2
p J3̂μ

J½B�μ ¼
�
1 − cos θ

2

�
J3Lμ þ

�
1þ cos θ

2

�
J3Rμ −

sin θffiffiffi
2

p J3̂μ;

ð2:14Þ

where JaLμ , JaRμ are the SOð4Þ ∼ SUð2ÞL × SUð2ÞR currents
(aL; aR ¼ 1, 2, 3) and J ı̂μ the SOð5Þ=SOð4Þ ones (ı̂ ¼ 1, 2,
3, 4). We assume that these currents are conserved in the
limit in which the strong dynamics is taken in isolation, i.e.,
when the couplings to the elementary fields are switched
off. This is, for example, the case of holographic composite
Higgs models [24]. The generalization to the case in which
the strong dynamics itself contains a small source of
explicit SOð5Þ breaking is discussed in Appendix A. By
working at second order in the interactions (2.12) (i.e., at
second order in the weak couplings), the vector-boson self-
energies in Eq. (2.7) can be expressed in terms of two-point
current correlators. The corresponding contribution to Ŝ
and to the other oblique parameters W, Y, and X is gauge
invariant (see the detailed discussion in Ref. [1]). The Ŝ
parameter, in particular, gets a naive contribution of
Oðm2

Z=m
2�Þ from the exchange of the heavy resonances

of the strong dynamics, while loops of Nambu-Goldstone
(NG) bosons are responsible for the IR running of order
m2

Z=ð16π2f2Þ logðm�=mhÞ. Corrections from higher-order
terms in the weak coupling expansion cannot be expressed
as two-point current correlators and are not gauge invariant
in general. A graphical representation of the various terms
in the expansion is given in Fig. 2, where a typical Oðg4Þ
contribution is exemplified by the second diagram. A naive
estimate shows that corrections at quartic order in the weak

couplings from the exchange of heavy resonances are of
order m2

Z=ð16π2f2Þðg2=g2�Þ. They are subdominant if
g ≪ g�, and we will neglect them in the following. In
the case of corrections involving loops of light fields only,
on the other hand, the additional g2 suppression can be
compensated by inverse powers of the light masses. The
only such unsuppressed contribution to Ŝ comes from the
diagram on the right in Fig. 1, featuring a Higgs boson and
a Z in the loop. It is gauge invariant4 and gives a correction,

δŜZh ¼
g2

96π2
sin2θ

ðxh − 1Þ2
�

9xh þ 1

2ð1 − xhÞ
log xh þ 2xh þ 3

�
;

ð2:15Þ

which we will retain in our calculation. Notice that, since
this term is not of the form of a two-point current correlator
of the strong dynamics in isolation, it was not included by
Peskin and Takeuchi in their estimate of S in Ref. [1].5

In the limit in which the strong sector is taken in
isolation, i.e., for unbroken SOð5Þ symmetry, the Fourier
transform of the Green functions of two conserved currents
can be decomposed as

hJaLμ ðqÞJbLν ð−qÞi ¼ − iδaLbLðPTÞμνΠLLðq2Þ
hJaRμ ðqÞJbRν ð−qÞi ¼ − iδaRbRðPTÞμνΠRRðq2Þ
hJâμðqÞJb̂νð−qÞi ¼ − iδâ b̂ðPTÞμνΠBBðq2Þ; ð2:16Þ

where ðPTÞμν ≡ ðημν − qμqν=q2Þ. Any other two-point
current Green function vanishes by SOð5Þ invariance.
By using its definition in Eq. (2.7), together with
Eqs. (2.12), (2.14), and (2.16), the parameter Ŝ can be
expressed in terms of the correlators Πij as

Ŝ ¼ g2ðΠ0
3Bð0Þ − ΠhSM0

3B ð0ÞÞ þ δŜZh; ð2:17Þ

where

FIG. 2. Contribution of the strong dynamics to the vector boson
self-energies expanded in powers of the weak gauge couplings.
The gray blob in the first diagram corresponds to the correlator of
two conserved currents of the strong dynamics.

3We assume that the one in Eq. (2.12) is the only interaction
between elementary gauge fields and the strong sector, i.e., that
the gauge fields couple linearly to the strong dynamics through its
conserved currents. If the UV degrees of freedom of the strong
dynamics include elementary scalar fields, then an interaction
quadratic in the gauge fields is also present, as dictated by gauge
invariance.

4See the discussion in Ref. [13].
5For Technicolor, one must set sin θ ¼ 1 in Eq. (2.15).
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Π3Bðq2Þ≡ 1

4
sin2θðΠLLðq2Þ þ ΠRRðq2Þ − 2ΠBBðq2ÞÞ;

ð2:18Þ

and ΠhSM
3B denotes the expression of Π3B obtained by

replacing the strong dynamics with the Higgs sector of
the SM. Equation (2.17) is still a preliminary expression,
however. The correlators Πijðq2Þ are singular at q2 ¼ 0 due
to the presence of the four massless NG bosons (including
the Higgs boson), since they are computed by considering
the strong dynamics in isolation. A similar IR divergence is
also present in the SM Higgs sector, but only originating
from the three SOð4Þ=SOð3Þ NG bosons. Subtracting the
SM contribution in Eq. (2.17) thus only partly removes the
IR divergence.6 There is, however, a simple way solve this
problem and write a general formula for Ŝ in terms of
two-point current correlators of the strong dynamics in
isolation.7 Let us add and subtract in Eq. (2.17) the
contribution from a linear SOð5Þ=SOð4Þ model defined
in terms of the four NG bosons plus an additional scalar
field η which unitarizes the scattering amplitudes in the UV
(see Appendix G of Ref. [23] for a definition). This model
coincides with the SOð5Þ=SOð4Þ strong dynamics in the
infrared and is renormalizable. Thus, we have

Ŝ ¼ g2ðΠ0
3Bð0Þ − ΠLSO50

3B ð0ÞÞ þ δŜLSO5 þ δŜZh; ð2:19Þ

where ΠLSO5
3B denotes the expression of Π3B obtained by

replacing the strong dynamics with the linear SOð5Þ=
SOð4Þ model and

δŜLSO5 ≡ g2ðΠLSO50
3B ð0Þ − ΠhSM0

3B ð0ÞÞ ¼ g2

96π2
sin2θ log

mη

mh

ð2:20Þ

is computed for a nonvanishing Higgs mass. The mass of
the scalar η is an arbitrary parameter which can be taken to
be of the order of the mass of the heavy resonances of the
strong sector, mη ∼m�. In this way, the Higgs chiral
logarithm is fully captured by δŜLSO5, and the first term
in parenthesis in Eq. (2.19) can be evaluated setting the
Higgs mass to zero (the relative error that follows is of order
m2

h=m
2� and can be thus neglected). The IR singularities

exactly cancel out in the difference of correlators in
parenthesis, since the linear model by construction coin-
cides with the strong dynamics in the infrared.
Equation (2.19), together with Eq. (2.18), is a generaliza-
tion to SOð5Þ=SOð4Þ composite Higgs theories of the
analogous result derived in Ref. [1] by Peskin and Takeuchi
for Technicolor.
At this point, we can make use of the dispersive

representation of the correlators Πij. This is obtained by
inserting a complete set of states in the T product of the two
currents and defining

X
n

δð4Þðq − qnÞh0jJiμð0ÞjnihnjJjνð0Þj0i

¼ θðq0Þ
ð2πÞ3 ð−ημνq

2ρijðq2Þ þ qμqνρ̄ijðq2ÞÞ: ð2:21Þ

The spectral functions ρij and ðρ̄ij − ρijÞ encode, respec-
tively, the contribution of spin-1 and spin-0 intermediate
states; they are real and positive definite. Current con-
servation implies ρij ¼ ρ̄ij, while from analyticity and
unitarity, it follows that

ρijðsÞ ¼
1

π
Im

�
ΠijðsÞ

s

�
: ð2:22Þ

The (nþ 1)-subtracted dispersive representation thus reads
(for a given q20)

Πijðq2Þ ¼ Pnðq2Þ þ q2ðq2 − q20Þn

×
Z

∞

0

ds
1

ðs − q20Þn
ρijðsÞ

s − q2 þ iϵ
; ð2:23Þ

where Pnðq2Þ is a polynomial of degree n.8 It holds,
provided Πijðq2Þ ∼ ðq2Þ1þn−ϵ for jq2j → ∞, with ϵ > 0.
In the full theory of strong dynamics, the asymptotic
behavior of the linear combination

Π1 ≡ ΠLL þ ΠRR − 2ΠBB ð2:25Þ

is controlled by the scaling dimension, Δ ≥ 1, of the first
scalar operator entering its operator product expansion

6The IR divergence is completely removed if the strong
dynamics contains a small breaking of the SOð5Þ symmetry
giving the Higgs boson a mass. It is shown in Appendix A that,
even in this case, it is useful to rewrite Eq. (2.17) as discussed
below to explicitly extract the Higgs chiral logarithm.

