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The duality between color and kinematics enables the construction of multiloop gravity integrands
directly from corresponding gauge-theory integrands. This has led to new nontrivial insights into the
structure of gravity theories, including the discovery of enhanced ultraviolet cancellations. To continue to
gain deeper understandings and probe these new properties, it is crucial to further improve techniques for
constructing multiloop gravity integrands. In this paper, we show by example how one can alleviate
difficulties encountered at the multiloop level by relaxing the color-kinematics duality conditions to hold
manifestly only on unitarity cuts instead of globally on loop integrands. As an example, we use a minimal
Ansatz to construct an integrand for the two-loop four-point nonsupersymmetric pure Yang-Mills
amplitude in D dimensions that is compatible with these relaxed color-kinematics duality constraints.
We then immediately obtain a corresponding gravity integrand through the double-copy procedure.
Comments on ultraviolet divergences are also included.

I. INTRODUCTION

The duality between color and kinematics [1,2] offers
a practical means for obtaining difficult-to-construct
higher-loop scattering amplitudes in gravity theories.
This duality, conjectured by Carrasco, Johansson and
one of the authors (BCJ) to hold to all loop orders,
stipulates that there exist forms of amplitude integrands
where the kinematic numerators of all diagrams satisfy
the same algebraic relations as the color factors. BCJ
duality was first formulated for adjoint-representation
states and has recently been generalized to also include
fundamental-representation states [3,4]. Once the duality
is manifest in a gauge-theory amplitude, corresponding
gravity amplitude integrands are obtained simply by
replacing gauge-theory color factors with duality-
satisfying kinematic numerators. This is known as the
“double-copy” construction of gravity. It effectively
reduces the problem of obtaining multiloop gravity
integrands to the much simpler problem of finding
color-kinematics duality-satisfying gauge-theory inte-
grands. The duality also imposes a rigid structure on
gauge-theory loop integrands that can greatly streamline
their construction [5], including nonplanar contributions.
At loop level, BCJ color-kinematics duality remains a

conjecture. Moreover, as yet there is no constructive means

for finding forms of the integrands where the duality is
manifest. Instead, higher-loop integrands are generally
constructed case by case using Ansätze [2,5,6], whose
generalized unitarity cuts are then matched to those of the
desired amplitude via the unitarity method [7,8]. There has,
however, been important progress in a variety of directions,
including understanding the underlying group-theoretic
structure behind the duality [9], explicit constructions of
loop integrands [2,5,6,10–12], identifying the duality in
classical solutions including those for black holes [13],
expanding the range of theories where the duality applies
[3,4,14], as well as various other studies [15]. Recent work
based on twistor string theory and scattering equations also
offers a new avenue for constructing gravity loop ampli-
tudes that manifest the double-copy structure [16].
In this paper, we explore a different strategy for

improving our ability to construct multiloop gravity ampli-
tudes. A generic problem with using Ansätze to construct
kinematic numerators is they may not be general enough.
This issue is important for state-of-the-art calculations: For
example, it has proven difficult to construct integrands for
the five-loop four-point amplitude of N ¼ 4 super-Yang-
Mills theory that manifest BCJ duality between color and
kinematics [17]. Here we will give a two-loop example in
pure Yang-Mills theory that runs into similar difficulties,
where a seemingly reasonable Ansatz is not compatible
with both global BCJ duality and unitarity constraints. By
“global” BCJ constraints, we mean the full set of BCJ
duality constraints on the integrand. Instead of expanding
the Ansätze—for instance by allowing for nonlocalities or
abandoning relabelling symmetries—the solution we adopt
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here is to relax the BCJ duality constraints so that they hold
only on a spanning set of unitarity cuts. A “spanning set” of
unitarity cuts refers to a set of unitarity cuts sufficient for
constructing all terms in the amplitude. We can then
employ the simpler Ansatz while maintaining the key
double-copy property, thus allowing us to obtain corre-
sponding gravity loop integrands directly from gauge-
theory ones.
To demonstrate the usefulness of this approach, we

