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1. Introduction

Increasing collision energy at the LHC opens unique oppor-
tunities for searching signatures of new phenomena beyond the 
Standard Model (SM). On the one hand, some extensions of the 
SM have been suggested by looking for solutions to some pend-
ing fundamental issues in particle physics. This is the case, e.g., of 
supersymmetry [1], and the search for supersymmetric particles is 
one of the fundamental goals of the LHC.

On the other hand, there are other scenarios compelled to a 
lesser extent by theoretical arguments, but still motivated by plau-
sible extensions of different sectors of the SM, which should be 
contemplated and its phenomenology studied in detail. This is for 
instance the case when a new gauge group (yielding a new type 
of force and a new set of fundamental particles) is added to the 
theory, leading to new bound states with relatively low masses for 
some values of the model parameters. Such scenarios, generically 
referred to as Hidden Valley models [2,3], might have remained 
beyond observation so far because of an energetic barrier or weak 
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coupling of the so-called v-particles to SM particles. Their experi-
mental consequences have been already studied having become an 
objective at the LHC and other facilities, see e.g. [4]. For example, 
v-hadrons (made of v-quarks) could leave the detector undetected, 
leading to invisible signatures. Alternatively, for some values of the 
parameters of the theory, v-hadrons might decay promptly back to 
SM fermions thereby modifying the parton shower hadronizing to 
final-state particles [5].

Most signatures of New Physics in colliders are expected to be 
found in hard events, on the transverse plane with respect to the 
beams’ direction (i.e. emitting particles with high transverse mo-
mentum p⊥), where background is much reduced. In this work, 
however, we focus on rather diffuse soft signals in pp inelastic in-
teractions, though expectedly tagged by hard decay products and 
appropriate cuts on events. For example, a non-standard state of 
matter from a Hidden Sector (HS) might alter particle correlations 
[6,7] which can be measured to a large accuracy at the LHC. In-
deed, particle correlations are known to provide a crucial informa-
tion about the underlying dynamics of the multiparticle production 
mechanism [8–11] since the beginning of high-energy (cosmic ray) 
physics. In particular, genuine correlations are especially sensitive 
to variations of the features of the partonic cascade leading to 
final-state particles.

Hadron interactions at high energy are usually considered as 
resulting from collisions of their constituent partons, likely dom-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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inated by pairwise parton interactions. Such partonic interactions 
can be hard, leading to particles (or jets) with high p⊥ , or soft, 
with small transferred momentum and large multiplicities.

In order to cope with the complexity of multihadron production 
dynamics a multi-step scenario, most often a two-step scenario, is 
usually invoked. Then the resulting final state particle multiplicity 
distribution and its moments are given by the convolution of the 
distribution of particle emission sources such as strings, clusters, 
fireballs, clans, ladders, etc. and their decay and/or fragmentation 
distribution into partons and/or particles. Different degrees of so-
phistication can be achieved by introducing various phenomeno-
logical approaches to describe the observed particle multiplicity 
distribution.

In particular, we will rely on a phenomenological approach 
made in Refs. [12,13] based on the so-called Independent Pair 
Parton Interaction (IPPI) model, in order to study the effects of 
a new physics contribution on the conventional parton cascade. 
Let us remark that the IPPI model does not imply no correlations 
among the emitted particles, but correlations stemming from the 
distribution probabilities describing parton interactions and their 
convolution, as explained later.

The study of multiplicity distributions and their properties have 
traditionally been a cornerstone to understand soft hadron physics. 
In this paper, we analyse how the multiplicity distributions of final 
state hadrons are modified once an extra step of an intermedi-
ate unknown state of matter is introduced in the description of 
the parton shower. Hereafter we will refer to this approach as the 
modified IPPI (mIPPI) model. Use will be made of the powerful 
method of the normalised factorial and cumulant moments [8,11], 
allowing to extract dynamical multiparticle fluctuations and gen-
uine correlations.

2. Inclusive correlations and factorial moments of multiplicity 
distributions

The study of inclusive particle correlations in multiparticle pro-
duction can be performed by analysing n-particle correlation func-
tions and/or normalised factorial moments of multiplicity distribu-
tions [8,9,11]. Here we focus on the latter.

The normalised factorial moments of rank q = 2, 3, . . . , are de-
fined as

Fq =
∑

n P (n) n(n − 1) · · · (n − q + 1)

(
∑

n P (n) n)q
, (1)

where P (n) denotes the probability for n final-state particles 
(charged hadrons).

