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Abstract

A study of the decay D0→ K−π+µ+µ− is performed using data collected by the
LHCb detector in proton-proton collisions at a centre-of-mass energy of 8 TeV,
corresponding to an integrated luminosity of 2.0 fb−1. Decay candidates with muon
pairs that have an invariant mass in the range 675–875 MeV/c2 are considered. This
region is dominated by the ρ0 and ω resonances. The branching fraction in this
range is measured to be

B(D0→ K−π+µ+µ−) = (4.17± 0.12 (stat)± 0.40 (syst))× 10−6.

This is the first observation of the decay D0→ K−π+µ+µ−. Its branching fraction
is consistent with the value expected in the Standard Model.
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1 Introduction

Rare charm decays may proceed via the highly suppressed c→ uµ+µ− flavour changing
neutral current process. In the Standard Model such processes can only occur through
loop diagrams, where in charm decays the GIM cancellation [1] is almost complete. As
a consequence, the short-distance contribution to the inclusive D→ Xµ+µ− branching
fraction is predicted to be as low asO(10−9) [2], making these decays interesting for searches
for new physics beyond the Standard Model. However, taking into account long-distance
contributions through tree diagrams involving resonances such as D→ XV (→ µ+µ−),
where V represents a φ, ρ0 or ω vector meson, the total branching fraction of these rare
charm decays can reach O(10−6) [2–4]. Their sensitivity to new physics therefore is greatest
in regions of the dimuon mass spectrum away from these resonances, where the main
contributions to the branching fraction may come from short-distance amplitudes. Angular
asymmetries are sensitive to new physics both in the vicinity of these resonances and away
from them [4–8] and could be as large as O(1%).

This Letter focuses on the measurement of the decay1 D0→ K−π+µ+µ−. This will
provide an important reference channel for measurements of the c→ uµ+µ− processes
D0→ π+π−µ+µ− and D0→ K+K−µ+µ−: precise branching fractions are easier to obtain if
they are compared with a normalisation mode that has similar features. When restricted to
the dimuon mass range 675 < m(µ+µ−) < 875 MeV/c2, where the ρ0 and ω resonances are
expected to dominate, it can also be used to normalise the decaysD0→ K−π+η(

′)(→ µ+µ−).
Measuring their branching fractions allows the coupling η(

′) → µ+µ− to be determined.
This contains crucial information for various low energy phenomena, and is an input to
the prediction of the anomalous magnetic moment of the muon [9–11]. Focussing on this
dimuon mass range also simplifies the analysis, which does not have to account for the
variation of the selection efficiency as a function of m(µ+µ−). From previous measurements
the most stringent 90% confidence level upper limits on the decay D0→ K−π+µ+µ− are
set by the E791 experiment [12]: B(D0→ K−π+µ+µ−) < 35.9 × 10−5 in the full K−π+

mass region and B(D0→ K−π+µ+µ−) < 2.4 × 10−5 in the region of the K∗0 resonance.
The study presented here is based on data collected by the LHCb detector in proton-

proton collisions at a centre-of-mass energy of 8 TeV, corresponding to an integrated
luminosity of 2.0 fb−1. A subsample corresponding to an integrated luminosity of 1.6 fb−1

has been used to measure B(D0→ K−π+µ+µ−). The remainder of the data set was used to
optimise the selection. The branching fraction B(D0→ K−π+µ+µ−) is measured relative to
that of the normalisation decay D0→ K−π+π+π−. The most accurate recent measurement
of this branching fraction is used, B(D0→ K−π+π+π−) = (8.287± 0.043± 0.200)× 10−2,
obtained by the CLEO experiment [13].

1 The inclusion of charge conjugate decays is implied.
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2 Detector and simulation

The LHCb detector [14,15] is a single-arm forward spectrometer covering the pseudorapidity
range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector
includes a high-precision tracking system consisting of a silicon-strip vertex detector
surrounding the pp interaction region, a large-area silicon-strip detector located upstream
of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip
detectors and straw drift tubes placed downstream of the magnet. The tracking system
provides a measurement of momentum, p, of charged particles with a relative uncertainty
that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of
a track to a primary vertex, the impact parameter (IP), is measured with a resolution of
(15 + 29/pT)µm, where pT is the component of the momentum transverse to the beam,
in GeV/c.