7A possible alternative strategy is to define the correlators Πij
by including the explicit breaking of SOð5Þ due to the coupling of
the strong dynamics to the elementary fermions, in particular to
the top quark. The resulting formula, however, is less convenient
to compute Ŝ by means of nonperturbative tools such as lattice
field theory.

8One has P0ðq2Þ ¼ Πijð0Þ and

Pnðq2Þ ¼ Πijð0Þ
�
1 −

q2

q20

�
n

þ q2
Xn−1
k¼0

ðq2 − q20Þk
k!

dk

dðq2Þk
�
Πijðq2Þ

q2

�����
q2¼q2

0

ðn ≥ 1Þ:

ð2:24Þ

Notice that ΠLLð0Þ and ΠRRð0Þ vanish if the strong dynamics is
considered in isolation.
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(OPE) (see the discussion in Ref. [13]): Π1ðsÞ ∼ s1−Δ=2.
One can thus write a dispersion representation for Π1 with
just one subtraction [setting n ¼ 0 in Eq. (2.23)], which in
turn implies an unsubtracted dispersive representation for Ŝ.
Using the explicit expression of ΠLSO50

3B ð0Þ, we obtain:

Ŝ ¼ g2

4
sin2θ

Z
∞

0

ds
s

�
ðρLLðsÞ þ ρRRðsÞ − 2ρBBðsÞÞ

−
1

48π2

�
1 −

�
1 −

m2
η

s

�
3

θðs −m2
ηÞ
�	

þ δŜLSO5 þ δŜZh: ð2:26Þ

This result generalizes the dispersion formula derived by
Peskin and Takeuchi in Ref. [1] for Technicolor to the case
of SOð5Þ=SOð4Þ composite Higgs theories. The dispersive
integral accounts for the contribution from heavy states [of
Oðm2

Z=m
2�Þ], while the chiral logarithm due to Higgs

compositeness is encoded by δŜLSO5. The dependence
on mη cancels out when summing this latter term with
the dispersive integral.
Let us now turn to W, Y, and X. In our class of theories,

the contribution of heavy particles to X is of Oðm4
Z=m

4�Þ
and will be neglected (it is of the same order as the
uncertainty due to our definition of short- and long-distance
parts in Δϵ3). The contribution of heavy particles to W and
Y is instead of O½ðm2

Z=m
2�Þðg2=g2�Þ� and will be retained.

Finally, the contribution to W, Y, and X from the diagrams
of Fig. 1 involving light particles only is not suppressed and
must be fully included. For X, we find

X ¼ −
g2

64π2
sWcWsin2θ

�
3x2h þ 4xh
ðxh − 1Þ5 log xh

−
x3h þ x2h þ 73xh þ 9

12ðxh − 1Þ4
�
þ…; ð2:27Þ

where the dots indicate Oðm4
Z=m

4�Þ terms generated by the
exchange of heavy particles. In the case of W and Y, it is
straightforward to derive a dispersion relation by following
a procedure analogous to that discussed for Ŝ.9 By
neglecting terms of order Oðm4

W=m
4�Þ, we obtain10

W ¼ m2
Wg

2

Z
∞

0

ds
s2

�
ρLLðsÞ −

1

96π2

�

−
g2

96π2
c2W
8xh

sin2θ þ δWZh ð2:29Þ

Y ¼ m2
Wg

02
Z

∞

0

ds
s2

�
ρRRðsÞ −

1

96π2

�

−
g02

96π2
c2W
8xh

sin2θ þ δYZh: ð2:30Þ

The first term in each equation encodes the contribution
from the heavy resonances and is of O½ðm2

Z=m
2�Þðg2=g2�Þ�.

In particular, the integral in Eq. (2.29) equals
ðΠ00

LLð0Þ − ΠLSO500
LL ð0ÞÞ, while that in Eq. (2.30) equals

ðΠ00
RRð0Þ − ΠLSO500

RR ð0ÞÞ. The second terms come from the
difference between the SOð5Þ=SOð4Þ linear model and the
SM [they are the analogous to Eq. (2.20)], while δWZh and
δYZh are the contributions from the Zh loop in Fig. 1:

δWZh ¼
g2

g02
δYZh ¼

g2

64π2
c2Wsin

2θ

�
3x2h þ 4xh
ðxh − 1Þ5 log xh

−
5x3h þ 67x2h þ 13xh − 1

12xhðxh − 1Þ4
�
: ð2:31Þ

By putting together the expressions of Ŝ,W, Y, X, and of
the long-distance part Eq. (2.9), we obtain a dispersive
formula for Δϵ3:

Δϵ3 ¼
g2

96π2
sin2θ

�
f3ðxhÞ þ

log xh
2

−
5

12
þ log

mη

mh

�

þ g2

4
sin2θ

Z
∞

0

ds
s

�
ρLLðsÞ þ ρRRðsÞ − 2ρBBðsÞ

−
1

48π2

�
1 −

�
1 −

m2
η

s

�
3

θðs −m2
ηÞ
�	

þm2
W

Z
∞

0

ds
s2

�
g2ρLLðsÞ þ g02ρRRðsÞ −

g2 þ g02

96π2

�
:

ð2:32Þ

The second and third terms encode the contribution from
the heavy resonances and are, respectively, of Oðm2

Z=m
2�Þ

and O½ðm2
Z=m

2�Þðg2=g2�Þ�. When modeling the spectral
functions—as we will do in the next section—in terms
of the lowest-lying resonances of the strong dynamics,
these contributions arise from the tree-level exchange of
massive spin-1 states. We neglected terms of Oðm4

Z=m
4�Þ

9The dispersive representation of ΠLL and ΠRR in this case
requires two subtractions [n ¼ 1 in Eq. (2.23)], since ΠLLðq2Þ ∼
ΠRRðq2Þ ∼ q2 for jq2j → ∞.

10The Oðm4
W=m

4�Þ neglected terms give a contribution to W
which can be written as follows:

δW ¼ m2
Wg

2

�
−
sin2θ
4

Z
∞

0

ds
s2

�
ðρLLðsÞ þ ρRRðsÞ − 2ρBBðsÞÞ

−
1

48π2

�
1 −

�
1 −

m2
η

s

�
3

θðs −m2
ηÞ
��

− sin2
θ

2

Z
∞

0

ds
s2

ðρLLðsÞ − ρRRðsÞÞ
	
: ð2:28Þ

The additional contribution to Y has the same form, provided one
exchanges LL↔RR and g↔g0.
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(arising in particular from our definition of short- and long-
distance contributions) and of O½ðm2

W=16π
2f2Þðg2=g2�Þ�

(arising from the expansion in powers of the weak
couplings required to obtain a formula in terms of current
correlators).
Equation (2.32) should be compared to the analogous

result previously derived by Orgogozo and Rychkov in
Ref. [13]. The expression given there also relies on an
expansion in g2 and does not include the heavy-particle
contribution to W and Y [the last term of our Eq. (2.32)].
Orgogozo and Rychkov also define the dispersive integral
to comprise the contribution of the heavy states only but do
not perform any subtraction to remove the NG boson
contribution. Rather, the integration over light modes is
done explicitly and in an approximate way. Their procedure
implies a relative uncertainty of order mh=m�, which
follows in particular from neglecting the Higgs mass and
the contribution of the heavy states in the evaluation of the
low-energy part of the dispersive integral. In our case, the
relative uncertainty implied by our definition of short- and
long-distance parts is smaller and of order ðmZ=m�Þ2.
Within their accuracy, the two results coincide.

