

Highlights from the ATLAS experiment at Run 1

Tülay Çuhadar Dönszelmann On behalf of the ATLAS Collaboration

First Joint METU-IPM Conference on LHC Physics Programme Izmir, Turkey September 30, 2015

Outline

A short description of ATLAS **ATLAS Submitted Papers** 500 ATLAS ATLAS: 475 Detectors & Data taking at Run 1 400 Selected results from recent publications 300 from : Higgs 200 Тор 100 SUSY searches 2011 2012 2013 2014 2015 Exotic searches

https://twiki.cern.ch/twiki/bin/view/AtlasPublic (475 submitted papers and counting)

ATLAS detector at LHC

3

ATLAS is one of the two multi-purpose detector at the LHC proton-proton collider

ATLAS collaboration: 38 countries, ~178 institutes, ~3000 physicists

ATLAS detector at Run 1

ATLAS trigger at Run 1

5

Data Taking at Run 1

- LHC Run 1 schedule was from 2009 till beginning of 2013
 - 2009 20 μb⁻¹ at √s = 900 GeV
 - 2010 45 pb⁻¹ at √s = 7 TeV
 - 2011 + 2012 25 fb⁻¹ at √s = 7,8 TeV

Vs=8 TeV between April 4th and December 6th (in %) - corresponding to 21.3 fb⁻¹ of recorded data.

ATLAS p-p run: April-December 2012										
Inner Tracker Calorimeters Muon Spectrometer Magnets										
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.1	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.5%										
Louis In a sta		l as leating a			al accellence al			012	. h	

The higher the luminosity is the higher the pile-up i.e. number of interactions per bunch crossing Average pile-up $<\mu> \sim 9$ (21) at 2011 (2012)

Standard Model Summary

7

- Total or fiducial cross section measurements from inclusive W,Z production and di-bosons production:
 - Tests of the SM (at higher energy) and probing new physics
 - Backgrounds for searches and precision measurements (W/Z+jets, top pairs and di-bosons)

Standard model scalar boson search

Phys. Lett. B 716 (2012) 1-29

 In July 2012, ATLAS and CMS announced discovery of a new particle (mass ~ 125 GeV) decaying to two bosons

> p_0 = probability that the background fluctuates more than the observed excess

```
3\sigma – evidence
5\sigma – discovery
```

SM Higgs Production at the LHC

bbH cross section at 7 TeV and 8TeV is 1.1% of ggF

Event display of $H \rightarrow ZZ^* \rightarrow 4\mu$ candidate in ATLAS

Higgs searches in ATLAS

H→WW^{*} → 4I: Good statistics, low resolution; Observed (expected) significance : $6.1 (5.8) \sigma$

$H \rightarrow \tau^+ \tau^-$: Best fermionic channel Observed(expected) significance: 4.5 (3.4) σ

Higgs boson signal strength

- □ With full data sets, combined results from the diboson decays $H \rightarrow ZZ^* \rightarrow 4I$, WW*, $\gamma\gamma$ from the rare decays $H \rightarrow Z\gamma$, bb, $\tau\tau$ and $\mu\mu$ and VH(bb), ttH
 - The signal strength, μ, is the ratio of a given Higgs boson production cross section (σ) to its SM value (σ_{SM}), μ =σ/σ_{SM}
- Categorization of the production processes:
 - Couplings to fermions : $ggF + ttH (\mu_{ggF+ttH})$
 - Couplings to vector bosons : VBF + VH (μ_{VBF+VH})

 $\mu = 1.18 \pm 0.10(\text{stat}) \pm 0.07(\text{syst})^{+0.08}_{-0.07}(\text{th})$

arXiv:1507.04548

Fiducial and differential cross sections

ATLAS \s = 8 TeV, 20.3 fb⁻¹

🖡 comb. data 🛛 🔳 syst. unc.

 $\downarrow H \rightarrow \gamma \gamma \downarrow H \rightarrow ZZ^* \rightarrow 4l$

Data

[dd

_____50 ມ≙______15

40

35

30F

25

20

15

13

- Model independent measurement of total cross section from 8 TeV data using H→ZZ* and H→γγ
 - Observed higher cross section than theory
 - For all inclusive and exclusive jet multiplicities, data is higher
 - Least agreement is on ≥1 or =1 bins (p-value 0.1% and 3.6%)
 - Need more data to confirm
 - Results are statistically dominated

 $pp \rightarrow H, m_{H} = 125.4 \text{ GeV}$

QCD scale uncertainty

NNLO+NNLL

LHC-XS

 $\times \sigma_{aaF} + \sigma_{XH} \sigma_{XH} = 3.0 \pm 0.1 \text{ pb}$

XH = VBF + VH + ttH + bbH

N³LO

ADDFGHLM

PRL 115 (2015) 091801

Higgs boson couplings

- Assuming only SM contribution to the total width and no invisible or undetected H boson decays (simplest case)
 - Global fit using all data and decay channels
 - The measured fermion and vector coupling-strength scale factors are in agreement with SM