utilize it to construct the D-dimensional two-loop four-
gluon integrands of pure Yang-Mills theory in a form
compatible with the double-copy construction of gravity.
The corresponding gravity amplitude is for a theory of
gravity coupled to a dilaton and an antisymmetric tensor.
As a warm-up, we first look at the case of four-
dimensional identical-helicity external gluons. A loop
integrand satisfying manifest global BCJ duality was
already given in Ref. [18]. We instead choose to work
with an earlier form of the integrand [19] that displays
exactly the property that the duality is not manifest on the
integrand but is instead manifest on a spanning set of
generalized unitarity cuts. For general external-leg polar-
izations in D dimensions, there is currently no known
representation of the amplitude where global BCJ duality
is manifest. We first show that a natural “minimal Ansatz”
is not compatible with both unitarity and manifest global
BCJ constraints on the integrand. Enlarging an Ansatz can
quickly become a losing game because of the rapid
proliferation of possible terms. The minimal Ansatz we
use has locality, manifest crossing symmetry and loop-
by-loop power counting no worse than that of ordinary
Feynman diagrams. By loop-by-loop power counting, we
are referring to the maximum number of powers of each
independent loop momentum that can appear in the
numerator of a given diagram. We show that once we
relax BCJ duality constraints so that they are manifest
only on generalized unitarity cuts instead of the full
integrand, the duality and unitarity constraints are all
compatible. Having the duality manifest in the cuts
ensures that the gravity integrand constructed through
the double-copy procedure will have the correct gravity
cuts. The Yang-Mills integrand we obtain therefore has the
double-copy property and achieves the goal of immedi-
ately giving us a corresponding gravity integrand with a
variety of desirable properties inherited from the Yang-
Mills integrand.
Finding improved means for constructing multiloop

gravity integrands is important for studies of ultraviolet
properties of gravity theories. (For a recent update see
Ref. [17].) Explicit calculations show that gravity theories
have a softer ultraviolet behavior than known standard-
symmetry considerations predict. Certain gravity ampli-
tudes possess “enhanced cancellations” [20], which are
defined to be ultraviolet cancellations that cannot be
exhibited diagram by diagram in any covariant formalism.

(By a covariant formalism, we mean that the only kinematic
denominators in each diagram are those of standard
Feynman propagators.) This is a new phenomenon not
accounted for by standard-symmetry considerations. In
particular, N ¼ 4 supergravity [21] at three loops [22]
and N ¼ 5 supergravity at four loops [20] are ultraviolet
finite. No satisfactory standard-symmetry explanation has
been found as yet for these cases, despite some effort [23].
By four loops,N ¼ 4 supergravity does have an ultraviolet
divergence [24], but it has a curious structure connected
to a duality-symmetry anomaly [25] not present in N ≥ 5
supergravities. In fact, as recently shown, divergences in
gravity are much more subtle than symmetry considerations
suggest: They can be modified at leading order by
evanescent effects and change under duality transforma-
tions [26]. (“Evanescent effects” refer to effects that vanish
strictly in D ¼ 4 but lead to nontrivial contributions in
dimensional regularization.) These results emphasize the
need for improved, more powerful methods to study the
various surprising phenomena that become visible only at
the multiloop level. The present paper is a modest step in
this direction.
This paper is organized as follows. In Sec. II, we first

review the duality between color and kinematics before
describing our approach of applying it to generalized
unitarity cuts. Then in Sec. III, we present the identical-
helicity two-loop four-point amplitude as a warm-up to the
case with general polarizations, which is subsequently
discussed in Sec. IV. In Sec. V, we give the two-loop
ultraviolet divergence of the gravity theory, extracted from
the identical-helicity amplitude. We present our conclu-
sions in Sec. VI.

II. DUALITY BETWEEN COLOR
AND KINEMATICS

In this section, we first review BCJ duality between
color and kinematics [1,2] and then explain our procedure
for imposing it on unitarity cuts. At loop level, the
duality remains a conjecture, but even so it can greatly
streamline the construction of loop amplitudes [5] for two
reasons:
(1) It imposes a structure on gauge-theory amplitudes

that can be exploited to determine the full loop
integrand from a small subset of diagrams called
“master diagrams.”

(2) Once a form of gauge-theory loop integrands has
been found where the duality is manifest, corre-
sponding gravity integrands are easily constructed
by replacing color factors with gauge-theory numer-
ators that satisfy the duality.