III. DISPERSIVE RELATION IN THE
EFFECTIVE THEORY

The dispersive integrals in Eq. (2.32), as well as those in
Eqs. (2.26), (2.29), and (2.30), are convergent and well
defined if the spectral functions are computed in the full
theory of the strong dynamics. Here, we want to provide an
approximate calculation of Δϵ3 which makes use of an
effective description of the strong dynamics in terms of its
lowest-lying resonances and NG bosons. We focus in
particular on the contribution of a spin-1 resonance (ρL)
transforming as a (3,1) of the SOð4Þ ∼ SUð2ÞL × SUð2ÞR
global symmetry. We will thus compute the spectral
functions in the effective theory and integrate them to
obtain Ŝ, W, and Y, hence Δϵ3, through their dispersion
relations. In this case, the spectral integrals are generically
divergent in the ultraviolet, since the effective description is
approximately valid at low energy but not adequate for
momenta larger than the cutoff scale. In other words, the
dispersion relations derived in the previous section need to
be modified in order to be used in the effective theory. Let
us see how.
By considering the gauge fields Aμ as external sources

for the currents, any two-point current correlator can be
expressed as the second derivative of an effective action
W½A� with respect to the source,

hJμðxÞJνðyÞi ¼ ð−iÞ2 δ2

δAμðxÞδAνðyÞW½A�
���
A¼0

; ð3:1Þ

where

W½A� ¼ log
Z

dφ exp

�
iS½φ� þ i

Z
d4xJμAμ

�
ð3:2Þ

and φ denotes the UV degrees of freedom of the strong
dynamics. In the absence of a description of the theory in
terms of these fields, we can compute W½A� approximately
as the integral over the IR degrees of freedom φIR:

W½A�≃ log
Z

dφIR exp ðiSIR½φIR; A�Þ: ð3:3Þ

Notice, however, that the low-energy action SIR will not
depend on the source only through its coupling to the low-
energy conserved current JIRμ but will contain nonminimal
interactions. At quadratic order in the source, we can write

SIR½φIR; A� ¼ SIR½φIR� þ
Z

d4x

�
JIRμ Aμ þOμνAμν

þ c0
2
AμAμ −

c1
4
AμνAμν þ…

�
; ð3:4Þ

where c0 and c1 are constants, Aμν is the field strength
constructed with the source, and Oμν is an operator
antisymmetric in its Lorentz indices. The second term in
the parentheses is a nonminimal interaction that is gen-
erated when flowing to the infrared. The last two terms in
parentheses depend only on the source and generate contact
contributions upon differentiation; pure-source higher-
derivative terms are denoted by the dots. By using
Eqs. (3.4) and (3.3) to compute (3.1), one finds

hJμðxÞJνðyÞi ¼ h ~JμðxÞ~JνðyÞi þ c0ημνδð4Þðx − yÞ
þ c1ðημν□ − ∂μ∂νÞδð4Þðx − yÞ þ…;

ð3:5Þ

where ~Jμ ≡ JIRμ − 2∂ρOρμ is also a conserved current and
the dots stand for higher-derivative local terms. The Green
functions hJμJνi can thus be computed in terms of the two-
point functions of the effective currents ~Jμ. The coefficients
ci are arbitrary in the effective theory and can be chosen to
cancel the UV divergences arising in h~Jμ ~Jνi.11 Performing a
Fourier transformation, one has

11The value of c0 can be adjusted to ensure that the contri-
butions to the two-point correlator from the tree-level exchange
of, respectively, one NG boson and one spin-1 resonance are
transverse. A simple way to enforce the Ward identity is in fact
demanding that the effective action SIR½φIR; A� be invariant under
local SOð5Þ transformations under which the source Aμ trans-
forms as a gauge field. Notice also that adding the pure source
terms in Eq. (3.4) corresponds to a redefinition of the T� product
of two currents.
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Πijðq2Þ ¼ ~Πijðq2Þ þ Δijðq2Þ; ð3:6Þ

where ~Πij is the two-point current correlator in the effective
theory and Δðq2Þ ¼Pkðq2Þkck denotes the local
counterterms.
It is always possible to express ~Πijðq2Þ as an integral

over a contour in the complex plane that runs below and
above its branch cut on the real axis (where the imaginary
part of ~Πij is discontinuous) and then describes a circle of
radius M2 counterclockwise. We thus obtain

Πijðq2Þ ¼ ~Πijð0Þ þ q2
Z

M2

0

ds
~ρijðsÞ
s − q2

þ q2

2πi

Z
CM2

dz
~ΠijðzÞ

zðz − q2Þ þ Δijðq2Þ; ð3:7Þ

whereCM2 denotes the part of the contour over the circle and
~ρijðq2Þ ¼ ð1=πÞIm½ ~Πijðq2Þ=q2� is the spectral function of
the currents ~Jμ. Since thevalue ofM is arbitrary (as long asq2

is inside the contour), the dependence on M2 cancels out in
Eq. (3.7). If ~Πijðq2Þ=q2 → 0 for jq2j → ∞, it is possible to
take the limit M2 → ∞ so that the integral on the circle
vanishes. In this case, one obtains a dispersion relation for
Πijðq2Þ in terms of ~ρij similar to the one valid in the full
theory, except for the appearance of the local term. In general,
however, the correlator ~Πij is not sufficiently well behaved at
infinity, and M must be kept finite. If ~Πðq2Þ ∼ ðq2Þ1þk at
large q2, both the dispersive integral and the integral over the
circle scale as ðM2=m2�Þk, where m� is the mass of the
resonances included in the low-energy theory. Also, ~Πij

generally requires a regularization to be defined and contains
divergences which are removed by the countertermΔij. The
dispersive integral, on the other hand, is convergent since ~ρij
is finite (after subdivergences are removed).
A particularly convenient way to define ~Πijðq2Þ is through

dimensional regularization. Upon extending the theory toD
dimensions, indeed, its asymptotic q2 behavior arising at the
radiative level can be arbitrarily softened. For example, the
one-loop contribution to ~Πij scales like ðq2Þ1þn−ϵ=2 at large
q2, where n is some integer and ϵ≡ 4 −D. It is thus possible
to choose ϵ sufficiently large and positive (ϵ > 2n), such that
the contribution to the integral on the circle from one-loop
effects vanishes when taking the limitM2 → ∞. In doing so,
the dispersive integral (now with its upper limit extended to
infinity) becomes singular for ϵ → 0. The divergence is thus
transferred from the integral over the circle to the dispersive
integral, and the 1=ϵ poles are still removed by the counter-
term Δij. The same argument goes through after including
higher-loop contributions. The large-q2 behavior of the tree-
level part of ~Πij, on the other hand, cannot be softened
through dimensional continuation. If thus ~Πij scales like

ðq2Þ1þn at tree level, with n > 0, it is not possible to take the
M2 → ∞ limit in Eq. (3.7) (unless one performs n additional
subtractions). The case with n ¼ 0 is special, in thatM2 can
be sent to infinity but the integral over the circle tends to a
constant and does not vanish. Assuming that ~Πijðq2Þ grows
no faster than q2 in D dimensions, one can thus derive the
following dispersion relation,

Πijðq2Þ ¼ ~Πijð0Þ þ q2
Z

∞

0

ds
~ρijðsÞ
s − q2

þ Δijðq2Þ þ q2Cij;

