CERN Accelerating science

Article
Report number arXiv:1510.04281 ; CERN-PH-TH-2015-230 ; CERN-PH-TH-2015-230
Title The Arithmetic of Elliptic Fibrations in Gauge Theories on a Circle
Author(s) Grimm, Thomas W. (Munich, Max Planck Inst. ; Utrecht U.) ; Kapfer, Andreas (Munich, Max Planck Inst.) ; Klevers, Denis (CERN)
Publication 2016-06-20
Imprint 14 Oct 2015
Number of pages 44
Note 43 pages, 3 figures
In: JHEP 06 (2016) 112
DOI 10.1007/JHEP06(2016)112
Subject category Particle Physics - Theory
Abstract The geometry of elliptic fibrations translates to the physics of gauge theories in F-theory. We systematically develop the dictionary between arithmetic structures on elliptic curves as well as desingularized elliptic fibrations and symmetries of gauge theories on a circle. We show that the Mordell-Weil group law matches integral large gauge transformations around the circle in Abelian gauge theories and explain the significance of Mordell-Weil torsion in this context. We also use Higgs transitions and circle large gauge transformations to introduce a group law for genus-one fibrations with multi-sections. Finally, we introduce a novel arithmetic structure on elliptic fibrations with non-Abelian gauge groups in F-theory. It is defined on the set of exceptional divisors resolving the singularities and divisor classes of sections of the fibration. This group structure can be matched with certain integral non-Abelian large gauge transformations around the circle when studying the theory on the lower-dimensional Coulomb branch. Its existence is required by consistency with Higgs transitions from the non-Abelian theory to its Abelian phases in which it becomes the Mordell-Weil group. This hints towards the existence of a new underlying geometric symmetry.
Copyright/License arXiv nonexclusive-distrib. 1.0
publication: © 2016-2025 The Author(s) (License: CC-BY-4.0), sponsored by SCOAP³
preprint: © 2015-2025 CERN (License: CC-BY-4.0)



Corresponding record in: Inspire


 Δημιουργία εγγραφής 2015-10-16, τελευταία τροποποίηση 2023-10-04


Article from SCOAP3:
Κατέβασμα πλήρες κειμένουPDF
Springer Open Access article:
Κατέβασμα πλήρες κειμένουPDF
Πλήρες κείμενο:
Κατέβασμα πλήρες κειμένουPDF
εξωτερικός σύνδεσμος:
Κατέβασμα πλήρες κειμένουPreprint