ATLAS

 $\kappa_{V} = 1.09 \pm 0.07$

 $\kappa_{F} = 1.11 \pm 0.16$

1 1.05 1.1 1.15 1.2

Standard Model

+ Best fit

- 68% CL

95% CI

1.6 1.4

1.2

0.8F

0.6 - m_H = 125.36 GeV

0.9 0.95

Most generic case: Allowing new particles in loops and no assumption on the total width

Higgs spin and parity measurement

- □ Examining the Spin/CP nature of the Higgs boson with $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow WW^* \rightarrow e_{\nu\mu\nu}$ and $H \rightarrow_{\gamma\gamma}$
 - Spin-0: CP-even BSM (0⁺_h) and CP-odd pseudo-scalar (0⁻)
 - Spin-2: Universal couplings and $\kappa_a/\kappa_a = 0$ and 2
 - Exclusion determined from q: likehood ratio

to distinguish between two spin hypothesis

J^P	Model	Choi	Choice of tensor couplings			
		$\kappa_{\rm SM}$	κ_{HVV}	κ_{AVV}	α	
0^{+}	Standard Model Higgs boson	1	0	0	0	
0_{h}^{+}	BSM spin-0 CP-even	0	1	0	0	
0-	BSM spin-0 CP-odd	0	0	1	$\pi/2$	

Values of sp	oin-2 quark and gluon couplings	$p_{\rm T}^X$ selec	tions (GeV)
$\kappa_q = \kappa_g$	Universal couplings	_	—
$\kappa_q = 0$	Low light-quark fraction	< 300	< 125
$\kappa_q = 2\kappa_g$	Low gluon fraction	< 300	< 125

SM is favoured and alternative models excluded > 99.9%CL_S

Higgs spin and parity measurement

□ Combined fit performed on $H \rightarrow ZZ^*$ and $\rightarrow WW^*$ final states

L for spin-0 particle interaction with W or Z boson

Coupling ratio	Best-fit value	$95\%~{ m CL~Excl}$	usion Regions
Combined	Observed	Expected	Observed
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.48	$(-\infty, -0.55] \bigcup [4.80, \infty)$	$(-\infty, -0.73]\bigcup [0.63, \infty)$
$(\tilde{\kappa}_{AVV}/\kappa_{ m SM})\cdot an lpha$	-0.68	$(-\infty, -2.33] \bigcup [2.30, \infty)$	$(-\infty, -2.18] \bigcup [0.83, \infty)$

BSM to SM tensor couplings are compatible with the SM expectation

Rare processes ttH

17

- Higgs boson production in association with a top-quark pair
 - Direct measurement of top quark-Higgs coupling

Searches for new physics with SM Higgs

Invisible Higgs decay (VBF) arXiv:1508.07869

Z

000000000

bkg.

B(H→invisible) < 28 % (31%) obs (exp)

VH(W/Z \rightarrow hadronic, H \rightarrow invisible)

EPJC (2015) 75:337 m_H=125 GeV B(H→invisible) < 78% (86%) obs (exp)

$H \rightarrow aa \rightarrow \mu\mu\tau\tau$ (PRD 92 2015 052002)

NMSSM : H decays to lightest pseudoscalar higgs

$H^{\pm} \rightarrow W^{\pm}Z \rightarrow qqII$ (PRL 114 231801 (2015))

Charged Higgs boson appears in many SM extension models : 2HDM, Higgs Triplet model

Top quark mass

Di-lepton : 1D fit (m_{lb}^{reco})

- Precise measurements of m_{top} is important critical input to EW fits
- □ Top quark mass is measured in ttbar → lepton +jets (fully reconstructed) or dilepton at 7 TeV (~5 fb⁻¹)
 - Single lepton: 3D fit (m_{top}^{reco}, m_W^{reco} (hadronically decaying W) and R_{bq}^{reco})
 - R_{bq}^{reco :} the ratio of the transverse momentum of the *b*-tagged jet to the average transverse momentum of the two jets of the hadronic *W* boson decay

Dominant

syst. error

 Compared to the previous measurement (2D), 3D reduces the systematic uncertainty

Unbinned likelihood fit data - Signal templates are from MC

 $m_{top}^{comb} = 172.99 \pm 0.48(stat) \pm 0.78(syst) \text{ GeV} = 172.99 \pm 0.91 \text{ GeV}$

GeV 600 ATLAS data, I+jets Best fit background Events / ($\sqrt{s}=7$ TeV, 4.6 fb⁻¹ 500 Best fit Uncertainty 400 300 200 100 140 150 160 170 180 190 130 210 200 220 m_{top}^{reco} [GeV]

	$t\bar{t} \rightarrow lepton+jets$		$t\bar{t} \rightarrow dilepton$	Combinat	ion	
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	m _{top} ^{comb} [GeV]	ρ
Results	172.33	1.019	1.003	173.79	172.99	
Statistics	0.75	0.003	0.008	0.54	0.48	0
- Stat. comp. (m_{top})	0.23	n/a	n/a	0.54		
- Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
- Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23
D-Jet energy scale	0.00 ± 0.05	0.000	0.010	0.00 ± 0.02	0.54	T1.00
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07