The factorial moments represent any correlation between the 
emitted particles in events. To extract the genuine q-particle cor-
relations, not reducible to the product of the lower-order correla-
tions, one uses the normalised cumulant functions, or cumulants, 
defined as

Kq = Fq −
q−1∑
r=1

(q − 1)!
r!(q − r − 1)! Kq−r Fr . (2)

The factorial moments and cumulants have been extensively 
applied to the analysis of multihadron dynamics in different types 
of collisions, from e+e− to nucleus–nucleus interactions, in a broad 
range of energies [8,9,11].

Since Fq and |Kq| grow rapidly as the rank q increases, it is 
convenient to consider the ratio

Hq = Kq

F
, (3)
q

which appears in a natural manner as solutions of QCD equations 
for the generating functions of multiplicity distributions [14].

On the other hand, normalised Hq moments are extremely sen-
sitive to the details of multiplicity distributions (including exper-
imental cuts on events [15]) and can be used to distinguish be-
tween different multiparticle production models and Monte Carlo 
generators [9,10], and eventually the contribution of a HS as advo-
cated in this paper.

In the following, the negative binomial distribution (NBD) 
which is widely used in multiparticle production studies [9,11,16], 
will be employed. The distribution is given by [17]

P (n) = �(n + k)

�(n + 1)�(k)

( 〈n〉
k

)n(
1 + 〈n〉

k

)−n−k

, (4)

where k−1 is a parameter which measures how strongly the emit-
ted particles are correlated. One finds that

1

k
= F2 − 1 . (5)

The Poisson distribution is obtained in the limit k → ∞ with
Fq = 1 and Kq = 0, ∀q.

In pp interactions, one single NBD is found to describe satisfac-
torily the shape of the charged particle multiplicity distribution at 
up to several hundreds GeV centre-of-mass (c.m.) energy. However, 
appearance of (shoulderlike) substructures at higher energies has 
been attributed to weighted superposition or convolution of more 
distributions stemming from more than one source or process in 
multiparticle production [18–20]. For reviews, see [11,16]. This be-
haviour has been confirmed at LHC energies [21–23]. Thereby one 
can associate the growing complexity with energy of the multiplic-
ity distribution to the increasing number of partonic interactions of 
the colliding particles, assuming that every interaction gives rise to 
a single NBD. This is in fact one of the hypotheses put forward in 
[12,13] that we examine in the following section.

3. Multiparticle production as a multi-step cascade

The IPPI model [12,13] was proposed in order reproduce the 
moments of multiplicity distributions in pp collisions at high en-
ergy with minimum adjustable parameters. The IPPI picture cor-
responds to a simplified 2-step scenario: parton binary collisions 
become seeds of independent cascades which hadronize (e.g. via 
string fragmentation) to the final-state multiparticle state.

Moreover, it is assumed that each pair parton interaction gives 
rise to a NBD, while the total distribution is ultimately described 
by means of the weighted sum:

P (2)(n) =
jmax∑
j=1

w j

∑
ni

j∏
i=1

PNBD(ni,m(1),k(1))

=
jmax∑
j=1

w j PNBD(n; jm(1), jk(1)) , (6)

where w j denotes the probability for a j-pair interaction, m(1) and 
k(1) correspond to the mean multiplicity and dispersion for a sin-
gle pair interaction, respectively (for a sake of clarity we explicitly 
keep in this paper the superscript (1)).1 Note that no new ad-
justable parameters appear in Eq. (6) besides the distribution for j
binary parton interactions which can be evaluated if some model 
is adopted, see e.g. [24,25].

1 Here and in the following, the k parameter in each step is defined as in Eq. (5), 
e.g. 1/k(1) = F (1)

2 − 1.
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Table 1
Probability distribution of the number of active pairs in proton–proton collisions for different TeV energies according to the IPPI model [13].