The unitarity method [7] then offers a convenient way to
confirm that the construction is correct. This needs to be
done case by case since BCJ duality remains a conjecture at
loop level.
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Here we propose applying a less powerful form of the
duality that retains the above second property at the
expense of losing the first one. We impose that the duality
is manifest on generalized unitarity cuts that decompose
loops into trees and relax the condition that it be manifest
in full loop integrands. This strategy can be helpful for
constructing gravity integrands whenever it is difficult to
find expressions that are compatible with both unitarity and
manifest global BCJ duality in the full integrand.

A. Tree level

An m-point gauge-theory tree amplitude with all par-
ticles in the adjoint representation can always be written as

Atree
m ¼ gm−2

X
j

cjnjQ
αj
p2
αj

; ð2:1Þ

where the sum over j is over the set of distinct m-point
graphs with only cubic vertices. Inequivalent relabelings of
a given diagram are counted as distinct graphs, and g is the
gauge coupling constant. Associated with each graph j are
the following:

(i) 1=
Q

αj
p2
αj : The Feynman propagators affiliated with

the graph. (The associated factors of i are absorbed
into the numerators.)

(ii) cj: The color factor obtained by dressing every
vertex of the graph with the group-theory structure
constant, ~fabc ¼ i

ffiffiffi
2

p
fabc ¼ Trð½Ta; Tb�TcÞ, where

the Hermitian generators of the gauge group are
normalized via TrðTaTbÞ ¼ δab.

(iii) nj: The numerator that contains the nontrivial
kinematic information, including momenta, polar-
izations and possibly spinors.

To obtain the form in Eq. (2.1), we convert contributions
from contact-term diagrams—those with higher-than-three-
point vertices—to ones with only cubic vertices by multi-
plying and dividing by the appropriate propagators, i.e.,
inserting factors of p2

α=p2
α ¼ 1.

A nontrivial task is to find kinematic numerators that
satisfy the duality between color and kinematics. The
numerators appearing in Eq. (2.1) are by no means unique
due to the freedom to move terms between different
diagrams, also known as generalized gauge invariance
[1,2,27,28]. This freedom can be utilized to find repre-
sentations of the amplitude where the kinematic numerators
obey the same algebraic relations that the color factors obey
[1,2]. For adjoint representations in ordinary gauge theo-
ries, this is simply the Jacobi identity,

ci ¼ cj − ck ⇒ ni ¼ nj − nk; ð2:2Þ

where i, j and k label three diagrams whose color factors
obey the Jacobi identity. The basic Jacobi relation is
displayed in Fig. 1. The generalization of the identity to
m-point tree-level amplitudes is seen diagrammatically by

embedding Fig. 1 in larger diagrams, where the other parts
of the three diagrams remain unaltered under the duality.
Furthermore, whenever the color factor of a diagram is
antisymmetric under a swap of legs, we require that the
numerator obey the same antisymmetry,

ci → −ci ⇒ ni → −ni: ð2:3Þ

At tree level, numerators that obey the duality for any
number of external legs are known [29]. The numerator
relations are nontrivial functional relations because they
depend on momenta, polarizations and spinors, as dis-
cussed in some detail in Refs. [5,30].
A central aspect of the duality is the ease with which

gravity amplitude integrands follow from gauge-theory
ones once the duality is made manifest [1,2]: One simply
replaces the color factor of a gauge-theory amplitude with a
kinematic numerator, ~n, from a second gauge theory which
has the duality manifest:

ci → ~ni: ð2:4Þ

With this replacement in Eq. (2.1), we obtain the double-
copy form of gravity tree amplitudes,

Mtree
m ¼ i

�
κ

2

�
m−2X

j

~njnjQ
αj
p2
αj

; ð2:5Þ

where ~nj and nj are gauge-theory numerator factors and
the gravitational coupling is given in terms of Newton’s
constant via κ2 ¼ 32πGN . A tree-level proof for this
construction is given in Ref. [28]. We note that in the
double-copy procedure, only one of the two sets of
numerators needs to satisfy the duality of Eq. (2.2)
[2,28]. The specific gravity theory one obtains depends
on which gauge theories are used as inputs into the
construction.