EPJC (2015) 75:330

Top-quark pair production

20

- Measure differential cross section in fiducial and full phase space as a function of observables
 - Reconstruct one top leptonically (lepton+jets) and the other one hadronically
 - Particle (parton-level) objects defined in simulated events for fiducial (full) phase space

Measure differential cross section of highly boosted top quarks

• Hadronic top reconstructed as a single jet, the other top decay leptonically

In general, simulation is higher than data

 $p_T^{t,}, |\mathbf{y}^t|, m_{t\bar{t}}, p_T^{t\bar{t}} \text{ and } |\mathbf{y}^{t\bar{t}}|$

Single top production

21

d

h

- **Wt channel :** 2 isolated leptons (e / μ), one b-tagged jet, missing E_T
- **s-channel** : 1 isolated lepton (e / μ), two b-tagged jets, missing E_T

Single top production in FCNC

arXiv:1509.00294

s= 8 TeV, 20.3 fb

5

3

Excluded region

6 κ_{uqt}/Λ [TeV⁻¹]

- FCNC forbidden at tree level, suppressed at higher orders $^{u, c}$
 - Rate can be enhanced through the BSM models $(B \sim 10^{-5} - 10^{-3})$
- $qg \rightarrow t \rightarrow bW$ (W in leptonic decay)

ttV (V = W,Z) productions

arXiv:1509.05276

Fit results on 15 signal and 5 control regions

	iiw sigi	incance		meance
Channel	Expected	Observed	Expected	Observed
2ℓOS	0.4	0.1	1.4	1.1
2ℓSS	2.8	5.0	-	-
3ℓ	1.4	1.0	3.7	3.3
4ℓ	-	-	2.0	2.4
Combined	3.2	5.0	4.5	4.2

$$\sigma_{t\bar{t}W} = 369^{+86}_{-79}(stat) \pm 44(syst) \text{ fb}$$

$$\sigma_{t\bar{t}Z} = 176^{+52}_{-48}(stat) \pm 24(syst) \text{ fb}$$

Simultaneous fit to all four channels to extract the cross sections

Inclusive 1st and 2nd squark and gluino

arXiv:1507.05525

Third-generation squarks

arXiv:1506.08616

26

- Scalar top mass is required to be <~ TeV to solve the Higgs mass fine-tuning in SM
- Four decay modes are considered separately with a branching ratio of 100%

- Light stop implies light sbottom
- Three decay modes with 100% branching ratio is considered