√
s w1 w2 w3 w4 w5 w6 w7

1.8 TeV 0.519 0.269 0.140 0.072 0.0 0.0 0.0
7.0 TeV 0.504 0.254 0.128 0.065 0.033 0.016 0.0
13 TeV 0.5020 0.2520 0.1265 0.0635 0.0319 0.0160 0.0080

Table 2
Normalised factorial moments F (s)

q corresponding to the different probability distributions of Table 1. Notice that moments of rank higher than wmax vanish.
√

s F (s)
1 F (s)

2 F (s)
3 F (s)

4 F (s)
5 F (s)

6 F (s)
7

1.8 TeV 1 0.72 0.467 0.178 0.0 0.0 0.0
7.0 TeV 1 0.8697 0.8841 0.8353 0.5979 0.2321 0.0
13 TeV 1 0.914 1.050 1.231 1.256 0.940 0.375
In the IPPI, the probability for j binary parton interactions per 
event is simply estimated as w j = w j

1, where w1 refers to a single 
pair, with the normalization condition 

∑ jmax
j=1 w j = 1. In Table 1 we 

show the values of w j up to wmax = 7, corresponding to pp colli-
sions at the c.m. energy 

√
s of 13 TeV taken from [13] (we neglect 

the expectedly slight difference of w j at c.m. energy between 13 
and 14 TeV). Note that as the energy increases, more pair parton 
interactions would participate in each event.

Another phenomenological approach based on a QCD-inspired 
eikonal model can be found in [26], leading to similar results for 
multiplicity distributions and factorial moments as the IPPI.

Let us stress that in the current study we do not assume ab 
initio any particular type of the probability distribution. We will 
keep this general approach in the next section for a 3-step cas-
cade. In fact, all the formulas developed in Appendix apply for any 
distribution at any stage of the multiparticle production process. 
Accordingly, a lot of parameters denoted as F (p)

q (where the su-
perscript p = 1, s, h will denote different steps of the cascade, vide 
infra) encode the complexity of the soft hadronic dynamics and 
hidden production mechanism. Note, however, that such parame-
ters become fixed once the corresponding probability distributions 
are adopted.

3.1. Two-step cascade

One can rewrite Eq. (6) of the independent superposition of 
parton pair interactions in pp collisions for arbitrary particle pro-
duction distributions and sources:

P (2)(n) =
∑
Ns

P (Ns)
∑

ni

Ns∏
i=1

P (1)(ni) . (7)

Here n and Ns denote the number of (charged) particles and 
sources, respectively.2 In the notation used here, P (Ns) stands now 
for the distribution of (fragmenting string) sources, equivalent to 
the parton pair interaction distribution w j . Correspondingly, the 
average multiplicity can be written as 〈n〉 = 〈Ns〉 m(1) according to 
a 2-step description of multiparticle production.

On the other hand, the authors of [12,13] benefit from a dra-
matic reduction of free parameters when assuming a weighted 
superposition of NBDs with shifted parameters, as can be seen in 
Eq. (6). In addition, since m(1) should be the same for any value 
of the rank q, only k(1) remains a free parameter (wmax was de-
termined using a particular model). Remarkably, in the current 

2 To compare with the experimental data and to get the particle multiplicity with 
the same charge, the multiplicity was divided by two in [12,13]. Also note that the 
number of sources Ns in Eq. (7) corresponds to the number of parton pair collisions 
j in Eq. (6).
analysis, m(1) cancels out in the expressions for the scaled factorial 
moments and cumulants.

In order to make a comparison of the results of the current 
study and those from [12,13], below we assume that all P (1)(ni)

are NBDs. Moreover, P (Ns) and w j distributions can be formally 
identified. The values of F (s)

q up to q = 7 are given in Table 2
(higher rank moments vanish for wmax = 7). Let us stress that they 
do not represent a NBD.

Upon integration of the inclusive correlation functions in the 
central rapidity region [7], the F (2)

q moments can be written in 
terms of the moments of the subprocesses of the cascade; for ex-
ample, the factorial moments of rank two read

F (2)
2 = F (s)

2 + F (1)
2

〈Ns〉 . (8)

Here, F (s)
2 = 〈Ns(Ns − 1)〉/〈Ns〉2 and F (1)

2 = 〈n1(n1 − 1)〉/〈n1〉2, and 
〈n1〉 = m(1) stands for the average particle multiplicity per single 
cascade.

The computation of higher rank F (2)
q moments becomes ex-

tremely involved at large q. Therefore, we have written a Prolog 
code (see Appendix) which provides the expressions F (p)

q for any 
value of the rank q and any number of steps p in the cascade, 
depending on the computer capacity available.

As shown below, we are able to reproduce (up to the percent 
level) the H (2)

q moments3 using the same values and assumptions 
as in Refs. [12,13]. This accordance suggests to proceed further in 
the approach given here by incorporating a new step in the parton 
cascade following the mIPPI scheme.