Different types of charged hadrons are distinguished using information from two
ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a
calorimeter system consisting of scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter. Muons are identified by a system composed
of alternating layers of iron and multiwire proportional chambers [16].

The online event selection is performed by a trigger [17], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. In the offline selection, requirements are
made on whether the trigger decision was due to the signal candidate or to other particles
produced in the pp collision. Throughout this Letter, these two non-exclusive categories of
candidates are referred to as Trigger On Signal (TOS) and Trigger Independent of Signal
(TIS) candidates.

Simulated samples of D0 → K−π+µ+µ− and D0 → K−π+π+π− decays have been
produced. In the simulation, pp collisions are generated using Pythia [18] with a specific
LHCb configuration [19]. Decays of hadronic particles are described by EvtGen [20], in
which final-state radiation is generated using Photos [21]. The interaction of the generated
particles with the detector, and its response, are implemented using the Geant4 toolkit [22]
as described in Ref. [23]. No theoretical model or experimental measurement provides
a reliable decay model for D0→ K−π+µ+µ−. This decay mode is therefore modelled as
an incoherent sum of resonant and non-resonant contributions, such as K∗0→ K−π+ and
ρ0/ω→ µ+µ−, motivated by the resonant structure observed in D0→ K−π+π+π− and
D0→ K−π+π+π−π0 decays [24], and by the theoretical predictions of Ref. [4]. In the case
of D0→ K−π+π+π−, a decay model reproducing the data was implemented using the
MINT software package [25].

3 Event selection

The criteria used to select the D0→ K−π+µ+µ− and D0→ K−π+π+π− decays are as
similar as possible to allow many systematic uncertainties to cancel in the efficiency ratio.
At trigger level, only events that are TIS with respect to the hadron hardware trigger,
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which has a transverse energy threshold of 3.7 GeV, are kept. In the offline selection, the
only differences between the signal and normalisation channels are the muon identification
criteria.

The first-level software trigger selects events that contain at least one good quality
track with high pT and χ2

IP, where the latter is defined as the difference in χ2 of the closest
primary pp interaction vertex (PV) reconstructed with and without the particle under
consideration. The offline selection requires that at least one of these tracks originates
from either the D0→ K−π+µ+µ− or the D0→ K−π+π+π− decay candidates. The second-
level software trigger uses two dedicated selections to reconstruct D0→ K−π+µ+µ− or
D0→ K−π+π+π− candidates originating from the PV. These combine good quality tracks
that satisfy pT > 350 MeV/c and p > 3000 MeV/c. A muon (D0→ K−π+µ+µ−) or charged
hadron (D0→ K−π+π+π−) pair is required to form a good quality secondary vertex that
is significantly displaced from the PV. In events where such a pair is found, two charged
hadrons are subsequently added. The resulting four-particle candidate must have a good
quality vertex and its invariant mass must be consistent with the known D0 mass [24].
The momentum vector of this D0 candidate must be consistent with having originated
from the PV.

A preselection follows the trigger selections. Four charged particles are combined to
form D0 candidates. Tracks that do not correspond to actual trajectories of charged
particles are suppressed by using a neural network optimisation procedure. To reject the
combinatorial background involving tracks from the PV, only high-p and high-pT tracks
that are significantly displaced from any PV are used. This background is further reduced
by requiring that the four decay products of the D0 meson form a good quality vertex that
is significantly displaced from the PV and that pT(D0) > 3000 MeV/c. These three criteria
also reject candidates formed from partially reconstructed charm hadron decays, combined
with either random tracks from the PV or with tracks from the decay of another charmed
hadron in the same event. This type of background is further reduced by requiring the D0

momentum vector is within 14 mrad of the vector that joins the PV with the D0 decay
vertex, ensuring that the D0 candidate originates from the PV. Finally, the invariant
mass of the D0 candidate, which is reconstructed with a resolution of about 7 MeV/c2, is
required to lie within 65 MeV/c2 of the known D0 mass. In the case of D0→ K−π+µ+µ−,
m(µ+µ−) is restricted to the range 675–875 MeV/c2. The two backgrounds described above
are referred to as the non-peaking background throughout this Letter.