Mass limits on SUSY searches

27

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

$\sqrt{s} = 7, 8 \text{ TeV}$ e, μ, τ, γ Jets $E_{\pi}^{\text{miss}} \int \mathcal{L} dt [\text{fb}^{-1}]$ Model Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ Reference MSUGRA/CMSSM 0-3 e, µ/1-2 τ 2-10 jets/3 b Yes .8 TeV m(q)=m(q) 1507.05525 20.3 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 2-6 jets Yes 20.3 850 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(1^{st} \text{ gen. } \tilde{q})=m(2^{nd} \text{ gen. } \tilde{q})$ 1405.7875 mono-jet 1-3 jets Yes 20.3 100-440 GeV 1507.05525 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ (compressed) $m(\tilde{q})-m(\tilde{\chi}_1^0) < 10 \text{ GeV}$ Searches 2 e, μ (off-Z) $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q(\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_1^0$ 2 jets Yes 20.3 780 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ 1503.03290 2-6 iets Yes 20.3 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 1.33 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1405.7875 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 2-6 jets 20 1.26 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ 1507.05525 Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}^0$ $2 e, \mu$ 0-3 jets 20 1.32 TeV $m(\tilde{\chi}_{1}^{0})=0$ GeV 1501.03555 Inclusive GMSB (Î NLSP) 0-2 jets Yes $\tan\beta > 20$ $1-2\tau + 0-1$ 20.3 1.6 TeV 1407.0603 GGM (bino NLSP) 2γ 20.3 cτ(NLSP)<0.1 mm Yes 1.29 TeV 1507.05493 GGM (higgsino-bino NLSP) 1bYes 20.3 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 900 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ 1507.05493 γ GGM (higgsino-bino NLSP) 2 jets Yes 20.3 1.25 TeV $m(\tilde{\chi}_{1}^{0}) < 850 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu > 0$ γ 1507.05493 GGM (higgsino NLSP) $2 e, \mu (Z)$ 2 jets Yes 20.3 850 GeV m(NLSP)>430 GeV 1503.03290 Gravitino LSP mono-iet $F^{1/2}$ scale 865 GeV $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 0 Yes 20.3 1502.01518 1.25 TeV 0 3hYes 20.1 $m(\tilde{\chi}_{1}^{0}) < 400 \, \text{GeV}$ 1407.0600 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}$ ger $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ 0 7-10 jets Yes 20.3 1.1 TeV $m(\tilde{\chi}_{1}^{0}) < 350 \, GeV$ 1308.1841 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 20.1 1.34 TeV $m(\tilde{\chi}_1^0) < 400 \, \text{GeV}$ 1407.0600 0-1 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\tilde{t}\tilde{\chi}_{1}$ 3bYes 20.1 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \, GeV$ 1407.0600 100-620 GeV $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2bYes 20.1 $m(\tilde{\chi}_1^0) < 90 \text{ GeV}$ 1308 2631 2 e, µ (SS) 0-3 b Yes 20.3 275-440 GeV 1404.2500 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ $m(\tilde{\chi}_{1}^{\pm})=2 m(\tilde{\chi}_{1}^{0})$ Ĩ, squ *t*₁ 110-167 GeV 230-460 GeV 1209.2102, 1407.0583 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 e, µ 1-2 b Yes 4.7/20.3 $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 90-191 GeV 210-700 GeV $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ 1506.08616 \tilde{t}_1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ mono-jet/c-tag Yes 20.3 90-240 GeV 1407 0608 0 $m(\tilde{t}_1)-m(\tilde{\chi}_1^0) < 85 \,\text{GeV}$ $\tilde{t}_1 \tilde{t}_1$ (natural GMSB) $2 e, \mu (Z)$ 20.3 150-580 GeV 1403.5222 1hYes \tilde{t}_1 $m(\tilde{\chi}_{1}^{0})>150 \, GeV$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ 290-600 GeV $3 e, \mu (Z)$ 1bYes 20.3 $m(\tilde{\chi}_1^0) < 200 \, GeV$ 1403 5222 ĩ, $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} {\rightarrow} \ell \tilde{\chi}_1^0$ $2 e, \mu$ 0 Yes 20.3 90-325 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 0 Yes 20.3 140-465 GeV $m(\tilde{\chi}_{\perp}^{0})=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{\perp}^{\pm})+m(\tilde{\chi}_{\perp}^{0}))$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2τ Yes 20.3 100-350 GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1407 0350 - $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 {\rightarrow} \tilde{\ell}_{\rm L} v \tilde{\ell}_{\rm L} \ell(\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{\rm L} \ell(\tilde{\nu} \nu)$ N $3e,\mu$ 0 Yes 20.3 700 GeV $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029 $\begin{array}{c} \chi_{1}^{+}\chi_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0}, h \rightarrow b\bar{b}/WW/\tau\tau/\gamma\gamma \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell \end{array}$ 2-3 e.u 0-2 iets Yes 20.3 420 GeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled 1403,5294, 1402,7029 e, μ, γ 0-2 b Yes 20.3 250 GeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled 1501.07110 $4 e, \mu$ Yes 20.3 $m(\tilde{\chi}_{2}^{0})=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$ 1405 5086 0 620 GeV GGM (wino NLSP) weak prod. Yes 20.3 Ŵ 124-361 GeV cτ<1 mm</p> 1507.05493 $1e_{\mu} + \gamma$ Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 1 jet Yes 20.3 270 GeV $m(\tilde{\chi}_{\perp}^{\pm})-m(\tilde{\chi}_{\perp}^{0})\sim 160$ MeV. $\tau(\tilde{\chi}_{\perp}^{\pm})=0.2$ ns 1310.3675 Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ dE/dx trk $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160$ MeV. $\tau(\tilde{\chi}_{1}^{\pm})<15$ ns Yes 18.4 482 GeV 1506.05332 _ong-lived Stable, stopped § R-hadron 0 1-5 iets Yes 27.9 832 GeV $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 Stable g R-hadron trk 19.1 1.27 TeV 1411.6795 1-2 μ 19.1 537 GeV 10<tan*B*<50 1411.6795 GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 435 GeV $2 < \tau(\tilde{\chi}_{\perp}^{0}) < 3$ ns. SPS8 model 1409.5542 displ. ee/eµ/µµ $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ 20.3 1.0 TeV $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, \text{ m}(\tilde{g}) = 1.3 \text{ TeV}$ 1504.05162 displ. vtx + iets 20.3 1.0 TeV $6 < c\tau(\tilde{\chi}_{1}^{0}) < 480 \text{ mm}, m(\tilde{g}) = 1.1 \text{ TeV}$ 1504.05162 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ 20.3 $e\mu, e\tau, \mu\tau$ 1503.04430 Bilinear RPV CMSSM $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 \text{ mm}$ 2 e, µ (SS) 0-3 b Yes 20.3 1.35 TeV 1404.2500 $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$ 4 e, µ Yes 20.3 750 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau}$ $3 e, \mu + \tau$ Yes 20.3 450 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{133} \neq 0$ 1405.5086 **PV** BR(t)=BR(b)=BR(c)=0%6-7 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ 0 20.3 917 GeV 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$ 6-7 jets 0 20.3 870 GeV $m(\tilde{\chi}_1^0)=600 \text{ GeV}$ 1502.05686 2 e, µ (SS) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0-3 b Yes 20.3 850 GeV 1404.250 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 0 2 jets + 2 b 20.3 100-308 GeV ATLAS-CONF-2015-026 2 e, µ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \ell$ $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ ATLAS-CONF-2015-015 2b20.3 0.4-1.0 TeV 0 2 c 20.3 490 GeV 1501.01325 Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ Yes $m(\tilde{\chi}_1^0) < 200 \text{ GeV}$ Other