Interestingly, the values of H (2)
q can become quite small (down 

to a decimal order, even approaching zero for certain values of q) 
while the factorial moments F (2)

q grow fast with q. Actually there 
is a delicate balance in the cancellations of Eq. (2) which can be 
altered when the characteristics of the parton cascade vary. Such a 
sensitivity could be of utility in the search for new phenomena in 
hadron collisions, as it is advocated here.

3.2. Three-step cascade

Let us now include an extra step in the cascade to simulate a 
hypothetical new stage of matter associated to a HS. The resulting 
multiplicity in a 3-step process should obey the following distribu-
tion:

3 As in the case of F (p)
q moments, here the superindex p in H(p)

q indicates the 
number of steps in the cascade: a two-step conventional cascade with p = 2, and 
the three-step cascade with p = 3 once a HS is included.
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P (3)(n) =
∑
Ns

P (Ns)
∑
n j

Ns∏
j=1

P (2)(n j) , (9)

where P (2) is here defined as

P (2)(n) =
∑
Nh

P (Nh)
∑

ni

Nh∏
i=1

P (1)(ni) , (10)

with Nh denoting the number of active hidden sources in a col-
lision. In what follows, for the sake of simplicity we assume that 
P (Nh) follows a Poisson distribution, i.e. independent production 
of hidden sources resulting from binary parton interactions.

In other words, the probability distribution of parton interac-
tions remains the same as in the conventional cascade (being al-
ready adjusted to reproduce experimental data in pp collisions) 
while one adds another step subsequent to the initial binary par-
ton interaction.

Then, proceeding in the same way as in the previous section, 
one gets the F (3)

q moments in terms of the multiplicity moments 
from the different cascade steps. For example, the second-rank fac-
torial moment F (3)

2 reads

F (3)
2 = F (s)

2 + F (h)
2

〈Ns〉 + F (1)
2

〈Nh〉 , (11)

where 〈Nh〉 and F (h)
2 stand for the mean number and scaled mo-

ment of the hidden source distribution, respectively. In the Ap-
pendix the expressions for moments of rank up to q = 6 (showing 
increasing complexity) are provided.

As already commented, the computation of F (p)
q becomes espe-

cially hard for high q values and the above-mentioned Prolog code 
is used to obtain further factorial moments and cumulants. For ex-
ample, F (3)

16 contains about 100,000 terms with some coefficients 
of numerical order 109. Needless to say again, we have checked 
carefully the numerical stability of the computation.

We have also checked the first F (p)
q moments, p = 2 and 3, up 

to q = 8 obtained with the Prolog code to those computed by hand
and shown in Appendix up to q = 6.4

4. Hq-moment oscillations as a function of the rank q

QCD next-to-leading order calculations [27,28] predict that the 
ratios Hq defined in Eq. (3) oscillate as a function of the rank q, 
crossing the q-axis and becoming negative with a minimum at

qmin ≈ 24

11

1

γ0
+ 1

2
+O(γ0) , (12)

where γ0 = (6αs/π)1/2 denotes the anomalous dimension at low-
est order; for review, see [9,29]. At LEP energies, it turns out that 
qmin ≈ 5 shifting to larger values at higher energies. This predic-
tion has been tested against experimental data and found to be 
observed not only in e+e− collisions [30,31] but also in a variety 
of colliding particles and energies, including pp, p A and A A colli-
sions [32].

It is relevant to emphasize here that in case of a single NBD, 
the cumulants Hq are always positive (hence no oscillations ap-
pear) and monotonically decreasing as a function of q, in clear 

4 In Ref. [7] we already presented some of these expressions for low values of 
q in two-, three- and even four-step scenarios. In this paper, however, we do limit 
ourselves to a three-step scenario leaving the four-step scenario to be considered 
elsewhere. Beware also of the notation change of superscripts with respect to the 
present study.
Fig. 1. H(2)
q moments up to q = 16 in pp̄ collisions at 1.8 TeV obtained in this work 

using expressions for a 2-step cascade and the same parameters as in [12,13]. Very 
good agreement is found with the results from [12,13] and with the calculations 
based on the multiplicity measurements [36]; the latter shown by circles with error 
bars.

disagreement with the QCD predictions and experimental data [9]. 
The study of factorial moments and cumulants also reveal difficul-
ties that the NBD faces to describe multiparticle production in full 
phase space and in its small intervals [11,33–35].

