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1. INTRODUCTION 
Interest in the knowledge of beam dynamics in 

the Alvarez Structure of proton linear accelera­
tors has been renewed with the advent of seve­
ral projects for injectors into circular machines, 
etc. Programmes using multiple integrations per 
cell, in which the fields have been determined by 
mesh calculation or approximate analytic formu­
lae, have been in existence for some time, but 
have the disadvantage of being time consuming. 
Thus there is still a need for accurate difference 
equations to describe the beam motion. Pre­
viously (1, 2), equations of motion, in the axial 
plane in particular, have made use of the socalled 
Panofsky equations, viz. 

Wn+1 = Wn eEogT (W) cos φ [1] 

φn+1 = φn + 2π ( 
βn. s 

-l) [2] φn+1 = φn + 2π ( βn -l) [2] 

(the phase convention here is to use φs = -26°, for 
example). These equations are in fact incorrect, 
since phase space area in the (W, φ) plane varies, 
that is Liouville's theorem is violated. This error 
was first realized by J. S. Bell (3), who pointed 
out that although the equations allow for a ve­
locity dependence into the energy gain, they do 
not allow for a phase dependence into the time 
taken for the particle to cross the cell. It is the 
purpose in the first part of this paper to derive 
a correction term to the phase equation [2] in 
such a way that phase space area is conserved. 
In the second part, accurate general relations are 
derived for radial, as well as axial, motion along 
the linac, which includes coupling terms, and such 
that the requirements of Liouville's theorem are 
satisfiied.3 Finally, by way of example, axial 

motions using the new equations and a multi-integration 
routine are described and compared. 

2. CORRECTION TO THE AXIAL EQUATIONS OF 
MOTION 
Of the two equations above, the first admits 

a velocity dependence in the energy gain through 
the transit time factor T, whilst the second can 
be regarded as the finite difference form of the 
usual equation for phase with respect to r.f.: 
dφ 
= k ( 

1 - 1 
→ Δφ = k∫( 

1 - 1 
)dz, dz = k ( βp 

-

βw 
→ Δφ = k∫( 

βp 

-

βw 
)dz, 

k = 2π [3] k = 
λ [3] 

where βΡ, βw are velocities w.r.t.c. of the particle 
and wave respectively. If, indeed, there is no 
velocity change, then for gap spacing L = βwλ 

φn+1 = φn + 2π ( 
L 

-1) [4] φn+1 = φn + 2π ( βΡλ 
-1) [4] 

When there is a velocity change, there is a phase 
change which depends on the acceleration in the 
gap, which.can be denoted by an additional term 
f (Wn, φn) in [4]. Since W, φ are canonical variables 
(the independent variable being z), transformation 
of W, φ from one position to another has unit 
Jacobian, that is, if across a gap 

Wn+1 = Wn + e Eo gT (Wn) cos φn [5] φn+1 = φn + f (Wn, φn) 
[5] 

Then 

J 
Wn+1, φn+1 

= 
1 + eEog 

dT 
cos φn 

∂f 

= 1. J 
Wn+1, φn+1 

= 
1 + eEog dW cos φn ∂W 

= 1. J Wn, φn 
= 

— e EogT sin φn 1 + 
∂f = 1. J Wn, φn 

= 
— e EogT sin φn 1 + ∂w 

= 1. 
1 CERN, on leave from Rutherford Lab. 2 CEN, Saclay. 3 More details on the analytic treatment in this can be 
found in ref. (4) and (5). 
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This is satisfied to the first order by f = 
= -e Eog(dT/dW) sin φ + Κ. New, phisically, f is 
a measure of the difference of velocity change in 
the two halves of the gap. If the particle arrives 
at the gap centre at the peak of the r.f. (φ = 0), 
there is no difference: hence f, and K, are zero. 
The solution f to give a unit Jacobian ensures 
that Liouville's a theorem is satisfied: 

∫∫ d(ΔWn+1) d (Δφn+1) =∫∫ d (Δwn) a (Δφn) j ( 
Wn+1, φn+1 

)= 
∫∫ d(ΔWn+1) d (Δφn+1) =∫∫ d (Δwn) a (Δφn) j ( Wn, φn )= 

= ∫∫d(∆wn)d(∆φn). [6] 
Finally, an interesting alternative point of view 

comes from the definition that W and φ are ca­
nonical, i.e. H. exists, and 

∂ 
(dW/dz) = -

∂ 
(dφ/dz). 