B. Loop level

At loop level, the duality (2.2) remains a conjecture [2].
As at tree level, we express the amplitudes as a sum over
diagrams with only cubic vertices:

FIG. 1. The basic Jacobi relation for either color or numerator
factors. These three diagrams (i), (j) and (k), corresponding to
color factors ci, cj and ck respectively or numerator factors ni, nj
and nk respectively, can be embedded in a larger diagram at tree
level or loop level. The propagator around which the Jacobi
relation is performed is shaded (red).
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AL-loop
m ¼ iLgm−2þ2L

X
Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

cjnjQ
αj
p2
αj

:

ð2:6Þ
The first sum runs over the m! permutations of the external
legs, denoted by Sm. The Sj symmetry factor removes any
overcounting from these permutations and also from any
internal automorphism symmetries of graph j. Here the
j-sum runs over the set of distinct, nonisomorphic, L-loop
m-point graphs with only cubic or trivalent vertices. Again,
absorbing numerators of contact diagrams that contain
higher-than-three-point vertices into numerators of diagrams
with only trivalent vertices is trivial. However, it is nontrivial
to make a rearrangement into the BCJ-conjectured form,
where the numerator factors obey the same Jacobi relations
(2.2) and symmetry properties (2.3) as the color factors.
The generalization of BCJ duality to loop-level ampli-

tudes is to embed Fig. 1 in larger loop diagrams [2]. We
then demand that the numerators of all diagrams obey the
BCJ relations (2.2) and (2.3). We refer to this as “global
BCJ duality.” Using the kinematic Jacobi relations, one can
solve for the numerators of all diagrams in terms of a
relatively small number of “master” numerators [5].
Once we have gauge-theory numerator factors that satisfy

the duality, the substitution of color factors by the numerator
factors (2.4) gives us the double-copy form of gravity loop
integrands,

ML-loop
m ¼ iLþ1

�
κ

2

�
m−2þ2LX

Sm

X
j

Z YL
l¼1

dDpl

ð2πÞD
1

Sj

~njnjQ
αj
p2
αj

;

ð2:7Þ

where ~nj and nj are gauge-theory numerator factors. As at
tree level, the theories to which the gravity amplitudes
belong are dictated by the input gauge theories. The gravity
theory corresponding to two copies—call them “left,” L, and
“right,” R, copies—of nonsupersymmetric pure Yang-Mills
theory includes a graviton, a dilaton and an antisymmetric
tensor field. We can see this by decomposing the product of
two gluon polarization vectors into irreducible parts: a
symmetric and traceless term, an antisymmetric term and
a trace term. For instance, for a D-dimensional external leg
with momentum k and polarization vectors εL, εR with
reference momentum q, we can write

εμLε
ν
R ¼

�
1

2
ðεμLενR þ ενLε

μ
RÞ

−
1

D − 2

�
ημν −

kμqν þ kνqμ

k · q

�
εL · εR

�

þ 1

2
ðεμLενR − ενLε

μ
RÞ

þ 1

D − 2

�
ημν −

kμqν þ kνqμ

k · q

�
εL · εR: ð2:8Þ

These three terms correspond to the polarization tensors
of a graviton, an antisymmetric tensor field and a dilaton,
respectively. Note that ημν − ðkμqν þ kνqμÞ=ðk · qÞ is the
usual projector for the (D − 2)-dimensional space spanned
by the polarization vectors orthogonal to both k and q.
As a simple illustration of color-kinematics duality at

loop level, consider the BCJ numerator identities for one-
loop four-point amplitudes:

nð1Þ
12ð34Þ;p ¼ nð1Þ1234;p − nð1Þ1243;p;

nð1Þð12Þð34Þ;p ¼ nð1Þ
12ð34Þ;p − nð1Þ

21ð34Þ;p; ð2:9Þ

corresponding to each row of Fig. 2. By nð1Þ1234;p we mean
the box numerator with the external legs following the
cyclic ordering 1234 and p is the loop momentum.

Similarly, nð1Þð12Þ34;p and n
ð1Þ
ð12Þð34Þ;p denote triangle and bubble

numerators corresponding to the leftmost diagrams in
Fig. 2. (Here we do not consider the bubble-on-external-
leg or tadpole diagrams that vanish in dimensional regu-
larization after integration.) Since the numerators of the
other diagrams can be derived from the box diagrams, we
call the box diagrams master diagrams. If we impose that
the numerators obey manifest crossing symmetry, i.e., that
the different box numerators are obtained from each other
simply by appropriate relabelings of the legs, then all
nontrivial information for constructing the amplitude is
contained in a single box numerator. More generally, at one
loop whenever a BCJ representation of an m-point inte-
grand is known, we can construct the entire amplitude
starting from m-gon diagrams.
At one loop, there appear to be no difficulties finding

numerators that obey global BCJ identities. Indeed, there
are a variety of known examples that satisfy global
identities in supersymmetric [6,31] and nonsupersymmetric
[10,18] Yang-Mills theories.