After the preselection, a multivariate selection based on a boosted decision tree
(BDT) [26,27] is used to further suppress the non-peaking background. The GradBoost
algorithm is used [28]. The BDT uses the following variables: the pT and χ2

IP of the final
state particles; the pT and χ2

IP of the D0 candidate as well as the χ2 per degree of freedom
of its vertex fit; the significance of the distance between this vertex and the PV; the
largest distance of closest approach between the tracks that form the D0 candidate; the
angle between the D0 momentum vector and the vector that joins the PV with its decay
vertex. The cut on the BDT response used in the selection discards more than 80% of
the non-peaking candidates and retains more than 80% of the signal candidates that have
passed the preselection.
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Finally, the information from the RICH, the calorimeters and the muon systems are
combined to assign probabilities for each decay product to be a pion, a kaon or a muon, as
described in Ref. [15]. A loose requirement on the kaon identification probability rejects
about 90% of the backgrounds that consist of π+π−µ+µ− or π+π−π+π− combinations
while preserving 98% of the signal candidates. In the case of D0→ K−π+µ+µ− decays,
the muon identification criteria have an efficiency of 90% per signal muon and reduce the
rate of misidentified pions by a factor of about 150. In the absence of muon identification,
D0→ K−π+π+π− decays with two misidentified pions would outnumber signal decays by
four orders of magnitude. After these particle identification requirements, this background
is reduced to around 50% of the signal yield and is dominated by decays involving two
pion decays in flight (π+→ µ+νµ). It is referred to as the peaking background throughout
this Letter.

In addition to D0→ K−π+π+π− decays with two misidentified pions, backgrounds
due to the decays of D+, D+

s , D∗+, τ , Λ+
c and Σ0

c are considered. These are studied using
simulated events and found to be negligible.

The selection is optimised using data and simulated samples. The BDT is trained using
simulated D0→ K−π+µ+µ− events to model the signal. The sample used to represent the
background consists of candidates with m(K+π−µ+µ−) > 1890 MeV/c2, drawn from 2% of
the total data sample. Candidates on the low-mass side of the signal peak are not used due
to the presence there of peaking background decays, whose features are very close to those
of signal decays. Optimal selection criteria on the BDT response and muon identification
are found using another independent data sample corresponding to 20% of the total
dataset. The fit described in Sect. 4 is used to estimate the yields of D0→ K−π+µ+µ−

signal (S), peaking background (Bpk) and non-peaking background (Bnpk) present in this
sample in the region of the signal peak, defined as 1840 < m(K−π+µ+µ−) < 1890 MeV/c2.
The requirements on the muon identification and BDT response are chosen to maximise
S/
√
S +Bpk +Bnpk.

The two samples described above consist of events chosen randomly from the 2012 data
and are not used for the subsequent analysis. The remainder of the dataset (78%), which cor-
responds to an integrated luminosity of 1.6 fb−1, is used to measure B(D0→ K−π+µ+µ−).
The final D0→ K−π+µ+µ− sample obtained with this selection consists of 5411 candi-
dates. In the case of D0→ K−π+π+π−, the large value of B(D0→ K−π+π+π−) allows
us to use a small sample (3 pb−1), drawn randomly from the total dataset. The final
D0→ K−π+π+π− sample consists of 121 922 candidates.

4 Determination of the D0 → K−π+µ+µ− and

D0→ K−π+π+π− yields

A simultaneous binned maximum likelihood fit to the m(K−π+µ+µ−) and m(K−π+π+π−)
distributions is performed to measure B(D0→ K−π+µ+µ−).

In each sample, the probability density function (PDF) fitted to the signal peak is a
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Gaussian function with power law tails. It is defined in the following way:

f(m;mD0 , σ, αL, nL, αR, nR) =



(
nL
|αL|

)nL
× e− 1

2
α2
L(

nL
|αL|
− |αL| −

m−mD0

σ

)nL if
m−mD0

σ
≤ −|αL|,

(
nR
|αR|

)nR
× e− 1

2
α2
R(

nR
|αR|
− |αR|+

m−mD0

σ

)nR if
m−mD0

σ
≥ |αR|,

exp
(
−(m−mD0 )2

2σ2

)
otherwise,

where mD0 and σ are the mean and width of the peak, and αL, nL, αR and nR parameterise
the left and right tails. This function was found to describe accurately the m(K−π+µ+µ−)
andm(K−π+π+π−) distributions obtained with the simulation, which exhibit non-Gaussian
tails on both sides of the peaks. The tail on the left-hand side is dominated by final-state
radiation and interactions with matter, while the right-hand side tail is due to non-Gaussian
effects in the reconstruction.