∂W 
(dW/dz) = -

∂φ 
(dφ/dz). 

If dW/dz = e ET cos φ: then if Τ is indepen­
dent oif W, dφ/dz is independent of φ and has 
the form [3] above, giving the well-known equa­
tions for motion on a travelling wave (which 
work particularly well when the linac parame­
ters are slowly warying); or if Τ is a function 
of W, then dφ/dz = f + g(W), here f is defined as 
above, and g(W) has the form of [3] above. 

Fig. 1 - Accelerating gap and axial field Ez distribution. 

3. GENERAL EQUATIONS OF MOTION IN A 
LINAC 
a) Expressions for the fields 
Coming now to the general case, consider an 

accelerating gap in which the longitudinal, Ez 
field distribution along the axis has been deter­
mined, either by computation or by model mea­
surement (Fig. 1). For the sake of simplicity, the 
gap is assumed symmetrical about the mid-plane 
z = 0, and is circularly symmetrical about the 
z-axis. In the co-ordinate system (z, r, t), if 
Εz (z, 0, t) is the axial field, taking 

+ ∞ Εz (z, o, t) = Vo cos (wt + φ) [7] ∫ Εz (z, o, t) = Vo cos (wt + φ) [7] 
- ∞ 
Εz (z, o, t) = Vo cos (wt + φ) [7] 

and 
+ ∞ Ez (z, o, t) cos k z dz = Vocos (wt + φ) Τo (kz) [8] ∫ Ez (z, o, t) cos k z dz = Vocos (wt + φ) Τo (kz) [8] 
- ∞ 

Ez (z, o, t) cos k z dz = Vocos (wt + φ) Τo (kz) [8] 

where Vo i s the gap voltage kz = 2π/βλ, and 
Τo (kz) is called the axial transit time factor. Fou­
rier transform relations give 

Εz (z, r t) = 
1 + ∞ To (kz) Io (kr r) cos kz z dkz Εz (z, r t) = 
1 

∫ To (kz) Io (kr r) cos kz z dkz Εz (z, r t) = 2π ∫ 
To (kz) Io (kr r) cos kz z dkz Εz (z, r t) = 2π - ∞ 
To (kz) Io (kr r) cos kz z dkz 

. Vo cos (wt + φ) [9] 
where 

k2r = K2r - ω2/c2 [10] 
and I is the Modified Bessel Function. Similarly 

Er (z, r, t) = 
1 + ∞ To(kz) 

kz I1 (k, r) sin kz z dkz Er (z, r, t) = 
1 

∫ To(kz) 
kz I1 (k, r) sin kz z dkz Er (z, r, t) = 2π ∫ To(kz) kr 
I1 (k, r) sin kz z dkz Er (z, r, t) = 2π - ∞ 

To(kz) kr 
I1 (k, r) sin kz z dkz 

. Vo cos (ωt + φ) 
and 

Zo Ηφ (z, r, t) = 
1 ∞ + 

To(kz) 
ω 

I1 (kr r) cos kz z dkz Zo Ηφ (z, r, t) = 
1 

∫ To(kz) 
ω 

I1 (kr r) cos kz z dkz Zo Ηφ (z, r, t) = 2π ∫ 
To(kz) ckr 

I1 (kr r) cos kz z dkz Zo Ηφ (z, r, t) = 2π ∞ -
To(kz) ckr 

I1 (kr r) cos kz z dkz 

• Vo sin (ωt + φ). 

[H] 

b) Energy gain: 1st approximation 
With the use of equation [9], the energy gain 

of a particle crossing the gap can be obtained, by 
integrating 

d (mvz) = e Ez (z. r, t) = e Ez (z, r, t) 
dz 

[12] d (mvz) = e Ez (z. r, t) = e Ez (z, r, t) Vz 
[12] 

where to a first approximation vz equals a some 
mean velocity v, so that 

ωt = ωz/v [13] 

42 
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(and it will be seen later that ν is the actual 
velocity in the mid-plane z = 0). For a trajectory 
at a distance r parallel to the axis, the energy 
gain is given by 