No significant evidence of a SUSY signal at Run 1

ATLAS Preliminary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

1

Mass scale [TeV]

 10^{-1}

Constraints in the pMSSM

arXiv:1508.06608

28

- MSSM has over 100 parameters to describe sparticles and masses
- Phenomenological MSSM, (pMSSM) ~ 19 parameters under the assumptions that:
 - R-parity conserved- LSP is stable, the neutralino and sparticles are produced in pairs
 - Minimal flavor violation with no new source of CP violation
 - Degenerate 1st and 2nd generation squarks and sleptons

Re-interpret 22 ATLAS Run 1 results in pMSSM

Gene	Generate 19 pMSSM parameters within the								
range	ranges:								
Parameter	Min value	Max value	Note						
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed slepton (first two gens.) mass						
$m_{\tilde{e}_1}^{-1} (= m_{\tilde{e}_2}^{-2})$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed slepton (first two gens.) mass						
$m_{\tilde{L}_3}$	$90{ m GeV}$	$4\mathrm{TeV}$	Left-handed stau doublet mass						
$m_{\tilde{e}_3}^{-5}$	$90{ m GeV}$	$4\mathrm{TeV}$	Right-handed stau mass						
$m_{\tilde{Q}_1}(=m_{\tilde{Q}_2})$	$200{ m GeV}$	$4\mathrm{TeV}$	Left-handed squark (first two gens.) mass						
$m_{\tilde{u}_1}(=m_{\tilde{u}_2})$	$200{ m GeV}$	$4\mathrm{TeV}$	Right-handed up-type squark (first two gens.) mass						
$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	$200{\rm GeV}$	$4\mathrm{TeV}$	Right-handed down-type squark (first two gens.) mass						
$m_{\tilde{O}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Left-handed squark (third gen.) mass						
$m_{\tilde{u}_3}$	$100{\rm GeV}$	$4\mathrm{TeV}$	Right-handed top squark mass						
$m_{\tilde{d}_3}$	$100{ m GeV}$	$4\mathrm{TeV}$	Right-handed bottom squark mass						
$ M_1 $	$0{ m GeV}$	$4\mathrm{TeV}$	Bino mass parameter						
$ M_2 $	$70{ m GeV}$	$4\mathrm{TeV}$	Wino mass parameter						
$ \mu $	$80{ m GeV}$	$4\mathrm{TeV}$	Bilinear Higgs mass parameter						
M_3	$200{\rm GeV}$	$4\mathrm{TeV}$	Gluino mass parameter						
$ A_t $	$0{ m GeV}$	$8\mathrm{TeV}$	Trilinear top coupling						
$ A_b $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear bottom coupling						
$ A_{\tau} $	$0{ m GeV}$	$4\mathrm{TeV}$	Trilinear τ lepton coupling						
M_A	$100{ m GeV}$	$4\mathrm{TeV}$	Pseudoscalar Higgs boson mass						
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values						

Constraints: considerations of precision EW and flavour results, dark matter relic density, and other ollider measurements

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
${\rm BR}(b\to s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$BR(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
${\rm BR}(B^+ \to \tau^+ \nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{ ilde{\chi}_1^0} h^2$		0.1208
$\Gamma_{\rm invisible(SUSY)}(Z)$		$2{ m MeV}$
Masses of charged sparticles	$100{ m GeV}$	—
$m(\tilde{\chi}_1^{\pm})$	$103{ m GeV}$	—
$m(\tilde{u}_{1,2},\tilde{d}_{1,2},\tilde{c}_{1,2},\tilde{s}_{1,2})$	$200{ m GeV}$	
m(h)	$124{ m GeV}$	$128{ m GeV}$

Long-lived SUSY particles

29

- Constraints on the gluino R-hadron are set
 - R-hadrons formed from long-lived coloured sparticle (squark or gluino) and SM quarks and gluons

Complementary sensitivity from different searches relying on:

- reconstructed displaced vertex
- high ionization in tracker
- timing measurement in muon and calorimeters

From dE/dx study:

Gluino R-hadron with 10ns lifetime and masses up to 1185 GeV are excluded.