The non-peaking background in the D0 → K−π+π+π− sample is described by a
first-order polynomial. In the case of D0→ K−π+µ+µ−, a second-order polynomial is
used.

Three peaking backgrounds due to misidentified D0→ K−π+π+π− decays are cate-
gorised by the presence of candidates involving misidentified pions that did not decay in
flight before reaching the most downstream tracking stations, or candidates where one or
two pions decayed upstream of these tracking stations. Candidates from the first category
are described by a one-dimensional kernel density estimate [29]. This PDF is derived
from the m(K−π+µ+µ−) distribution obtained using simulated D0→ K−π+π+π− decays
reconstructed under the D0→ K−π+µ+µ− hypothesis. Candidates from the remaining
two categories appear as tails on the lower-mass side of the m(K−π+µ+µ−) distribution
and must be accounted for to avoid biases in the non-peaking background and in the signal
yield measured by the fit. Due to the small number of such candidates in the simulated
sample, simulated D0→ K−π+π+π− candidates where no pion decays in flight are altered
to reproduce the effect of such decays, and the corresponding m(K−π+µ+µ−) distribution
is determined. This is achieved by modifying the momentum vectors of either one or two
of the pions present in the D0→ K−π+π+π− final state according to the kinematics of
π+→ µ+νµ decays. The m(K−π+µ+µ−) distributions obtained after this modification are
converted into one-dimensional kernel density estimates.

The fit model involves 5 yields: the signal yield, Nsig, the yield of normalisation decays,
ND0→K−π+π+π− , the peaking and non-peaking background yields, Npk and Nnpk, and the
yield of background candidates in the D0→ K−π+π+π− sample, NKπππ

npk . They are all free
parameters in the fit. It also involves 15 parameters to define the shapes of the PDFs. The
parameters describing the widths and upper-mass tails are free parameters in the fit but are
common between the PDFs for the D0→ K−π+µ+µ− and D0→ K−π+π+π− peaks. The
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Table 1: Summary of the results of the fit described in Sect. 4. The yields measured in the
D0 → K−π+µ+µ− sample and the correlations between them, the yields measured in the
normalisation sample, the common width fitted to the D0→ K−π+µ+µ− and D0→ K−π+π+π−

yields, and the relative uncertainty on B(D0→ K−π+µ+µ−) are presented. Uncertainties on the
fitted parameters are statistical. The variation of the uncertainty on B(D0→ K−π+µ+µ−) when
the background yields are fixed indicates to what extent it is enhanced by the need to separate
contributions in overlap and which shapes present some similarities.

Parameter Value

Nsig 2357± 67

Npk 1047± 84

Nnpk 2007± 116

ND0→K−π+π+π− 83 575± 334

NKπππ
npk 38 346± 257

σ 7.17± 0.03 MeV/c2

CNpk,Nnpk
-78%

CNsig,Npk
27%

CNsig,Nnpk
-48%

σB(D0→K−π+µ+µ−) 2.9%

σB(D0→K−π+µ+µ−), if Npk fixed 2.8%

σB(D0→K−π+µ+µ−), if Npk and Nnpk fixed 2.4%

lower-mass tail parameters are determined separately. Those used for D0→ K−π+π+π−

candidates are allowed to vary in the fit. This is not possible for D0 → K−π+µ+µ−

candidates because of the overlap between the signal and the D0→ K−π+π+π− peaking
background and therefore the parameters are fixed to the values obtained from the
simulated sample. In total, there are 15 free parameters in the fit.

The relative yields of the three peaking background categories described above are
fixed to values obtained by a fit to a large control sample. It consists of D0→ K−π+µ+µ−

candidates that are in the TOS category with respect to the muon hardware trigger,
in contrast to the signal and normalisation samples that are in the TIS category with
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Table 2: Measured efficiencies and yields for the decay D0→ K−π+µ+µ− in the dimuon mass
range 675–875 MeV/c2, and for the decay D0→ K−π+π+π−. The uncertainties are statistical.
In the case of efficiencies, it stems from the finite size of the simulated samples.