∆W = e 
lim l 

Ez (z, r, 
z 
) dz [14] ∆W = e 

lim 
∫ Ez (z, r, 

z 
) dz [14] ∆W = e l→ ∞ ∫ Ez (z, r, ν ) dz [14] ∆W = e l→ ∞ -l 

Ez (z, r, ν ) dz [14] 

with equation [9], this gives 

∆W = 
lim 1 ∞ 

eVoTo(k)Io(kr r)· ∆W = 
lim 1 

∫ eVoTo(k)Io(kr r)· ∆W = l→∞ 2π ∫ 
eVoTo(k)Io(kr r)· ∆W = l→∞ 2π - ∞ 
eVoTo(k)Io(kr r)· 

[ sin (ω/ν + kz) l + 
sin (ω/ν — kz) l ]cos φ dkz [15] 

[ 

ω/ν + kz 
+ ω/ν — kz 

]cos φ dkz [15] 

This is recognised immediately as the Fourier-Direchlet 
integral, and gives (for kz continuous) 

∆W = e Vo Τ (k) Io (kr r) cos φ [16] 

where k = ω/ν = 2π/βλ, and, now, kor = k2 - ω2/c2. 

c) Energy gain: 2nd approximation 
As pointed out in section 2, a phase error Δφ 

exists, which in the notation of the present sec­
tion, can be obtained by integration of ωΔ (1/v), 
where Δ (1/v) equals (1/v) - (1/V) and V is velocity 
before or after the gap (V is constant for z < 0, 
or z > 0). With the relation Δ (1/v) = (- ΔW/W) 
(1/v) (c2/v2-1), where W is the total energy, the 
integral can be evaluated as beofre and the re­
sult is exactly equal to f of section 2. 

Now to improve the accuracy of the compu­
tation of energy gain a phase error of this type 
is introduced, and equation [13] is replaced by 

ωt = 
ωt 

+ δφ ωt = 
V 

+ δφ 

but where δφ is taken to be zero in the mid-plane 
z = 0. [Nevertheless, in the integral of 
the correcting term it is still legitimate to 
use [13] ]. This computation leads to a Taylor 
expansion for the energy gain, tre first two terms 
of which are 

∆W = ∆W1 — ∆W1 
k e ÊZ (0, r) - d2 [To (k) Io (kr r)]sin φ ∆W = ∆W1 — ∆W1 4w To(K)Io(krr) 

-

dk2 
[To (k) Io (kr r)]sin φ 

[17] 
where Ez (0, r) is the peak Ε-field (see Fig. 1), and 
w is the kinetic energy in the mid-plane, where 
are also taken k, and φ. The term ∆W1 is that 
given by [16] where ν and φ are true velocity 
and phase in the mid-plane. Numerical evalua­
tion shows that the second term is always less 
than one per cent of ∆W1, and can be neglected. 
Hence equation [16] gives the energy gain to 
a high order of accuracy when the true velocity 
and phase are used in the mid-plane. 

d) Other relations 
In a similar way the following can also be 

computed : 
1) Energy gain for a non-parallel trajectory, by 

replacing r by r + r' z in [14], and expanding 
the Io term. 

TABLE I 

W + — W - = eVo To Io (krr) cos φ + eVo 
d [To k I1(krr)]r" sin φ W + — W - = eVo To Io (krr) cos φ + eVo dk [To k I1(krr)]r" sin φ 

φ1 — φ- = 
eVok d 

[To Io (kr r] sin φ — 
eVok d2 

[To kr I1 (krr) r' cos φ φ1 — φ- = 2w dk [To Io (kr r] sin φ — 2w dk2 [To kr I1 (krr) r' cos φ 

τ'+ — r' = 
eVo kr Τo I1 (krr) sin φ + 

eVo d [To 
ko2 I'r (krr) ]r' cos φ τ'+ — r' = 2w k Τo I1 (krr) sin φ + 2w dk [To k 

I'r (krr) ]r' cos φ 

r+ — r- = — 
eVo d 

To 
kr I1 (krr)] cos φ — 

eVo d2 
To 

k2r I1 (krr)] r' sin φ r+ — r- = — 2w dk To k I1 (krr)] cos φ — 2w dk2 
To k 

I1 (krr)] r' sin φ 
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Fig. 2 - Comparison of axial motions in a linac. 