Long-lived particle summary

ATLAS Long-lived Particle Searches* - 95% CL Exclusion ATLAS Preliminary Status: July 2015 $\int \mathcal{L} dt = (18.4 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ Signature $\int \mathcal{L} dt [fb^{-1}]$ Reference Model Lifetime limit $\text{RPV} \chi_1^0 \rightarrow eev/e\mu v/\mu\mu v$ displaced lepton pair 20.3 χ_1^0 lifetime 7-740 mm $m(\tilde{g}) = 1.3 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ 1504.05162 $\operatorname{GGM} \chi_1^0 \to Z \tilde{G}$ $m(\tilde{g}) = 1.1 \text{ TeV}, m(\chi_1^0) = 1.0 \text{ TeV}$ displaced vtx + jets 1504.05162 20.3 6-480 mm χ_1^{\pm} lifetime $m(\chi_1^{\pm}) = 450 \text{ GeV}$ AMSB $pp \rightarrow \chi_1^{\pm}\chi_1^0, \chi_1^+\chi_1^-$ 20.3 0.22-3.0 m 1310.3675 disappearing track SUSY $m(\chi_1^{\pm}) = 450 \text{ GeV}$ AMSB $pp \rightarrow \chi_1^{\pm} \chi_1^0, \chi_1^+ \chi_1^$ large pixel dE/dx 18.4 χ_1^{\pm} lifetime 1.31-9.0 m 1506.05332 χ_1^0 lifetime 0.08-5.4 m GMSB non-pointing or delayed γ 20.3 SPS8 with $\Lambda = 200$ TeV 1409.5542 Stealth SUSY 2 ID/MS vertices 0.12-90.6 m $m(\tilde{g}) = 500 \text{ GeV}$ 1504.03634 19.5 **Š** lifetime 0.41-7.57 m Hidden Valley $H \rightarrow \pi_{y}\pi_{y}$ 2 low-EMF trackless jets 20.3 π_{v} lifetime $m(\pi_v) = 25 \text{ GeV}$ 1501.04020 10% Hidden Valley $H \rightarrow \pi_{y}\pi_{y}$ $\pi_{\rm v}$ lifetime 0.31-25.4 m $m(\pi_v) = 25 \text{ GeV}$ 1504.03634 2 ID/MS vertices 19.5 ш Higgs BR FRVZ $H \rightarrow 2\gamma_d + X$ $H \rightarrow 2\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 2 e-, μ-, π-jets γ_d lifetime 14-140 mm 1409.0746 20.3 FRVZ $H \rightarrow 4\gamma_d + X$ $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 2 e-, µ-, π-jets 20.3 yd lifetime 15-260 mn 1409.0746 Hidden Valley $H \rightarrow \pi_{v}\pi_{v}$ 2 low-EMF trackless jets 20.3 π_v lifetime 0.6-5.0 m $m(\pi_v) = 25 \text{ GeV}$ 1501.04020 5% BH Hidden Valley $H \rightarrow \pi_{\rm v} \pi_{\rm v}$ 0.43-18.1 m $m(\pi_v) = 25 \text{ GeV}$ 2 ID/MS vertices 19.5 π_v lifetime 1504.03634 Higgs FRVZ $H \rightarrow 4\gamma_d + X$ 2 e-, µ-, π-jets 20.3 γ_d lifetime 28-160 mm $H \rightarrow 4\gamma_d + X, m(\gamma_d) = 400 \text{ MeV}$ 1409.0746 Hidden Valley $\Phi \rightarrow \pi_{\rm v} \pi_{\rm v}$ 2 low-EMF trackless jets 20.3 $\pi_{\rm v}$ lifetime 0.29-7.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1501.04020 GeV 300 Hidden Valley $\Phi \rightarrow \pi_{\nu}\pi_{\nu}$ 2 ID/MS vertices 19.5 π_v lifetime **0.19-31.9 m** $\sigma \times BR = 1$ pb, $m(\pi_v) = 50$ GeV 1504.03634 Hidden Valley $\Phi \rightarrow \pi_v \pi_v$ 2 low-EMF trackless jets π_v lifetime 0.15-4.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 20.3 1501.04020 GeV 900 Hidden Valley $\Phi \rightarrow \pi_{\nu}\pi_{\nu}$ 2 ID/MS vertices 19.5 π_v lifetime 0.11-18.3 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1504.03634 HV Z'(1 TeV) $\rightarrow q_{\rm v} q_{\rm v}$ 2 ID/MS vertices π_v lifetime 0.1-4.9 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1504.03634 20.3 Other HV Z'(2 TeV) $\rightarrow q_v q_v$ 2 ID/MS vertices 20.3 π_v lifetime 0.1-10.1 m $\sigma \times BR = 1 \text{ pb}, m(\pi_v) = 50 \text{ GeV}$ 1504.03634 0.01 0.1 1 10 100 cτ [m] √s = 8 TeV

SUSY and Exotic searches

*Only a selection of the available lifetime limits on new states is shown.