In Fig. 1 we plot the values of the H (2)
q moments (q = 2 to 16) 

for 
√

s = 1.8 TeV multiplicity data, obtained through Eqs. (2) and 
(3) from the expressions of F (2)

q (a 2-step cascade). We fix the pa-
rameters for the plot alike it is done in Ref. [12], i.e., assuming 
NBDs for all binary parton collisions with k(1) = 4.4, and P (Ns)

(equivalent to the w distribution) from Table 1. The overall agree-
ment with the results of Refs. [12,13] and experimental data [36]
is very good.

One can see the two minima in the Fig. 1. As later interpreted, 
this oscillatory pattern (which seems to continue for even higher 
ranks) is due to the fact that the probability distribution for the 
number of sources P (Ns) (equivalently, the distribution for the 
number of parton pair collisions) does not follow a NBD. In case 
the distributions are all negative binomial, the resulting distribu-
tion turns out to be of the NBD type too and no oscillation pattern 
for H (2)

q shows up.

In Fig. 2 the H (2)
q moments obtained in the current study are 

shown for different pp collision c.m. energies as a function of the 
rank q being limited to the first miminum. Namely, the moments 
H (2)

q are plotted for 
√

s = 1.8 TeV, 7 TeV and 13 TeV. The points 
were evaluated computing first the values of the F (s)

q moments cor-
responding to the source (or binary parton) probability distribution 
at different energies, shown in Table 2. We set k(1) = 4 as an in-
put in the calculations here similarly to the value of this parameter 
used in [12,13]. One can see indeed that the minimum moves to 
the right as the pp collision energy increases, as expected.

The good agreement with the measurements shown in Fig. 1
and the expectations with the collision energy shown in a set of 
plots of Fig. 2 suggests the further introduction of a new step in 
the cascade to be interpreted as a HS, thereby studying the even-
tual variation of the crossing points/minima and the amplitude of 
the Hq oscillations.

5. HS-cascade versus a conventional cascade

5.1. Shift of the first minimum of Hq as a function of q

As explained above, the behaviour of the first minimum of Hq
with the c.m. energy in pp collisions is well predicted. Let us now 
examine how this behaviour can be modified in a 3-step scenario 
under different assumptions.
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Fig. 2. H(2)
q moments calculated up to q = 8 in pp collisions at √s = 1.8 TeV, 7 TeV and 13 TeV (from left to right) according to a conventional (2-step) cascade. The 

interpolating line is plotted to guide the eye. The crossing point (and first minimum) moves to higher q values as the collision energy increases.
Fig. 3. Predictions for H(p)
q moments as a function of the rank q for pp collisions at √

s = 13 TeV. The circles correspond to a conventional 2-step cascade (p = 2) from 
extrapolation at lower energies using the IPPI model. The triangles and the squares 
correspond to a 3-step cascade (p = 3) using the mIPPI model (this work) with the 
number of hidden sources 〈Nh〉 = 2 and 〈Nh〉 = 10, respectively. A different pattern 
in the amplitude of the oscillations at high q values can be clearly observed.

In Fig. 3, the three sets of points corresponding to different sce-
narios at pp collisions at 

√
s = 13 TeV are shown. The circles cor-

respond to a conventional cascade, while the triangles and squares 
correspond to an extra step in the mIPPI model setting 〈Nh〉 = 2
and 〈Nh〉 = 10, respectively. One can see that the crossing point 
(and minimum) moves by about one unit to the left for 〈Nh〉 = 10, 
and by the same amount to the right for 〈Nh〉 = 2 compared to the 
case of a conventional cascade. Such an altered behaviour could 
become a hint of a HS affecting the parton evolution in multipar-
ticle production, deserving a more detailed study.

5.2. Analysis of the Hq oscillation amplitude

Next let us examine the amplitude of the Hq oscillations as a 
function of the rank q, and its dependence on the parameters used 
in the mIPPI model as can be seen from in Fig. 3.

Depending on the number of hidden sources two different be-
haviours of the oscillation pattern of H (3)

q moments can be distin-
guished:

• For a small number of hidden sources, the oscillation ampli-
tude becomes appreciably dumped for high q values as com-
pared to a conventional (2-step) cascade.

• For a large number of hidden sources, the oscillation ampli-
tude is considerably larger for high q values as compared to a 
conventional (2-step) cascade.

These conclusions are indeed confirmed in Fig. 4 where the 
values of ln |H (p)

q | are plotted against q for different scenarios de-
pending on the type of the distributions used as indicated. The 
calculated points are shown together with the parabolic fits to 
them. One can see that the behaviour of the fitted curves is very 
different for different scenarios especially at large q values, which 
could thereby be relevant to detect a new physics effect according 
to the study presented here.