ð3:8Þ

where

Cij ≡ lim
jq2j→∞

� ~Πijðq2Þ
q2

�
: ð3:9Þ

This is the formula that we will use in the next section to
compute Ŝ, W, and Y.
We conclude by noticing that another approach is

also possible to derive a dispersion relation in the effec-
tive theory. One could use Eq. (3.6) and approximate
Im½Πijðq2Þ�≃ Im½ ~Πijðq2Þ� for q2 ≪ Λ2. Substituting
ρijðsÞ ¼ ~ρijðsÞ þOðs=Λ2Þ in the dispersion relation of
the full theory, one thus obtains

Πijðq2Þ ¼ ~Πijð0Þ þ q2
Z

M2

0

ds
~ρijðsÞ
s − q2

þ q2
Z

∞

M2

ds
ρijðsÞ
s − q2

þO

�
M2

Λ2

�
: ð3:10Þ

The value of M can be conveniently chosen to be much
larger than the mass of the resonances m�, so as to fully
include their contribution to the dispersive integral, and
much smaller than the cutoff scale Λ, as required for ~ρij to
give a good approximation of the full spectral function.
With this choice, the last two terms in Eq. (3.10) encode the
contribution from the cutoff dynamics. Comparing with
Eq. (3.7), it follows that

q2
Z

∞

M2

ds
ρijðsÞ
s − q2

¼ q2

2πi

Z
CM2

dz
~ΠijðzÞ

zðz − q2Þ

þ Δijðq2Þ þO

�
M2

Λ2

�
: ð3:11Þ

IV. ONE-LOOP COMPUTATION OF Δϵ3
Having discussed how the dispersion relations are

modified in the effective theory, we now put them to work
and perform an explicit calculation of Δϵ3. Our goal is thus
computing the spectral functions ~ρij of the currents ~Jμ in
the effective theory with NG bosons and a spin-1 resonance
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ρL. The dynamics of the spin-1 resonance will be described
by the effective Lagrangian of Ref. [17] [see Eqs. (2.6) and
(2.16) therein], the notation of which we follow. The
SUð2ÞL, SUð2ÞR and SOð5Þ=SOð4Þ components of ~Jμ
read, respectively,

~JaLμ ¼ ð1 − a2ρÞ
2

ðϵaLbc∂μπ
bπc þ ∂μπ

aLπ4 − ∂μπ
4πaLÞ

−
m2

ρ

gρ
ρaμ − 2α2gρ∂αραμ þ… ð4:1Þ

~JaRμ ¼ 1

2
ðϵaRbc∂μπ

bπc þ ∂μπ
aRπ4 − ∂μπ

4πaRÞ þ… ð4:2Þ

~Jâμ ¼
fffiffiffi
2

p ∂μπ
â −

fffiffiffi
2

p a2ρgρðϵabcρbμπc þ δâ4ρbμπ
b − ρâμπ

4Þ

þ…; ð4:3Þ

where gρ is the resonance’s coupling strength,
aρ ≡mρ=ðgρfÞ, and the ellipses denote terms with higher
powers of the fields or terms that are not relevant for the
present calculation. The last term in Eq. (4.1) proportional
to α2 originates from the nonminimal coupling to the
external source induced by the operator Q2 ¼ Tr½ρμνL fLμν�.12
To compute the spectral functions, we use the definition

(2.21) in terms of a sum over intermediate states. The
resonance ρL can decay to two NG bosons and is not an

asymptotic state. The intermediate states to be considered
are thus multi-NG boson states13: ππ; 3π; 4π;…. It is,
however, possible to simplify the calculation by noticing
the following. We want to derive an expression for the Ŝ
parameter at order g0ρ, by expanding for gρ=4π small. Since
the contribution from the tree-level exchange of the ρL is of
order 1=g2ρ, our result will include terms that appear at the
one-loop level in a diagrammatic calculation of Ŝ. The role
of tree- and loop-level effects in the dispersive computa-
tion, on the other hand, is subtler. Consider, for example,
the contribution to the ππ state coming from the exchange
of a ρL, i.e., that of the second diagram in the first row of
Fig. 3. The vertex with the current is of order 1=gρ, while
that with the two NG bosons is of order gρ. The diagram,
and thus its contribution to the parameter Ŝ, is naively of
Oðg0ρÞ. There is, however, an enhanced contribution of
Oð1=g2ρÞ that comes from the kinematic region s ∼M2

ρ in
the dispersive integral (2.26), whereMρ is the pole mass of
the ρL. To see this, notice that the small gρ limit coincides
with a narrow-width expansion. The Breit-Wigner function
that follows from the square of the ρL propagator can be
thus expanded as

Γρ

ðs −M2
ρÞ2 þM2

ρΓ2
ρ
¼ π

Mρ
δðs −M2

ρÞ þOðg2ρÞ; ð4:4Þ

where Γρ is the decay width of the ρL. The left-hand side is
ofOðg2ρÞ for s away fromM2

ρ, but the delta-function term in

FIG. 3 (color online). Feynman diagrams contributing to the spectral functions in the effective theory at Oðg0ρÞ. Continuous lines
denote NG bosons of SOð5Þ=SOð4Þ (πâ), while double wavy lines denote a ρL. The cross stands for the insertion of a current, while the
blue blobs and box indicate, respectively, the one-loop corrected vertices and propagator.

12Notice that a different basis was used in Ref. [17] where
Q2 ¼ Tr½ρμνL EL

μν�. The definition adopted in this paper is more
convenient for our discussion.

13The exchange of one NG boson contributes only to the
spectral function ρ̄BB and is thus irrelevant to our calculation.
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the right-hand side is of Oðg0ρÞ. The contribution to the
dispersive integral at the ρL peak is thus enhanced
compared to the naive counting. As a consequence, the
leading contribution to the Ŝ parameter from the ππ final
state is of order 1=g2ρ and in fact corresponds to the tree-
level correction of the diagrammatic calculation.
Loosely speaking, we can say that whenever the ρL goes

“on shell,” the order in powers of gρ is lowered by two units.
This has two consequences. The first is that the leading
contribution from the 3π and 4π states can be captured by
replacing them, respectively, with the states πρL and ρLρL
obtained by treating the ρL as an asymptotic state. This
approximation is sufficient to extract Ŝ at Oðg0ρÞ and
simplifies considerably the calculation. The second conse-
quence is that, in the calculation of the ππ contribution, one-
loop corrections to the vertices and to the ρL propagator
should be included for s≃M2

ρ, as they contribute at Oðg0ρÞ.
In otherwords, one-loop corrections to the spectral functions
need to be retained (only) near the ρL peak.
The Feynman diagrams relative to the calculation of the

spectral functions ~ρLL, ~ρRR, and ~ρBB are shown in Fig. 3 in
terms of the relevant final states ππ, ρLρL, and πρL. We
work in the unitary gauge for ρL, choosing dimensional
regularization and an on-shell minimal subtraction scheme
[17] to remove the divergences of the one-loop contribu-
tions. While the calculation of ~ρRR and ~ρBB is straightfor-
ward, it is worth discussing in some detail how the one-loop
corrections have been included in ~ρLL. As already stressed,
we need to consider one-loop effects only at the ρL peak,
for s ∼M2

ρ. The first and third diagrams in the first row of
Fig. 3 can thus be evaluated at tree level. The second
diagram gets one-loop corrections in the vertex with the
current (light blue blob with a cross), the ρL propagator
(dark blue box), and the ρLππ vertex (light blue blob). By
decomposing each of these three terms into a longitudinal
and a transverse part, the contribution of the diagram to the
matrix element of the current between the vacuum and two
NG bosons can be written as

h0j ~JaLμ jπkðp1Þπlðp2Þijρ
¼ δaLiðΠJρðq2ÞPTμα þ Π̄Jρðq2ÞPLμαÞ
× δijðGðq2ÞPαβ

T þ Ḡðq2ÞPαβ
L Þ

×
1

2
ϵjkl½ðp1 − p2ÞβVðq2Þ þ qβV̄ðq2Þ�; ð4:5Þ

where Pμν
T ¼ ðημν − qμqν=q2Þ, Pμν

L ¼ qμqν=q2, and
q ¼ p1 þ p2. The spectral function ~ρLL is extracted by
squaring this matrix element, integrating over the
two-particle phase space and finally projecting over
the transverse part [see Eq. (2.21)]. The expression of
the longitudinal terms in Eq. (4.5) is thus not relevant,
as they do not enter the final result. For the transverse
terms, we use the following approximate expressions,

ΠJρðq2Þ ¼
m2

ρ

gρ
− 2α2gρq2 þ gρΠ

ð1LÞ
Jρ ; ð4:6Þ

Gðq2Þ ¼
~Zρ

q2 −M2
ρ þ iMρΓρ

; ð4:7Þ

Vðq2Þ ¼ ~Z−1=2
ρ

�
96π

Γρ

Mρ

�
1=2

; ð4:8Þ

where the one-loop parts have been evaluated at q2 ¼ M2
ρ.