Various scenarios are considered, but no signal yet

Heavy Boson and heavy quark searches

31

- Heavy boson decays to : WW, WZ or ZZ
 - All leptonic, semileptonic and hadronic final states are considered
 - No excess observed and limit set for the models:
 - Extended Gauge Model with a heavy W'
 - Randall-Sundrum model with a heavy spin-2 graviton

- Pair production of vector-like quark (T and B)
 - $T \rightarrow Wb$, Zt, ot Ht ; $B \rightarrow Wt$, Zb or Hb

Heavy neutrino and heavy lepton searches

Scalar leptoquarks search

arXiv:1508.04735

900 1000 m.... [GeV]

- □ Leptoquarks (LQ) are predicted by BSM
 - LQs are colour-triplet bosons with fractional electric charge and non-zero values of both baryon and lepton number
 - Expected to decay directly to lepton–quark pairs
- First and second generation LQs (LQ1 and LQ2) are searched in 2e+2jets and 2μ+2jets,
- □ Third generation (LQ3) in $bv_{\tau}bv_{\tau}$, $tv_{\tau}tv_{\tau}$
 - Similar to SUSY searches such as $t\tilde{t} \rightarrow tt \tilde{\chi}_0 \tilde{\chi}_0$

```
Excluded range at 95% CL.

m_{LQ1} < 1050 \text{ GeV}

m_{LQ2} < 1000 \text{ GeV}

b-channel m_{LQ3} < 640 (625) GeV expected (observed)

t-channel

200 (210) < m_{LQ3} < 685 (640) GeV expected (observed)
```


Exotic Summary

Extra Dimension

Gauge Boson

Contact Interactions Dark Matter Lepto Quarks Heavy Quarks

Excited Fermions

S	tatus: July 2015	Searcin	69 - 3	55% C	Exclusion	$\int f dt = (4.7 - 20.3) \text{ fb}^{-1}$	$\sqrt{s} = 7.8 \text{ TeV}$
	Model	ℓ,γ	Jets	E ^{miss} ∫£dt	b ⁻¹] Limit	J2 01 - (+.7 20.0) 10	Reference
Extra dimensions	$\begin{array}{c} \text{ADD } G_{KK} + g/q \\ \text{ADD } \text{non-resonant } \ell\ell \\ \text{ADD } \text{QBH} \rightarrow \ell q \\ \text{ADD } \text{QBH} \rightarrow kq \\ \text{ADD } \text{BH } \text{high } N_{trk} \\ \text{RS1 } G_{KK} \rightarrow \ell\ell \\ \text{RS1 } G_{KK} \rightarrow \ell\ell \\ \text{Bulk } \text{RS } Q_{KK} \rightarrow \ell\ell \\ \text{Bulk } $	$\begin{array}{c} - \\ 2e, \mu \\ 1 e, \mu \\ - \\ 2\mu (SS) \\ \ge 1 e, \mu \\ - \\ 2e, \mu \\ 2\gamma \\ 2e, \mu \\ 1 e, \mu \\ - \\ 1 e, \mu \\ 2 \\ 2 e, \mu (SS) \end{array}$	$ \geq 1 j - 1 j 2 j - 2 j \geq 2 j - 2 j / 1 J 2 j / 1 J 4 b \geq 1 b, \geq 1 J / 2 \geq 1 b, \geq 1 j $	Yes 20.3 - 20	Mo 5.25 Te Ms 4.7 TeV Min 5.27 Te Min 5.27 Te Min 5.27 Te Min 5.27 Te Min 4.7 TeV Min 4.7 TeV Min 4.7 TeV Min 5.8 T Gick mass 2.68 TeV Gick mass 760 GeV Wr mass 760 GeV Kick mass 500-720 GeV Kick mass 960 GeV		1502.01518 1407.2410 1311.2006 1407.1376 1308.4075 1405.4254 1503.08988 1405.4123 1504.05511 1409.6190 1503.04677 1506.00285 1505.07018 1504.04605
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{EGM}\; W' \to WZ \to \ell\nu \ell' \ell' \\ \mathrm{EGM}\; W' \to WZ \to qq\ell\ell \\ \mathrm{EGM}\; W' \to WZ \to qqqq \\ \mathrm{HVT}\; W' \to WH \to \ell\nu bb \\ \mathrm{LRSM}\; W_R' \to t\bar{b} \\ \mathrm{LRSM}\; W_R' \to t\bar{b} \end{array}$	2 e, µ 2 τ 1 e, µ 3 e, µ 2 e, µ - 1 e, µ 1 e, µ 0 e, µ	- - 2 j / 1 J 2 J 2 b 2 b, 0-1 j ≥ 1 b, 1 J	- 20. - 19. Yes 20. Yes 20. - 20. Yes 20.	Z' mass 2.9 TeV Z' mass 2.02 TeV W' mass 3.24 TeV W' mass 1.52 TeV W' mass 1.59 TeV W' mass 1.3-1,5 TeV W' mass 1.47 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$g_V = 1$	1405.4123 1502.07177 1407.7494 1406.4456 1409.6190 1506.00962 1503.08089 1410.4103 1408.0886
õ	Cl qqqq Cl qqℓℓ Cl uutt	_ 2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1 j	- 17.3 - 20.3 Yes 20.3	Λ Λ Λ 4.3 TeV	$\begin{array}{c c} \textbf{12.0 TeV} & \eta_{LL} = -1 \\ \hline \textbf{21.6 TeV} & \eta_{LL} = -1 \\ C_{LL} = 1 \end{array}$	1504.00357 1407.2410 1504.04605
DM	EFT D5 operator (Dirac) EFT D9 operator (Dirac)	0 e, μ 0 e, μ	$ \geq 1 j \\ 1 J, \leq 1 j $	Yes 20.3 Yes 20.3	M. 974 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518 1309.4017
ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- 20.0 - 20.0 Yes 20.0	LQ mass 1.05 TeV LQ mass 1.0 TeV LQ mass 640 GeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \beta=0 \end{array}$	Preliminary Preliminary Preliminary
Heavy	$ \begin{array}{l} \text{VLQ } TT \rightarrow Ht + X \\ \text{VLQ } YY \rightarrow Wb + X \\ \text{VLQ } BB \rightarrow Hb + X \\ \text{VLQ } BB \rightarrow Zb + X \\ \text{T}_{5/3} \rightarrow Wt \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ	$\begin{array}{l} \geq 2 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2 \ b, \geq 3 \ j \\ \geq 2/{\geq}1 \ b \\ \geq 1 \ b, \geq 5 \ j \end{array}$	Yes 20.3 Yes 20.3 Yes 20.3 - 20.3 Yes 20.3 Yes 20.3 Yes 20.3 Yes 20.3	T mass 855 GeV Y mass 770 GeV B mass 735 GeV B mass 755 GeV T _{3/3} mass 840 GeV	T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1503.05425
Excited	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 γ - 1 or 2 e, μ 1 2 e, μ, 1 γ 3 e, μ, τ	1 j 2 j 1 b, 2 j or 1 j –	- 20.0 - 20.0 Yes 4.0 - 13.0 - 20.0	q* mass 3.5 TeV q* mass 4.09 TeV b* mass 870 GeV (* mass 2.2 TeV y* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV $\Lambda = 1.6$ TeV	1309.3230 1407.1376 1301.1583 1308.1364 1411.2921
Other	LSTC $\vartheta_T \rightarrow W\gamma$ LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles $\sqrt{s} = 7 \text{ TeV}$	$1 e, \mu, 1 \gamma$ $2 e, \mu$ $2 e, \mu (SS)$ $3 e, \mu, \tau$ $1 e, \mu$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	- 2 j - 1 b -	Yes 20.3 - 20.3 - 20.3 Yes 20.3 - 20.3 - 20.3 - 20.3 - 7.0	ar mass 960 GeV № mass 551 GeV H±± mass 400 GeV spin-1 livvisible particle mass 657 GeV multi-charged particle mass 785 GeV monopole mass 1.34 TeV 10 ⁻¹ 1	$m(W_R) = 2.4 \text{ TeV}, \text{ no mixing}$ DV production, BR($H_L^{\pm} \rightarrow \ell \ell$)=1 DY production, BR($H_L^{\pm} \rightarrow \ell \tau$)=1 $a_{e_0-reg} = 0.2$ DV production, $ q = 5e$ DY production, $ q = 1g_D$, spin 1/2	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 Preliminary