2) Transverse motion, with the help of equa­
tions [11]. 
Table I summarizes the various beam dynamics 

relations, denoting by the indices — or + the 
values "before" and "after" the mid-plane in 
the single step computation. All parameters on 
the right hand sides refer to values in the mid-plane. 
The first two expressions are of particular 
interest: the first being the Panofsky formula 1), 
whilst the second is the phase correction f, or 
Δφ already discussed. Furthermore, all the ex­
pressions of this table represent a set of trans­
formations which can be easily seen to satisfy 
Liouville's theorem. 

e) Mid-plane valeus and practical expressions 
The mid-plane values are not known, and ge­

nerally are not the average between "before" 
and "after". To compute them, integrals of the 
type [14] must be used, but with the upper 
limit z = 0: the Fourier integral cannot now be 
used and the integration becomes impossible. 
To obtain simple expressions, a function So(kz) 
is defined, analogously to To (kz), by 

So (kz) = 2 
∞ Ez (z, 0, t) sin (kz z) dz / Vo cos (ωt + φ). [18] So (kz) = 2 ∫ Ez (z, 0, t) sin (kz z) dz / Vo cos (ωt + φ). [18] So (kz) = 2 
0 
Ez (z, 0, t) sin (kz z) dz / Vo cos (ωt + φ). [18] 

By replacing To(kz) cos kzz in [9] by ½ [To · 
• (kz) cos kzZ - So (kz) sin kzz], it becomes possible 
to write a field E* in the form of a Fourier 

expansion which is the same as [9] for z < 0 and 
is zero for z > 0. Similar expression apply to 
the other components given in [11]. The com­
putations now proceed as before. 
Nevertheless, mid-gap values given by intrinsic 

equations are difficult to obtain, and even the 
expressions of Table I are rather complicated. 
So it is of interest to find approximate, but sim­
pler forms. Now, in beam dynamics studies it 
is generally necessary to compute many trajec­
tories in a given structure. But for all these 
trajectories the field distributions are the same, 
and the trajectories differ only in radial position 
and momentum, phase φ, and velocity ν (or ki­
netic energy w) which however must always re­
main close to a certain value vo (or wo). Thus, it 
seems reasonable to introduce instead of abso­
lute values of velocity (or energy) relative values: 

∆W = W - Wo [19] 
and try to express all the relations in the form 
of simple expansions around wo, for which coef­
ficients can be computed. A treatment similar 
to that already described can be used to compute 
mid-plane values. 
Table II gives a list of coefficients to compute 

in each gap for a given "synchronous" energy. 
Table III gives expression for mid-plane values 
as computed from the "before" values (and here 
the more general co-ordinates χ and y have been 
used instead of r). Finally, Table IV shows prac-
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tical expressions giving the values "after", and 
these last values can be used to compute the 
"before" values for the following gap. 

4. COMPARISON OF AXIAL MOTION WITH 
SINGLE STEP AND MULTIPLE STEP 
INTEGRATIONS 
A programme has been written to compare 

axial motion by the equations given here, and a 
32-integrations-per-cell routine (this routine and 
its use have been discussed in references (6) and 
(7), and will not be described here). The linac 
is first defined by using a nominal acceleration 
rate K, which may or may not be a function of 
βs. The change in βs, per cycle (≡ per cell) 
is then closely (1 - βs,12) 3/2 Kλ/Wo, where βs,1 is the 

TABLE II 

Vo cos (ωt + φ) = + ∞ Ez (z, c, t) dz . Vo cos (ωt + φ) = ∫ Ez (z, c, t) dz . Vo cos (ωt + φ) = 
- ∞ 

Ez (z, c, t) dz . 

To (ko) Vo cos (ωt + φ) = + ∞ Ez (z, o, t) cos ko z dz To (ko) Vo cos (ωt + φ) = ∫ Ez (z, o, t) cos ko z dz To (ko) Vo cos (ωt + φ) = 
- ∞ 
Ez (z, o, t) cos ko z dz 

So (ko) Vo cos (ωt + φ) = ∞ Εz (z, o, t) sin ko z dz So (ko) Vo cos (ωt + φ) = ∫ Εz (z, o, t) sin ko z dz So (ko) Vo cos (ωt + φ) = 0 
Εz (z, o, t) sin ko z dz 