D0→ K−π+µ+µ− D0→ K−π+π+π−

Efficiency [10−5] 8.8± 0.2 8.2± 0.1

Yields 2357± 67 83 575± 334

respect to the hadron trigger. All of the other selection requirements are the same as those
described in Sect. 3. This TOS signal control sample consists of 28 835 candidates and
contains approximately six times more D0→ K−π+µ+µ− decays than the nominal TIS
sample.

The fit results are summarized in Table 1 and the observed mass distributions are
shown in Fig. 1, with fit projections overlaid. The main difficulties in this procedure are the
similarities in the shape of the signal, peaking background and non-peaking background,
and the overlap between their distributions in m(K−π+µ+µ−). However, their impact on
the measurement presented in this Letter is limited, as can also be seen in Table 1.

5 Branching fraction measurement

The branching fraction of the decay D0 → K−π+µ+µ− is obtained by combining the
quantities presented in Table 2 with the branching fraction of the D0→ K−π+π+π− decay
according to

B(D0→ K−π+µ+µ−) =
ND0→K−π+µ+µ−

ND0→K−π+π+π−
× εD0→K−π+π+π−

εD0→K−π+µ+µ−
× B(D0→ K−π+π+π−), (1)

where ND0→K−π+µ+µ− , ND0→K−π+π+π− , εD0→K−π+µ+µ− and εD0→K−π+π+π− are the yields
and selection efficiencies for the signal and normalisation decays. The branching fraction
of the signal decay for dimuon invariant masses in the range 675–875 MeV/c2 is measured
to be B(D0→ K−π+µ+µ−) = (4.17± 0.12)× 10−6, where the uncertainty is statistical.

5.1 Systematic uncertainties

The systematic uncertainties on B(D0→ K−π+µ+µ−) are summarised in Table 3. Those
related to reconstruction and selection efficiencies are minimized thanks to the efficiency
ratio in Eq. 1 and to the similarities between D0→ K−π+µ+µ− and D0→ K−π+π+π−

decays. This is illustrated in Fig. 2, which shows the distributions of the BDT response for
the D0→ K−π+µ+µ− and D0→ K−π+π+π− decays, both in data and simulated samples.
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Figure 1: Mass distributions of (a) D0→ K−π+π+π− and (b) D0→ K−π+µ+µ− candidates.
The data are shown as points (black) and the total PDF (blue solid line) is overlaid. In (a),
the two corresponding components of the fit model are the D0 → K−π+π+π− decays (red
solid line) and the non-peaking background (violet dashed line). In (b), the components are
the D0→ K−π+µ+µ− (long-dashed green line), the peaking background due to misidentified
D0→ K−π+π+π− decays (red solid line), and the non-peaking background (violet dashed line).
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Table 3: Systematic uncertainties on B(D0→ K−π+µ+µ−).

Source Uncertainty [%]

Track reconstruction 3.2
Offline selection 2.0
Simulated decay models 2.5
Hardware trigger 4.4
Software trigger 4.3
Muon identification 3.2
Kaon identification 1.0
Size of simulated sample 2.9
σsyst(εD0→K−π+µ+µ−/εD0→K−π+π+π−) 8.8

Signal shape parameters 0.8
Peaking background tails 1.5
Signal PDF 0.6
Non-peaking background shape 2.1
σsyst(NK−π+(µ+µ−)ρ0−ω

/NK−π+π+π−) 2.8

B(D0→ K−π+π+π−) 2.5

Quadratic sum 9.6

In data, the background contributions are removed using the sPlot technique [30]. Also
shown in this figure are the ratios between the D0→ K−π+µ+µ− and D0→ K−π+π+π−

distributions. The BDT response, which combines all the offline selection variables (with
the exception of muon identification criteria), is very similar for both kinds of decay and
the differences are well described by the simulation. In cases where selection criteria
depend on the nature of the decay products, data-driven methods are used, as described
below.

The uncertainty on the charged hadron reconstruction inefficiency is dominated by
the uncertainty on the probability to undergo a nuclear interaction in the detector. This
inefficiency is evaluated using simulated events. The corresponding uncertainty is derived
from the 10% uncertainty on the modelling of the detector material [31].