The fitted curves pass through the points in the left panel, 
whereas the points scatter around the curves in the right panel. 
This means that no oscillations appear whenever all the distribu-
tions in the superposition of Eqs. (9) and (10), including P (Ns), 
are of the NBD type. As already commented in Section 4, this be-
haviour can be easily understood in the mIPPI model inasmuch the 
convolution of NBDs in Eq. (9) leads again to a NBD. Conversely, 
the oscillation pattern in the right panel emerges as a consequence 
of P (Ns) not being a NBD.

6. Summary and final remarks

In this work we advocate that a new stage of matter, stemming 
from a hidden sector beyond the SM on top of the conventional 
partonic cascade, can be observed in multiparticle production in 
pp collisions at the LHC. This would result on some features of 
final-state particle correlations measured using the technique of 
factorial and cumulant moments of multiplicity distributions.

Within the modified Independent Parton Pair Interaction (mIPPI) 
model (with an extra step in addition to the conventional 2-step 
IPPI model [12,13]), the effect of a HS on the cumulant-to-factorial 
moment ratio Hq of the multiplicity distributions of final-state 
particles strongly depends on the number of the hidden sources. 
A large (small) number of the sources would lead to an enhance-
ment (softening) of the oscillation amplitude at high q values. 
Moreover, the crossing of the q-axis and the minimum of the 
Hq-moments interpolating curve shifts to smaller (larger) q val-
ues for a large (few) number of hidden sources.

We have provided new expressions for the scaled factorial mo-
ments F (p)

q of the two- and three-step cascades (p = 2 and 3, 
respectively) not given in the literature to our knowledge. Some 
of them (up to q = 6) are explicitly written in Appendix. Higher 
rank factorial moments can be computed by means of the Prolog 
code developed for this work, leading to very long and compli-
cated formulas. We have carefully checked the correctness of our 
code by comparing the computed expressions to by-hand calcula-
tions up to q = 8. The numerical stability at large q was also tested 
by choosing, e.g., a Poisson distribution for all intermediate proba-
bility distributions, and checking that the resulting values align in 
the ln |H (p)

q | plot as a function of q (see Fig. 4).
To conclude, we have studied the phenomenological conse-

quences of HS physics in multiparticle production which could be 
useful at LHC experiments, likely requiring a low-luminosity run to 
reduce pile-up as much as possible. Since both – conventional and 
HS – processes would be present in the collected sample of events, 
specific cuts, such as high multiplicity, flavour tagging, high-p⊥
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Fig. 4. Values of ln |H(p)
q | at √s = 13 TeV versus q for a 2-step scenario (p = 2, circles) and a 3-step scenario (p = 3) with 〈Nh〉 = 2 (triangles) and 〈Nh〉 = 10 (squares). Solid, 

dashed and dot-dashed lines correspond to parabolic fits, respectively. Left panel: superposition of NBDs with k(1) = 4 and k(s) = k(h) = 10 as reference values. Right panel: 
P (Ns) incorporates the values of Table 2 (not the NBD case). Notice that there are no oscillations when all the distributions of the convolution are of the NBD type.
leptons, missing energy, etc., are suggested to be applied to enrich 
the signatures of new physics.
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Appendix A. Factorial moments in 2- and 3-step scenarios

A.1. Prolog code

The structure of the problem suggests the use of declarative 
programming or functional programming. Finally the chosen lan-
guage was Prolog [37].

The program we have used to compute the factorial moments 
consists of four parts [38]:

1) A predicate which generates all possible topologies without 
repetitions from a given number of final particles and a given 
number of disintegration steps.

2) A recursive predicate that counts the number of occurrences 
for each topology.

3) A predicate that groups all topologies generated under a com-
mon formula, adding all occurrences per formula.

4) A predicate that translates formulas generated as a LaTeX file 
and as a Mathematica file.

The final result can be incorporated into a LaTeX document, or can 
be incorporated directly in Mathematica to use the results in cal-
culations and generate the corresponding graphs.

A.2. Modelled expressions for factorial moments

In this Appendix we give the expressions for the factorial mo-
ments F (p)

q up to q = 6. The superscript p = 2 and 3 denotes a 2-
and 3-step scenario, respectively. The expressions for higher rank 
moments are too long to be reproduced here but can be obtained 
from the Prolog code developed for this work.
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