___ _ _

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS at Run 2

- After LHC first long shutdown (LS1), ATLAS started to take data at a higher energy of $\sqrt{s} = 13$ TeV
- Updates for Run 2
 - A new detector (closer to beam pipe) added and upgrades to other detector components and trigger system

9000

Improved online and offline reconstruction 13 TeV / 8 TeV inclusive pp cross-section ratio

Minimum bias 1.2 1.6 W(ln) 1.7 Z(ll) 2.0 ΖZ t (s-channel) 2.2 2.5 t (t-channel) 2.0 WH 2.3 H (ggF) 2.4 H (VBF) 3.3 tt 3.6 ttZ ttH 3.9 A(0.5 TeV, ggF+bbA) 4.0 stop pair (0.7 TeV) gluino pair (1.5 TeV) 10 Z' SSM (3 TeV) Q* (4 Tev) 56 370 QBH (5 TeV) QBH (6 TeV) 1000 10 100 1 10000

two high- p_{τ} jets with an invariant mass of 6.9 TeV the leading and subleading jet p_{τ} : 1.3 and 1.2 TeV

Summary

- □ The first running period of LHC ended successfully
 - Higgs boson is discovered and its properties measured
 - Extensive searches on BSM was done
 - No new physics observed yet
 - Number of analysis are being finalized
- ATLAS Run 2 started with higher energy and higher luminosity
 - Explore new mass ranges for new physics

Standard Model Summary

No significant discrepancy compared to the theory predictions

Higgs couplings from each channel

39

ttV (V= γ) production

- ttγ analysis (PRD 91, 072007 (2015))
 - lepton+jets (lepton electron or muon)

Combined (e and μ) value is 5.3 σ away from the no-signal hypothesis

Charge asymmetry

$$A_{C} = \frac{N(\Delta|y| > 0 - \Delta|y| < 0)}{N(\Delta|y| > 0 + \Delta|y| < 0)}, \quad \Delta|y| = |y_{t}| - |y_{\overline{t}}|$$