The selection efficiencies based on the kinematical and geometrical requirements are
derived from simulation. A systematic uncertainty to take into account imperfect track
reconstruction modelling is estimated by smearing track properties to reproduce those
observed in data. Similarly, a systematic uncertainty on the efficiency of the BDT selection
is assigned as the difference between the efficiency obtained in data and simulation.

The uncertainties in the decay models are estimated separately for the signal and
normalisation channels. For the signal, this is carried out by reweighting simulated
D0 → K−π+µ+µ− decays to reproduce the distributions of m(K−π+) and m(µ+µ−)
observed in data, with the difference in efficiency relative to the default being assigned
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as the systematic uncertainty. For D0→ K−π+π+π−, the sensitivity to the decay model
is studied by comparing the default efficiency with that obtained in an extreme case in
which the decay model provided by the MINT package is replaced by an incoherent sum
of the resonances involved in the decay, as given in Ref. [24].

To avoid dependence on the modelling of the hardware trigger in simulation, its
efficiency is determined in data. The efficiency to be TIS with respect to hadron hardware
trigger is determined as the fraction of D0→ K−π+µ+µ− decays that fulfil this requirement
among D0→ K−π+µ+µ− candidates that are TOS with respect to the muon hardware
trigger. It is measured in 12 different regions defined in the (pT(D0), Nt) plane, where
Nt is the track multiplicity of the event. The overall hardware trigger efficiency for
D0→ K−π+µ+µ− decays is the average of these 12 efficiencies weighted according to
the distributions of D0→ K−π+µ+µ− candidates observed in data. The efficiency of
the normalisation mode is obtained by weighting the same 12 efficiencies according to
the distributions of D0→ K−π+π+π− candidates. This procedure assumes that the
probability for D0→ K−π+µ+µ− decays to fulfil the TIS requirement is not enhanced
by the requirement to also be in the TOS category and that this TIS efficiency is the
same in every region for D0→ K−π+µ+µ− and D0→ K−π+π+π− decays. No difference
is found in simulation between the εD0→K−π+π+π−/εD0→K−π+µ+µ− ratio obtained with this
method and the ratio of true efficiencies, obtained by directly counting the number of
simulated D0→ K−π+µ+µ− and D0→ K−π+π+π− decays that fulfil the hadron trigger
TIS requirement. To determine the systematic uncertainty associated with the hardware
trigger efficiency, the uncertainty on this comparison is combined with the statistical
uncertainties on the 12 measurements performed in data in (pT(D0), Nt) regions.

A similar approach is employed in the case of the first level of the software trigger.
A sample of D0→ K−π+π+π− candidates is selected from data that satisfied the trigger
requirements independently of these candidates. The fraction of D0→ K−π+π+π− decays
where at least one of the decay products also satisfies the requirements of this trigger
is measured using this sample. This efficiency is measured in regions of pT(D0) and
weighted according to distributions of this variable in simulated D0→ K−π+µ+µ− and
D0→ K−π+π+π− events. The variation in the efficiency ratio when these distributions are
corrected to match the data is used to evaluate the corresponding systematic uncertainty.

The efficiency of the second-level software trigger for the signal decay is calculated
relative to that of the normalisation decay. This ratio is measured using D0→ K−π+µ+µ−

decays in data and simulation and consistent results are obtained. The uncertainty on this
comparison is therefore assigned as the systematic uncertainty on this trigger efficiency.

The efficiency of the muon identification criteria is determined in data using a large
and pure sample of B→ J/ψ (→ µ+µ−)X decays. Efficiencies measured in several regions
of pT(µ), η(µ) and Nt are weighted according to the distribution observed for the muon
candidates from D0 → K−π+µ+µ− decays. Several definitions of these domains are
considered, with varying binnings. The different efficiencies obtained this way, as well as
the efficiencies obtained in simulated samples, are compared to evaluate the corresponding
systematic uncertainty. The same approach is used to evaluate the efficiency of the
kaon identification requirement. In this case, the calibration kaons are provided by
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D∗+→ D0(→ K−π+)π+ decays in data.
In the fit outlined in Sect. 4, the parameters of the function that describe the lower-mass

tail of the D0→ K−π+µ+µ− peak are fixed to values obtained from simulation. The
corresponding systematic uncertainty is determined by repeating the fit using the values
obtained by a fit to the signal TOS control sample. A similar difference is observed when
the corresponding test is performed for D0→ K−π+π+π− candidates.