The quantity Πð1LÞ
Jρ encodes the pure one-loop correction

fromNGbosons to the current-ρLmixing. For the propagator
Gðq2Þ, we make use of its resummed expression near the ρL
pole in terms of the pole massMρ, total decay width Γρ, and
pole residue ~Zρ. Finally, the vertex Vðq2Þ is expressed in
terms of the decay width Γρ. We report the analytic formulas

for Πð1LÞ
Jρ ,M2

ρ, ~Zρ, and Γρ in Appendix B. Notice that a tree-
level expression for Γρ is sufficient to reach the Oðg0ρÞ
precision we are aiming for in the spectral function. Adding
the contribution of the first diagram in the first row of Fig. 3
and inserting the total matrix element in Eq. (2.21), one finds
the following result for the spectral function,

~ρðππÞLL ðq2Þ ¼ ~ρRRðq2Þ × j1 − a2ρ þ ΠJρðq2ÞGðq2ÞVðq2Þj2;
ð4:9Þ

where ~ρRR is given in Eq. (B1). Away from the ρL peak, the
one-loop corrections can beneglected, and the second term in
the absolute value in Eq. (4.9) is of order g0ρ, like the first one.
At the peak, on the other hand, this second term develops an
Oð1=g2ρÞ contribution. This can be identified by using

Eq. (4.4) to expand ~ρðππÞLL ðsÞ as a distribution. One has

~ρðππÞLL ðsÞ ¼ ZLM2
ρδðs −M2

ρÞ þ fLLðsÞ: ð4:10Þ

Here, ZL is the pole residue of the two-point current
correlator:

ZL ¼
�
1

gρ
− 2α2gρ

�
2

−
2a4ρ − 4a2ρ þ 85

96π2
log

μ

mρ

−
10a4ρ − 32a2ρ þ 1289 − 231π

ffiffiffi
3

p

576π2
: ð4:11Þ

It is of order 1=g2ρ and, being an observable, is RG invariant.
The function fLL denotes instead the Oðg0ρÞ continuum
(which receives a contribution from both the NG bosons
and the ρL).
The analytic expressions of the spectral functions are

reported in Appendix B. Their plot (in D ¼ 4 dimensions)
is shown in Fig. 4 for the following benchmark choice of
parameters: mρðmρÞ ¼ 2 TeV, gρðmρÞ ¼ 3, aρ ¼ 1, and
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α2ðmρÞ ¼ 0 (here mρðμÞ, gρðμÞ, and α2ðμÞ are the running
parameters, see Ref. [17]).14 One can notice the following.
The functions ~ρLLðsÞ and ~ρRRðsÞ become constant and
equal for s → 0 (in D ¼ 4). This constant tail corresponds
to the NG boson contribution to the spectral functions; it
gives rise to the IR logarithmic singularity in the Ŝ
parameter that is eventually canceled by the subtraction
in Eq. (2.26). Having set α2 ¼ 0, the spectral functions tend
to a constant also for s → ∞. This gives rise to a UV
logarithmic divergence in the spectral integral for Ŝ which
can be regulated by extending the theory to D dimensions
[Notice that one should consistently extend both the
spectral functions and also the subtraction term in
Eq. (2.26)]. The divergence is canceled by the local
counterterm generated by the operator Oþ

3 ¼ Tr½ðEL
μνÞ2þ

ðER
μνÞ2�. The correlator Π1 thus obeys a dispersion relation

of the form (3.8),

Π1ðq2Þ ¼ ~Π1ð0Þ þ q2
Z

∞

0

ds
~ρLLðsÞ þ ~ρRRðsÞ − 2~ρBBðsÞ

s − q2

þ q2ðC1 − 8cþ3 Þ þ…; ð4:12Þ

where C1 ≡ limq2→∞½ ~Π1ðq2Þ=q2�, cþ3 is the coefficient of
Oþ

3 , and the dots indicate local terms with higher powers of
q2. For α2 ¼ 0, the contribution from the integral on the
circle vanishes, C1 ¼ 0, when extending the theory to D
dimensions. For nonvanishing α2, on the other hand,

~Π1ðq2Þ grows like q2 in any dimension (as a consequence
of its tree-level behavior), and one finds C1 ¼ −4α22g2ρ.
Using the expressions of the spectral functions, we can

derive our final expression for Ŝ. We find

Ŝ ¼ g2

4g2ρ
sin2θð1 − 2α2g2ρÞ2 þ

g2

96π2
sin2θ

�
log

μ

mh
þ 5

12

�

−
g2

96π2
sin2θ

�
3

4
ða2ρ þ 28Þ log μ

mρ
þ 1þ 41

16
a2ρ

�

þ g2sin2θ

�
−2cþ3 ðμÞ þ

C1

4

�
: ð4:13Þ

Notice that the term proportional to C1 cancels the α22 part
in the first term.
The parameters W and Y obey the same dispersion

relations of the full theory, Eqs. (2.29) and (2.30), with ρij
replaced by the spectral functions of the effective
theory ~ρij. All contributions from the integrals on the
circle, in this case, can be made to vanish through dimen-
sional continuation. The contact terms to be added in the
effective theory are generated by the operators O2W ¼
ð∇μEL

μνÞ2 and O2B ¼ ð∇μER
μνÞ2. Their contribution is

naively of O½ðm2
W=m

2
ρÞðg2=16π2Þ�, i.e., of higher order in

our approximation, and will be thus neglected.
Furthermore, since we are interested in the leading cor-
rection of O½ðm2

W=m
2
ρÞðg2=g2ρÞ� from the ρL, the integral in

Eq. (2.29) can be computed by retaining only the delta
function in the expansion of ~ρLL in Eq. (4.10) [while that in
Eq. (2.30) is negligible]. We thus find15

W¼ g2

96π2
c2Wsin

2θ

�
9x2hþ12xh
2ðxh−1Þ5 logxh−

x3hþx2hþ73xhþ9

8ðxh−1Þ4
�

þm2
W

m2
ρ

g2

g2ρ
ð1−2α2g2ρÞ2; ð4:15Þ

FIG. 4 (color online). Plot of the spectral functions ~ρLL
(continuous green curve), ~ρRR (dot-dashed blue curve), and
~ρBB (dashed orange curve), computed at Oðg0ρÞ for the following
choice of parameters: mρðmρÞ ¼ 2 TeV, gρðmρÞ ¼ 3, aρ ¼ 1,
and α2ðmρÞ ¼ 0. The kink of ~ρLL at s ¼ 4M2

ρ is due to the onset
of the contribution of the ρLρL intermediate state. The scale is
logarithmic on both axes.

14We have checked that setting α2 to a value of order 1=16π2 at
the scale mρ, as obtained if α2 ¼ 0 at the cutoff scale, does not
change qualitatively the plot. Notice that the running of aρ arises
at the two-loop level [17] and can be thus neglected.