FIG. 2. The Jacobi relations determining the triangle and
bubble numerators in terms of box numerators. The shaded
(red) propagator indicates the line around which the Jacobi
identities are applied.
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At higher loops, the basic ideas are the same although
the constructions rapidly become more difficult.
Nevertheless, there are a variety of explicit nontrivial
examples at two and higher loops where the global BCJ
constraints are manifest [2,5,6,18,32]. Some examples of
duality relations for the two-loop four-point amplitude are
displayed in Fig. 3.

C. BCJ duality on unitarity cuts

As the number of loops or legs increases, it becomes
more difficult to find expressions for amplitude integrands
where global BCJ constraints are manifest. For example,
constructing a representation of the five-loop four-point
integrand ofN ¼ 4 super-Yang-Mills theory with manifest
BCJ duality (2.2) remains a nontrivial challenge despite
its central role for understanding the ultraviolet properties
of gravity theories (see e.g. Refs. [17,20]). Similarly for

two-loop four-point nonsupersymmetric Yang-Mills
theory, as we shall see in Sec. IV, a minimal Ansatz with
local numerators, manifest crossing symmetry and natural
power-counting constraints cannot simultaneously satisfy
global BCJ duality and unitarity.
The obvious strategy is to try to enlarge the Ansatz until

a solution is found. However, for nontrivial cases, Ansätze
can grow rapidly, making them impractical to work with.
Here we take a different approach: We relax the BCJ
duality constraints while keeping the essential double-
copy property, allowing us to obtain gravity integrands
directly from gauge-theory ones. We find a form of the
amplitude where the BCJ duality relations are manifest in
a spanning set of unitarity cuts rather than on the full uncut
integrands. (We note that manifest global BCJ duality in
the gauge-theory integrand implies that the BCJ con-
straints are also valid on the spanning set of unitarity cuts;
however, the converse is not true in general.) The double-
copy replacement rule of Eq. (2.4) then still holds. In a
given color-dressed Yang-Mills unitarity cut, replacing the
color factors by the corresponding duality-satisfying
numerators ensures that the cut gauge-theory tree inte-
grands composing the cut are properly converted to
cut gravity tree integrands composing the corresponding
gravity cut. If a gauge-theory numerator satisfies the
duality in all cuts to which it contributes, then its
double-copy gravity integrand will also satisfy these cuts
and is therefore a valid gravity integrand. Importantly, the
requirement that BCJ duality holds only on the cuts is less
restrictive than having it hold globally in the integrands.
This is true for two main reasons. Firstly, the on-shell
conditions can remove contact contributions that violate a
given BCJ numerator Jacobi relation. Secondly, on a given
cut there are fewer relations because we include only those
identities that act separately on trees composing the cuts.
That is, we do not consider BCJ identities around a cut leg.
It is still nontrivial, however, because we demand that the
duality is manifest in all cuts of the integrand, which
allows use of the double-copy replacement at the full
integrand level.
As a simple first example, consider the one-loop four-

point amplitude. A spanning set of unitarity cuts is the s-,
t- and u-channel versions of the two-particle cut illustrated
in Fig. 4. After enforcing crossing symmetry, we only need
to consider the s-channel cut. Now, instead of imposing the

FIG. 3. Sample color and kinematic-numerator Jacobi relations
for the two-loop four-point amplitudes involving (a) planar
double-box diagrams and a box-triangle diagram, (b) nonplanar
double-box diagrams and a nonplanar triangle diagram, (c) only
nonplanar double-box diagrams and (d) planar and nonplanar
double-box diagrams and a triangle-in-a-box diagram. The
shaded (red) propagator indicates the line around which the
Jacobi identities are applied.