V1= 
Vo V2 = 

Voko V1= Wo 
V2 = Wo 

Θo = To (ko) koo2 Θ1 = Τo (ko) 
k2o Θo = To (ko) koo2 Θ1 = Τo (ko) ko 

Θ2 = T'o (ko) 
ko Θ3 = T'o (ko) 

kok2o Θ2 = T'o (ko) Wo 
Θ3 = T'o (ko) Wo 

Σο = So (ko) k2ro Σ1 = So (ko) 
k2ro Σο = So (ko) k2ro Σ1 = So (ko) ko 

Σ2 = S'o (ko) 
ko Σ3 = S'o (ko) 

k„k?o Σ2 = S'o (ko) Wo 
Σ3 = S'o (ko) Wo 

All the derivatives are taken relative to k = ω/ν for k = ko with kr2o — ω2/c2, all va­lues with index ο corresponding to synchro­nous kinetic energy w0. One has for instance: 

T' (ko) Vo cos (ωt + φ) = -+∞ zEz (z, o, t) sin ko zdz. T' (ko) Vo cos (ωt + φ) = -∫ zEz (z, o, t) sin ko zdz. T' (ko) Vo cos (ωt + φ) = -- ∞ 
zEz (z, o, t) sin ko zdz. 

Non-relativistic equations are used and in several relations β2 is omitted with resplect to 1; but also kro can be replaced by ko without appreciable error. 

input value of βs. Regarding each cell separa­
tely gives the energy change over the whole cell 
and half cell respectively: 
∆W = eVΤ(βc) cos φs 

} 
V = Eog = . [20] ∆W1 = 

1 
∆W + 

1 
eVS(βc) sin φs } 

V = Eog = . [20] ∆W1 = 2 ∆W + 2 eVS(βc) sin φs } 
V = Eog = . [20] 

At low energies the gap fields can be assumed 
uniform, so that the axial parts of Τ and S are 
respectively sin (1 - cos )/, where = πg/βcλ. 
To solve equations [20], a definition of L is re­
quired (and hence g, the two being related 
through the resonant frequency). If the length 
of each half cell is such that the phase shift of 
the synchronous particle is exactly π, the resulting 
cell length is given to a good approximation by 

L = λ [1 — Δφ (βc)/2π] [21] 
where Δφ(βc) is the phase correction term intro­
duced in section 2, and is the mean value 
of βs in the cell. The distance between gap 
centres is now (to small error) 

l = λβo [1 
1 

(Δφn+1 + Δφn)] [22] l = λβo [1 4π 
(Δφn+1 + Δφn)] [22] 

where βo is the output βs from the cell. The phase 
shift between gap centres n, n + 1 is 2π, and for 
the general particle (suffixed p) is approximately 

φn+1 ≈ φn + 2π 
l — 1)+Δφ(βc,p) [23] φn+1 ≈ φn + 2π βpλ 
— 1)+Δφ(βc,p) [23] 

as described in section 2. With equations [20] 
to [23] the motion of the general particle can 
be found. 
Fig. 2 compares the axial motions with the two 

routines of a 20-cell linac with parameters as 
shown. With the multi-step routine, modifica­
tion of cell length from βλ to that of 
equation [21], (and resulting modification 
to gaps and fields), reduces the amplitude of 
phase oscillation of the reference particle from 3° 
to about ½°. With the single step (and much 
faster) routine, the amplitude of the phase oscil­
lation is reduced from 2½° to almost zero in the 
modified linac. That the phase oscillations still 
have a small amplitude is because a) omission 
of the correcting term in Eq. [17] in the modified 
linac induces a slight change in the synchronous 
phase angle with the multi-step routine; and b) 
with the single step routine Eq. [23] is slightly 
less accurate than Eq. [22]. Nevertheless, in 
their present form, the equations give a very 
sound basis for general study of linac beam 
motion. 
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TABLE III 

r = (r-) [1 -
eV1 [ θ'1 cos (φ-) + Σ'1 sin (φ-)]] - (r'-) 

eV1 [ θ"1 sin (φ-) — Σ"1 cos (φ-)] r = (r-) [1 - 8 
[ θ'1 cos (φ-) + Σ'1 sin (φ-)]] - (r'-) 8 