15The Oðm4
W=m

4
ρÞ terms of footnote 11 give the additional

corrections

δW ¼ m2
W

m2
ρ

g2

g2ρ
ð1 − 2α2g2ρÞ2

�
cos4

θ

2
− 1

�
;

δY ¼ m2
W

m2
ρ

g02

g2ρ
ð1 − 2α2g2ρÞ2sin4

θ

2
; ð4:14Þ

which also come from the delta function in the expansion of ~ρLL.
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Y¼ g02

96π2
c2Wsin

2θ

�
9x2hþ12xh
2ðxh−1Þ5 logxh−

x3hþx2hþ73xhþ9

8ðxh−1Þ4
�
:

ð4:16Þ

Using Eqs. (4.13), (4.15), and (4.16), together with
Eq. (2.9), we obtain our final formula for Δϵ3:

Δϵ3 ¼
g2

4g2ρ
sin2θð1 − 4α2g2ρÞ þ

m2
W

m2
ρ

g2

g2ρ
ð1 − 2α2g2ρÞ2

− 2g2sin2θcþ3 ðμÞ þ
g2

96π2
sin2θ

�
log

μ

mZ
þ f3ðhÞ

�

−
g2

96π2
sin2θ

�
3

4
ða2ρ þ 28Þ log μ

mρ
þ 1þ 41

16
a2ρ

�
:

ð4:17Þ

V. DISCUSSION AND CONCLUSIONS

Equation (4.17) coincides with the result that we
obtained in Ref. [17] through a one-loop diagrammatic
calculation of Δϵ3.

16 It shows that at tree level [i.e., at
Oð1=g2ρÞ] the sign of Δϵ3, as well as that of Ŝ in Eq. (4.13),
is controlled by α2 and is not necessarily positive. This was
considered problematic by Orgogozo and Rychkov in their
analysis of Ref. [13], based on the expectation that Ŝ should
be positive if obtained through a dispersion relation where
the leading contribution arises from the (positive definite)
spectral function ρLL. They suggested that the positivity of
Ŝ is in fact restored once the correct asymptotic behavior in
the deep Euclidean (q2 → −∞) implied by the OPE is
enforced on the expressions of the two-point current
correlators computed in the effective theory. In particular,
one expects that Π1ðq2Þ ∼ ð−q2Þ1−Δ1=2 for q2 → −∞,
where Δ1 ≥ 1 is the scaling dimension of the first scalar
operator contributing to its OPE. If this condition is
enforced on Eq. (4.12) by neglecting the higher-derivative
terms denoted by the dots, one obtains cþ3 ¼ C1=8 ¼
−α22g2ρ=2, where from now on we focus on the tree-level
contribution, neglecting the Oð1=16π2Þ radiative correc-
tions. This relation implies that the last term of Eq. (4.13)
identically vanishes, giving the positive definite expression
derived in Ref. [13]: Ŝ ¼ ðg2sin2θ=4g2ρÞð1 − 2α2g2ρÞ2. Now,
the higher-derivative terms in Eq. (4.12) are suppressed by
corresponding powers of the cutoff scale Λ. As such, they
become important at energies E ∼ Λ. Neglecting them
when enforcing the asymptotic behavior is in fact equiv-
alent to requiring that this latter is attained at energies E ∼
Mρ through the exchange of the ρL, while the cutoff states
have no effect. In this sense, the correction coming from cþ3

should be regarded as characterizing part of the ρL
contribution rather than encoding the effect of the cutoff
states. Requiring that the asymptotic behavior be obtained
at the scale Mρ, as effectively done in Ref. [13], thus leads
to a positive Ŝ.
There is, on the other hand, the possibility that the

correct asymptotic behavior is recovered only at energies
E ∼ Λ as the effect of the higher-derivative terms. That is to
say, it can be enforced by the exchange of the cutoff states
rather than by the lighter resonance ρL. In this case, it is
reasonable to assume cþ3 < 1=g2ρ, as suggested by its naive
estimate, so that Ŝ ¼ ðg2sin2θ=4g2ρÞð1 − 4α2g2ρÞ up to
smaller corrections. This expression is not definite positive,
as previously noticed. It is a result consistent with the
properties of the underlying strong dynamics and in fact
plausible to some degree. Indeed, the behavior of the
correlators in the deep Euclidean could be determined
by the dynamics at or beyond the cutoff scale, while the Ŝ
parameter is saturated in the infrared and as such gets its
leading contribution from the lightest modes. A simple
model with three spin-1 resonances is discussed in
Appendix C, which illustrates this possibility with an
explicit example.
The tree-level value of the Ŝ parameter can then be tuned

to be small or may even become negative for α2 of order
1=g2ρ. While such large values are not expected from a naive
estimate if α2 is generated by the physics at the cutoff scale
(in this case, one would expect α2 ∼ f2=Λ2 or smaller), they
are consistent with the request of the absence of a ghost in
the low-energy theory [23]. Having α2 ∼ 1=g2ρ, on the other
hand, affects the naive estimate of cþ3 . For nonvanishing
α2, the one-loop correction to ~Π1

0ð0Þ is quadratically
divergent, which implies cþ3 ðΛÞ ∼ ðΛ2=m2

ρÞðα22g4ρÞ=16π2.
For α2 ∼ 1=g2ρ and setting Λ ¼ g�f, one has cþ3 ðΛÞ∼
g2�=ð16π2g2ρÞ. This can be as large as the tree-level con-
tribution from the ρL exchange if g� ∼ 4π. Such enhance-
ment of the one-loop contribution from the cutoff dynamics
originates from the increased coupling strength through
which the transverse gauge fields interact with the
composite states. In particular, the ππWρL vertex gets an
energy-growing contribution of order ggρðα2g2ρÞE2=m2

ρ. For
α2 ∼ 1=g2ρ, this translates into a coupling strength squared
of order gg�ðg�=gρÞ at the cutoff scale, which is a factor
ðg�=gρÞ stronger than the naive estimate based on the partial
UV completion (PUVC) criterion [23]. This is precisely the
enhancement factor appearing in the estimate of cþ3 . We
thus conclude that while for α2 ∼ 1=g2ρ it is possible to make
the tree-level value of Ŝ small or even negative, this is at the
price of increasing the naive size of the unknown con-
tribution from the cutoff states. Such a contribution
becomes of order 1=g2ρ if g� ∼ 4π, making the Ŝ parameter
in practice incalculable in the effective theory.

16The O½ðm2
W=m

2
ρÞðg2=g2ρÞ� contribution from W and Y was

neglected in Ref. [17]; see Eq. (4.4) therein.
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As a final remark, we notice that when including the one-
loop corrections, the asymptotic behavior of the full theory
is not attained at Mρ even for α2 ¼ 0. In fact, one has
~Π1ðq2Þ ∼ q2 logð−q2Þð1 − a2ρÞð5=2 − a2ρÞ for q2 → −∞ (in
D ¼ 4Þ. Setting a2ρ equal to 1 or 5=2 (and α2 ¼ 0) thus
gives a model of the strong dynamics where the asymptotic
behavior of Π1 is enforced by the exchange of the ρL, and
the dispersive integral of the Ŝ parameter in the effective
theory is convergent in D ¼ 4. In a low-energy theory with
both ρL and ρR, one has that ~Π1ðq2Þ=q2 vanishes at infinity
for a2ρL ¼ a2ρR ¼ 1=2 or 3 (and α2L ¼ α2R ¼ 0). The choice
a2ρL ¼ a2ρL ¼ 1=2, in particular, corresponds to a two-site
model limit in which the global symmetry is enhanced to
SOð5Þ × SOð5Þ → SOð5Þ [17]. The finiteness of the Ŝ
parameter in this case follows as a consequence of the
larger symmetry. [17,25]
In this paper, we have derived dispersion relations for

the electroweak oblique parameters in the context of
SOð5Þ=SOð4Þ composite Higgs theories. We have distin-
guished between long- and short-distance contributions to
ϵ3 and obtained a dispersion relation for each of the
parameters Ŝ, W, and Y characterizing the short-distance
part [Eqs. (2.26), (2.29), and (2.30)]. Our analysis general-
izes the dispersion relation written by Peskin and Takeuchi
for the S parameter in the case of Technicolor [1]. We thus
derived a dispersion relation for ϵ3 [Eq. (2.32)], extending
the work of Orgogozo and Rychkov [13]. Our for-
mula (2.32) agrees with their result and further reduces
the relative theoretical uncertainty to order m2