FIG. 4. Two-particle cut evaluated in all three channels deter-
mines one-loop four-point amplitudes.
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global BCJ conditions of Eq. (2.9), as illustrated in Fig. 5,
we instead impose

ðnð1Þ
12ð34Þ;p − nð1Þ1234;p þ nð1Þ1243;pÞjl21¼l2

2
¼0 ¼ 0;

ðnð1Þð12Þð34Þ;p − nð1Þ
12ð34Þ;p þ nð1Þ

21ð34Þ;pÞjl21¼l2
2
¼0 ¼ 0; ð2:10Þ

where l1 ¼ p and l2 ¼ p − k1 − k2. Whereas Eq. (2.9)
could be thought of as fully defining the triangle and bubble
numerators in terms of the box-numerator master Ansatz,
Eq. (2.10) should be thought of as constraint equations on
separate Ansätze for the box, triangle and bubble numer-
ators. Of course, for one-loop four-point amplitudes, there
is not much point in imposing the relaxed BCJ conditions
since no difficulties are encountered when imposing global
BCJ constraints directly on the integrand. Indeed, there are
a number of constructions of such integrands including the
D-dimensional case with formal polarizations [10,18,31].
At two loops, the basic idea is the same. Fig. 6 gives a

spanning set of unitarity cuts which decomposes the
integrand into sums of products of tree amplitudes. This
set consists of the iterated two-particle cuts, (a) and (b), and
the three-particle cut, (c). To impose the BCJ constraints on
the cuts, we start with the BCJ identities on the numerators,
as illustrated in Fig. 3. We then impose cut conditions as
illustrated in Fig. 7. The figure shows a sample of BCJ
relations in an iterated two-particle cut as well as in three-
particle cuts. Examples (a) and (b) in Fig. 7 are simply the
BCJ identity in Fig. 3(d) but with on-shell conditions

imposed on the cut legs. Examples (c) and (d) are slightly
trickier because both are part of the same three-particle cut.
The rule for grouping the cut diagrams into BCJ triplets is
that the three cut diagrams are identical, including which
legs are cut, except for the legs involving the BCJ duality.
Again, the effect of the cut is to drop terms that cancel the
cut propagators. This can help by allowing the use of a
smaller Ansatz than would have otherwise been possible.

FIG. 5. The one-loop Jacobi relations with cut conditions
imposed. The shaded (red) internal lines indicate the leg around
which the Jacobi identities are applied. Internal legs intersected
by the dashed lines are put on shell.

FIG. 6. A spanning set of generalized unitarity cuts for two-loop four-point color-dressed gauge-theory or gravity amplitudes,
including (a) the “vertical-vertical” iterated two-particle cut, (b) the “horizontal-vertical” iterated two-particle cut and (c) the three-
particle cut. The exposed internal propagators are put on shell.

FIG. 7. Sample BCJ relations on cut two-loop diagrams. The
diagrams represent kinematic numerators. Internal legs inter-
sected by the dashed lines are put on shell. Examples (a) and (b)
correspond to Fig. 3(d) with a horizontal-vertical two-particle cut
applied and a three-particle cut applied, respectively. Examples
(c) and (d) correspond to Fig. 3(a) with different three-particle
cuts applied.
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One practical way to carry out this construction is to
start with kinematic-numerator Ansätze with free parame-
ters multiplying each possible term, subject to various
desirable properties such as manifest locality, power-
counting constraints and crossing symmetries. We then
solve for some of the free parameters by matching to
unitarity cuts—guaranteeing that the kinematic numerators
will produce the correct Yang-Mills amplitude—and by
imposing that BCJ duality holds on all of the cuts, as
illustrated in Fig. 7. Assuming a consistent solution is
found, the so-constructed gauge-theory integrands give
double-copy gravity integrands, as desired, by replacing
the color factors with corresponding numerator factors.
Because the Yang-Mills integrands obey BCJ duality on
each cut, the double-copy construction leads to gravity
integrands that have the correct unitarity cuts. We then
have correct gravity integrands, guaranteed by the
D-dimensional unitarity method.