[ θ"1 sin (φ-) — Σ"1 cos (φ-)] 

r'=-(r-) 
eV1 [Θ1 sin (φ-) - Σ1 cos (φ-)] + (r'-) [1 + 

eV1 [ θ'1 cos (φ-) + Σ'1 sin (φ-)] r'=-(r-) 8 
[Θ1 sin (φ-) - Σ1 cos (φ-)] + (r'-) [1 + 8 [ θ'1 cos (φ-) + Σ'1 sin (φ-)] 

tg φ = 
sin (φ-) — 

eV2 (s'o + ∑'o 
r2 

) 
eV2 (∑'2 + Σ'3 

r2 
) (δW-) + 

eVo [To Cos(φ-) + So Sin(φ-)] 
tg φ = 

sin (φ-) — 4 (s'o + ∑'o 4 ) 8 
(∑'2 + Σ'3 4 ) (δW-) + 2 

[To Cos(φ-) + So Sin(φ-)] 
tg φ = 

cos (φ-.) — 
eV2 T'o + Θ'o 

r2 

) 
eV2 (Θ'2 + Θ'3 

r2 
)[ (δW-) + 

eVo - [To cos (φ-) + So sin (φ-)]] 

tg φ = 

cos (φ-.) — 4 
T'o + Θ'o 4 ) 8 

(Θ'2 + Θ'3 4 )[ (δW-) + 2 - [To cos (φ-) + So sin (φ-)]] 

δw 
(δW-) + 

eVo (Τo + Θo 
r2 
) cos φ + 

eVo 
(So 

Σo 
r2 
) sin φ (δW-) + 2 

(Τo + Θo 4 
) cos φ + 2 (So 

Σo 4 
) sin φ 

1 + 
eVo Θ2 + Θ3 

r2 
)cos φ + 

eVo (Σ2 + Σ3 
r2 
)sin φ 1 + 4 Θ2 + Θ3 4 

)cos φ + 
4 

(Σ2 + Σ3 4 
)sin φ 

TABLE IV 

δW+ = δW- +eVo (To + Θo 
χ2 + y2 ) cos φ — 

eVo (Θ2 + Θ3 
x2 + y2 ) δW cos φ + 

eVo Θ'o (xx' + yy') sin φ δW+ = δW- +eVo (To + Θo 4 
) cos φ — 2 (Θ2 + Θ3 4 ) δW cos φ + 2 

Θ'o (xx' + yy') sin φ 

φ+ = φ- + 
eV2 (T'o + Θ'o 

χ2 + y2 )sin φ — 
cV2 (Θ'2 + Θ'3 

x2 + y2 ) dW cos φ — 
eV2 Θ"o (xx' + yy') φ+ = φ- + 2 (T'o + Θ'o 4 

)sin φ — 
4 (Θ'2 + Θ'3 4 

) dW cos φ — 4 Θ"o (xx' + yy') 

X+ = X- — 
eV1 Θ'1 χ cos φ + 

eV2 δW Θ"1 X COS φ — eV1 Θ"1 x' sin φ X+ = X- — 4 
Θ'1 χ cos φ + 8 Wo 

Θ"1 X COS φ — 
4 

Θ"1 x' sin φ 

y+ = y- -
eV1 Θ'1 y cos φ + 

eV2 δW Θ"1 y cos φ — 
eV1 Θ"2 y' sin φ y+ = y- - 4 

Θ'1 y cos φ + 8 Wo 
Θ"1 y cos φ — 4 

Θ"2 y' sin φ 

X+ = X'- — 
eV1 Θ1 χ sin φ + 

eV2 δW Θ"1 χ sin φ + 
eV1 Θ'1 x' cos φ X+ = X'- — 4 

Θ1 χ sin φ + 8 Wo 
Θ"1 χ sin φ + 4 

Θ'1 x' cos φ 

y'+ = Y'- -
eV1 Θ y sin φ + 

eV2 δW Θ'2 y sin φ — 
eV1 Θ'2 y' cos φ y'+ = Y'- -4 

Θ y sin φ + 
8 Wo 

Θ'2 y sin φ — 4 Θ'2 y' cos φ 
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DISCUSSION 
CROWLEY-MILLING : Have these computations been compared 
with the original computations m o d e of the time of the 
design of the Harwell and C E R N linear accelerators using 
an analogue computer fed with the measured field condi­
tions in the drift tube gaps? 
Lapostolle: No, not that particular one, comparisons are in 

program at present but have only been done yet with a 
more recent elaborate programme developed at the Ruther­
ford Laboratory. 
NISHIKAWA: But already in m y paper on the normal m o d e 
analysis. 