h=m
2�, where

m� is the mass scale of the resonances of the strong sector.
This is to be compared with the Oðmh=m�Þ relative
uncertainty of Ref. [13]. We also discussed how the
dispersion relations can be used and get modified in the
context of a low-energy effective description of the strong
dynamics. Making use of dimensional regularization, we
provided a definition of the otherwise divergent spectral
integrals, pointing out the importance of the contribution
from the integral on the circle in the case in which the two-
point correlators of the effective theory do not die off fast
enough at infinity. We utilized our formula to perform the
dispersive calculation of ϵ3 at the one-loop level in a theory
with a spin-1 resonance ρL. We pointed out that one-loop
corrections need to be retained only at the ρL peak to
obtain ϵ3 at the Oðg0ρÞ level. This considerably simplified
our calculation and conveniently reproduced the result of
the diagrammatic computation that we performed in
Ref. [17]. The dispersive approach is particularly suitable
to clarify the connection between the positivity of the Ŝ
parameter and the UV behavior of two-point current
correlators, as first suggested by Ref. [13]. We argued
that if the behavior dictated by the OPE in the deep
Euclidean is enforced at the scaleMρ through the exchange
of the light resonances, then the Ŝ parameter is positive

definite in agreement with the expectation of Ref. [13]. It is
possible, on the other hand, that the UV behavior is
recovered only at the cutoff scale as an effect of the
heavier resonances, while the leading contribution to
the Ŝ parameter is still saturated by the lowest lying
modes. In this case, Ŝ can be negative if the ρL dynamics
is characterized by a large kinetic mixing with the gauge
fields of order α2 ∼ 1=g2ρ.
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APPENDIX A: GENERALIZATION TO THE
CASE OF STRONG DYNAMICS WITH SMALL

SOð5Þ BREAKING

In deriving our dispersion relations, we have assumed that
the strong dynamics in isolation is SOð5Þ symmetric. It is
conceivable, on the other hand, that the global symmetry is
only approximate and that a small explicit breaking arises
internal to the strong dynamics. This is, for example, what
happens in the Minimal Conformal Technicolor model of
Ref. [26], where the small breaking arises from the techni-
quark mass terms. Generalizing our procedure to such a
scenario is straightforward.Wewill assume that an SOð3Þ ×
PR subgroup of the strong dynamics is unbroken, where
SOð3Þ is the custodial isospin and PR is the grading of the
SOð5Þ algebra under which the SOð5Þ=SOð4Þ generators
are odd. This allows for a Higgs boson potential, hence a
Higgs mass, ensuring a correct phenomenology. The def-
initions of the two-point correlators generalizing Eq. (2.16)
thus read

hJaLμ ðqÞJbLν ð−qÞi ¼− iδaLbLðημνΠLLðq2Þ− qμqνΠ̄LLðq2ÞÞ
hJaRμ ðqÞJbRν ð−qÞi ¼− iδaRbRðημνΠRRðq2Þ− qμqνΠ̄RRðq2ÞÞ
hJaLμ ðqÞJbRν ð−qÞi ¼− iδaLbRðημνΠLRðq2Þ− qμqνΠ̄LRðq2ÞÞ
hJâμðqÞJb̂νð−qÞi ¼− iδâ b̂ðημνΠBBðq2Þ− qμqνΠ̄BBðq2ÞÞ

− iδâ4δb̂4ðημνΠð4Þ
BBðq2Þ− qμqνΠ̄

ð4Þ
BBðq2ÞÞ:

ðA1Þ

Any two-point function with one SOð5Þ=SOð4Þ and one
SOð4Þ current vanishes due to PR invariance. As a conse-
quence of the SOð5Þ breaking, in particular, ΠLR does not
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vanish and must be included in the definition of Π3B when
deriving Eq. (2.17):

Π3Bðq2Þ≡ 1

4
sin2θðΠLLðq2Þ þ ΠRRðq2Þ − 2ΠBBðq2ÞÞ

þ 1

2
ð1þ cos2θÞΠLRðq2Þ: ðA2Þ

Since now theHiggs bosonmass is nonvanishing, Eq. (2.17)
is free from IR singularities, which cancel when taking the
differencewith the SM. It is still convenient, however, to add
and subtract the contribution from the SOð5Þ=SOð4Þ linear
model, as was done in the text. A first motivation to do so is
that the SOð5Þ breaking internal to the strong dynamics only
partly accounts for the Higgs mass; an important (if not
dominant) contribution comes from the coupling to the
elementary top quark, which is not included. The second
motivation is that subtracting the SOð5Þ=SOð4Þ linear
model allows one to isolate the Higgs chiral logarithm, so
that the final dispersive integral encodes the contribution
from the heavy resonances only. By performing the sub-
traction as explained in the text, the result that follows
coincides with the massless case. That is, Eq. (2.19) is valid
also in the massive case, with Π3B defined as in Eq. (2.18).
This is because the only unsuppressed contribution to ΠLR
comes from the NG bosons and cancels out when sub-
tracting the SOð5Þ=SOð4Þ linear model. Although
Eq. (2.19) is formally unchanged, ΠLSO50

3B ð0Þ in parenthesis
must be evaluated by setting the Higgs mass to the same
valuem0h generated by the strong dynamics. The dispersion
relation generalizing Eq. (2.26) reads

Ŝ ¼ g2

4
sin2θ

Z
∞

0

ds
s

�
ðρLLðsÞ þ ρRRðsÞ − 2ρBBðsÞÞ

−
1

48π2

�
1

2
þ 1

2

�
1 −

m2
0h

s

�
3

θðs −m2
0hÞ

−
�
1 −

m2
η

s

�
3

θðs −m2
ηÞ
�	

þ δŜLSO5 þ δŜZh; ðA3Þ

where δŜLSO5 is still defined by Eq. (2.20) and computed at
the physical Higgs mass. Similarly, the dispersion relations
for W and Y are

W ¼ −m2
Wg

2

Z
∞

0

ds
s2

�
ρLLðsÞ

−
1

192π2

�
1þ

�
1 −

m2
0h

s

�
3

θðs −m2
0hÞ
�	

þ g2

96π2
c2W
8xh

sin2θ þ δWZh ðA4Þ

Y ¼ −m2
Wg

02
Z

∞

0

ds
s2

�
ρRRðsÞ

−
1

192π2

�
1þ

�
1 −

m2
0h

s

�
3

θðs −m2
0hÞ
�	

þ g02

96π2
c2W
8xh

sin2θ þ δYZh: ðA5Þ

The formula for Δϵ3 finally reads

Δϵ3 ¼
g2

96π2
sin2θ

�
f3ðxhÞ −

1

8xh
þ log xh

2
−

5

12
þ log

mη

mh

�
þ g2

4
sin2θ

Z
∞

0

ds
s

�
ρLLðsÞ þ ρRRðsÞ − 2ρBBðsÞ

−
1

96π2

�
1

2
þ 1

2

�
1 −

m2
0h

s

�
3

θðs −m2
0hÞ −

�
1 −

m2
η

s

�
3

θðs −m2
ηÞ
�	

þm2
W

Z
∞

0

ds
s2

�
g2ρLLðsÞ þ g02ρRRðsÞ

−
g2 þ g02

192π2

�
1þ

�
1 −

m2
0h

s

�
3

θðs −m2
0hÞ
�	

: ðA6Þ

Notice that the dependence on m0h in Eqs. (A3)–(A6)
cancels out up to negligible terms with relative suppression
of order m2

0h=m
2�.