The systematic uncertainty related to the description of the peaking background is
determined by the change observed in B(D0→ K−π+µ+µ−) when the components due to
the decay of one or two pions in flight are neglected, and when their yields relative to the
rest of the peaking background are enhanced by twice their uncertainty.

Two other systematic uncertainties have been evaluated. To estimate the impact of the
signal PDF employed, the fit is repeated using the Cruijff function [32] instead. Potential
effects arising from non-peaking backgrounds are assessed by repeating the fits with the
non-peaking backgrounds assumed to be linear in m(K−π+µ+µ−). The values of the
systematic uncertainties associated with the choice of fit model and its parameters were
also further validated using pseudoexperiments.

The impact on the fit of the similarities between the shapes of the signal and background
components was further controlled in two ways. First, fixing the background yields decreases
the relative uncertainty on B(D0→ K−π+µ+µ−) from 2.9% to 2.4%. This variation is
far lower than the total systematic uncertainty due to the yield determination (2.8%).
Moreover, another study is performed based on pseudoexperiments, generated with realistic
values of the yields and PDFs shape parameters. The fit proved able to return unbiased
measurements of the generated value of B(D0→ K−π+µ+µ−) and an accurate estimation
of the statistical uncertainty, consistent with the uncertainty obtained in data.

As can be seen in Table 3, the systematic uncertainties are dominated by the uncertainty
on theD0→ K−π+µ+µ− toD0→ K−π+π+π− efficiency ratio, which is larger than the 2.9%
statistical uncertainty on B(D0→ K−π+µ+µ−). As expected, this systematic uncertainty is
primarily due to the different final state particles of the two decays. The trigger efficiencies,
and the muon identification and track reconstruction efficiencies, are responsible for
about 90% of this uncertainty. The uncertainties due to the yield determination and the
knowledge of B(D0→ K−π+π+π−) represent secondary contributions.

11



-0.5 0 0.5 1

C
an

di
da

te
s 

/ (
0.

05
)

0

2000

4000
LHCb

BDT Response
-0.5 0 0.5 1

R
at

io
  

0
0.5

1
1.5

2
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6 Conclusions

The decay D0→ K−π+µ+µ− is studied using proton-proton collision data corresponding
to an integrated luminosity of 2.0 fb−1 collected in 2012 by the LHCb detector at a centre-
of-mass energy of 8 TeV. The branching fraction of the decay D0→ K−π+µ+µ− in the
dimuon mass range 675–875 MeV/c2 is measured to be

B(D0→ K−π+µ+µ−) = (4.17± 0.12 (stat)± 0.40 (syst))× 10−6.

This branching fraction can be compared to the Standard Model value calculated in
Ref. [4], B(D0→ K−π+µ+µ−) = 6.7×10−6, in the full dimuon mass range. This is the first
observation of this decay. The branching fraction is measured with an overall precision of
10% and is one order of magnitude lower than the previous most stringent upper limit.
Precise measurements of the D0→ π+π−µ+µ− and D0→ K+K−µ+µ− decays are now
possible in all regions of the dimuon invariant mass since they can be compared with a
normalisation mode that has similar features and a precisely known branching fraction.
This will allow more stringent constraints on new physics to be obtained using data already
collected by the LHCb detector, and the sensitivity of future experiments to angular
asymmetries to be assessed.

The distributions of the K−π+ and µ+µ− invariant masses in D0→ K−π+µ+µ− decays
are shown in Fig. 3 , where the background contribution is removed using the sPlot
technique [30], taking the m(K−π+µ+µ−) invariant mass as the discriminating variable.
An amplitude analysis would be required for a full understanding of the decay dynamics.
The distributions in Fig. 3 suggest the presence of additional contributions, including
the ω resonance, beyond the K∗0ρ0 intermediate state that, according to Ref. [4], should
strongly dominate the decay amplitude.
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kUniversità di Roma Tor Vergata, Roma, Italy
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