APPENDIX B: SPECTRAL FUNCTIONS AND
USEFUL FORMULAS

We report here the expressions of the spectral functions
computed in the low-energy effective theory in D dimen-
sions, which can be used to perform the dispersive integrals
using dimensional regularization. For convenience, they are
given for a finite Higgs mass mh so that one should set
mh ¼ 0 in evaluating the integrals of Eqs. (2.26), (2.29),
(2.30), and (2.32). The LL and RR spectral functions are

computed by introducing a small mass λ for the three
SOð4Þ=SOð3Þ NG bosons, which acts as an IR regulator
when considering their individual contribution to the
dispersive integrals. Notice, on the other hand, that the
linear combination of spectral functions appearing in
Eqs. (2.26), (2.29), (2.30), and (2.32) is free from IR
divergences and that one should set λ ¼ 0 when evaluating
them.
The function ~ρRR receives a contribution from the

intermediate states χχ and χh, where χ1;2;3 ≡ π1;2;3 and
h ¼ π4. We find

~ρRRðq2Þ ¼ ~ρðχχÞRR ðq2Þ þ ~ρðχhÞRR ðq2Þ; ðB1Þ
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~ρðχχÞRR ðq2Þ ¼ μ4−D

πðD−1Þ=24DΓðDþ1
2
Þ

�
1 − 4

λ2

q2

�ðD−1Þ=2

× ðq2ÞðD−4Þ=2θðq2 − 4λ2Þ; ðB2Þ
~ρðχhÞRR ðq2Þ ¼ μ4−D

πðD−1Þ=24DΓðDþ1
2
Þ

�
1 −

m2
h

q2

�
D−1

× ðq2ÞðD−4Þ=2θðq2 −m2
hÞ: ðB3Þ

The intermediate states contributing to ~ρLL are ππ and ρρ.
We have

~ρLLðq2Þ ¼ ~ρðππÞLL ðq2Þ þ ~ρðρρÞLL ðq2Þ; ðB4Þ

~ρðρρÞLL ðq2Þ¼ μ4−D

πðD−1Þ=24DΓðDþ1
2
Þ
q4þ20q2m2

ρþ12m4
ρ

ðq2−m2
ρÞ2

×

�
1−4

m2
ρ

q2

�
3=2

ðq2−4m2
ρÞðD−4Þ=2θðq2−4M2

ρÞ;

ðB5Þ

where ~ρðππÞLL ðq2Þ is given by Eq. (4.9). Finally, the only
contribution to ~ρBB is from the intermediate state ρπ:

~ρBBðq2Þ ¼
3μ4−D

2πðD−1Þ=24DΓðDþ1
2
Þ a

2
ρ

�
1þ 10

m2
ρ

q2
þm4

ρ

q4

�

×

�
1 −

m2
ρ

q2

�
D−3

ðq2ÞðD−4Þ=2θðq2 −M2
ρÞ: ðB6Þ

Notice that for simplicity the contribution of α2 has been

included only in ~ρðππÞLL , see Eq. (4.6), and omitted in ~ρðρρÞLL
and ~ρBB. This corresponds to including α2 only at the tree
level in a diagrammatic calculation; see Ref. [17].
For completeness, we also report the expression for the

ρL pole mass squared M2
ρ, the pole residue ~Zρ, the decay

width Γρ (tree-level expression), and the one-loop vertex

correction Πð1LÞ
Jρ used in Sec. IV:

M2
ρ ¼ m2

ρ −m2
ρ

g2ρ
96π2

�
ð2a4ρ − 69Þ log μ

mρ
þ 8

3
a4ρ

− 103þ 33
ffiffiffi
3

p

2
π

�
; ðB7Þ

~Zρ ¼ 1−
g2ρ

96π2

�
ð2a4ρ − 53Þ log μ

mρ
þ 5

3
a4ρ −

53

6
−
11

ffiffiffi
3

p

2
π

�
;

ðB8Þ

Γρ ¼
g2ρa4ρ
96π

mρ; ðB9Þ

Πð1LÞ
Jρ ¼ −

1

48π2
m2

ρa2ρða2ρ − 1Þ
�
log

μ

mρ
þ 4

3
þ i
2
π

�
:

ðB10Þ

APPENDIX C: MODEL WITH ASYMPTOTIC
BEHAVIOR RECOVERED AT THE

CUTOFF SCALE

A simple model can be constructed which illustrates the
possibility that the asymptotic behavior of the correlator
Π1ðq2Þ is enforced by the exchange of the states at the
cutoff scale, while the leading contribution to the Ŝ
parameter is dominated by the lighter resonances.
Consider a low-energy theory with three spin-1 reso-

nances transforming, respectively, as a (3,1) (the ρL), a (1,3)
(ρR), and a (2,2) (ρB) of SUð2ÞL × SUð2ÞR. We will assume
for the moment that their masses are all of the same order
and accidentally (much) lighter than the cutoff scale. The
Lagrangian characterizing the ρR is defined in Ref. [17] and
can be obtained from that of the ρL through an obvious
L↔ R exchange. The ρB is instead described by

LðρBÞ ¼ −
1

4g2ρB
Tr½ρBμνρBμν� −

m2
ρB

2g2ρB
Tr½ρBμ ρBμ�

þ α2BTr½ρBμνf−μν�; ðC1Þ
where ρBμν ≡∇μρ

B
ν −∇νρ

B
μ and f−μν is the component of the

dressed field strength along the broken SOð5Þ=SOð4Þ
generators [23]. A simple calculation shows that in the
deep Euclidean ~ΠLLðq2Þ=q2 ≃ 4α22Lg

2
ρL , ~ΠRRðq2Þ=q2≃

4α22Rg
2
ρR , and ~ΠBBðq2Þ=q2 ≃ 4α22Bg

2
ρB , where the L; R; B

subindices are used to denote the parameters of the
corresponding resonances. The asymptotic behavior
ΠLLðq2Þ ∼ ΠRRðq2Þ ∼ ΠBBðq2Þ ∼ γq2, where γ is a constant
proportional to the central charge of the OPE, is thus
reproduced by the correlators in the effective theory if

α22Lg
2
ρL ¼ α22Rg

2
ρR ¼ α22Bg

2
ρB : ðC2Þ

Under this condition, ~Π1ðq2Þ=q2 → 0 for jq2j → ∞, and the
integral on the circle vanishes (i.e., C1 ¼ 0 in this model).
The contribution to Ŝ from the tree-level exchange of the
resonances, as obtained through the dispersion integral, thus
reads

Ŝ ¼ g2

4
sin2θ

��
1

gρL
− 2α2LgρL

�
2

þ
�

1

gρR
− 2α2RgρR

�
2

− 8α22Bg
2
ρB

�

¼ g2

4
sin2θ

��
1

g2ρL
− 4α2L

�
þ
�

1

g2ρR
− 4α2R

��
; ðC3Þ
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where the second equality follows from Eq. (C2). The
expression in the last line coincides with the result of the
diagrammatic calculation, where the tree-level exchange of
the ρB gives no contribution to Ŝ.

17 Notice that, although Ŝ is
obtained through a dispersive integral, it is not positive
definite because the contribution from the spectral function
ρBB comes with a negative sign in Eq. (2.26).
Now, consider the limit in which the resonance ρB is

much heavier than the other two and has a mass
mρB ∼ g�f ≫ mρL ∼mρR ∼ gρf. The scale mρB acts as a

cutoff for the effective theory with just ρL and ρR. In such a
low-energy description, the leading Oð1=g2ρÞ contribution
to the Ŝ parameter is fully accounted for by the exchange of
the light resonances [last line of Eq. (C3)], and no
anomalously large coefficient for the dimension-6 oper-
ators is generated by the cutoff dynamics. The result from
the diagrammatic calculation is reproduced by the disper-
sive approach only after adding the contribution of the
integral on the circle at infinity. While Ŝ is not positive
definite, the correct asymptotic behavior of the two-point
current correlators is recovered at the cutoff scale through
the exchange of the ρB, as a consequence of Eq. (C2).
The latter can be satisfied for α2L ∼ α2R ∼ 1=g2ρ and
α2B ∼ 1=ðgρg�Þ.
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