III. BCJ NUMERATOR CONSTRUCTION:
TWO-LOOP FOUR-POINT
IDENTICAL HELICITY

We consider nonsupersymmetric pure Yang-Mills theory
defined by the usual Lagrangian,

LYM ¼ −
1

4
Fa
μνFaμν; ð3:1Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field

strength. The corresponding double-copy theory contains
a graviton, dilaton and antisymmetric tensor field, as we
discussed in Sec. II B. The Lagrangian for this theory is

LDC¼
ffiffiffiffiffiffi
−g

p �
−
2

κ2
Rþ1

2
∂μϕ∂μϕþ1

6
e−2κϕ=

ffiffiffiffiffiffiffi
D−2

p
HμνρHμνρ

�
;

ð3:2Þ

where Hμνρ ¼ ∂μAνρ þ ∂νAρμ þ ∂ρAμν, and Aμν ¼ −Aνμ is
the rank-two antisymmetric tensor field. We use the mostly
minus metric convention and the Ricci-curvature conven-
tion, Rμν ≡ Rα

μαν. Equation (3.2) corresponds to the low-
energy effective Lagrangian of the bosonic part of string
theory. By using the double-copy construction, we reduce
the problem of constructing integrands for amplitudes in
the theory described by the Lagrangian (3.2) to construct-
ing those for Yang-Mills theory (3.1). Pure gravity has been
considered in Ref. [26]. The construction used there is
different due to the need to introduce explicit physical-state

projectors in the unitarity cuts in order to remove the
antisymmetric tensor and dilaton states from the theory. A
possible route to applying the double-copy procedure to
pure gravity was given in Ref. [3], where ghosts are used to
cancel unwanted states.
As a warm-up for the two-loop four-point amplitude

with arbitrary D-dimensional external states, we first look
at the case of four-dimensional identical-helicity states.
The identical-helicity pure Yang-Mills amplitude was first
constructed in Ref. [19]. The construction relies on a
version of the unitarity method that deals with external
four-dimensional helicity states and internal states in D
dimensions, which is appropriate for dimensional regulari-
zation [8]. A full globally duality-satisfying representation
is given in Ref. [18]. Here we discuss the original
representation from Ref. [19] because it illustrates features
we want: It does not satisfy global BCJ constraints, but it
does satisfy the BCJ identities on the spanning set of cuts in
Fig. 7 [1]. Therefore, replacing each color factor with a
second copy of the corresponding kinematic numerator
gives the integrand of the double-copy theory.
The two-loop all-plus helicity amplitude for pure Yang-

Mills theory from Ref. [19] is

Að2Þ
4 ð1þ; 2þ; 3þ; 4þÞ ¼ −

g6

4

X
S4

ðcP1234IP½nP1234�

þ cNP12;34I
NP½nNP12;34�Þ; ð3:3Þ

where the sum runs over all 24 permutations of the external
legs. The prefactor 1=4 accounts for the overcount due to
diagram symmetries. cP1234 and cNP12;34 are the color factors
obtained from the planar and nonplanar double-box dia-
grams shown in Fig. 8(a) and Fig. 8(b), respectively, by
dressing each vertex with an ~fabc and summing over the
contracted color indices. IP

1234 and INP
12;34 are planar and

nonplanar integrals given by

IP½nP1234� ¼
Z

dDp
ð2πÞD

dDq
ð2πÞD

nP1234
p2q2ðpþ qÞ2ðp − k1Þ2ðp − k1 − k2Þ2ðq − k4Þ2ðq − k3 − k4Þ2

;

INP½nNP12;34� ¼
Z

dDp
ð2πÞD

dDq
ð2πÞD

nNP12;34
p2q2ðpþ qÞ2ðp − k1Þ2ðq − k2Þ2ðpþ qþ k3Þ2ðpþ qþ k3 þ k4Þ2

; ð3:4Þ
with the planar and nonplanar kinematic numerators,

FIG. 8. The (a) planar and (b) nonplanar double-box integrals
appearing in the identical-helicity pure Yang-Mills amplitude.
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nP1234 ¼ −iT
�ðDs − 2Þ2

s
ðpþ qÞ2λ2pλ2qððpþ qÞ2 þ sÞ þ 16sððλp · λqÞ2 − λ2pλ

2
qÞ

þ ðDs − 2Þðsðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 4ðpþ qÞ2ðλ2p þ λ2qÞðλp · λqÞÞ

�
;

nNP12;34 ¼ −iT s½ðDs − 2Þðλ2pλ2q þ λ2pλ
2
pþq þ λ2qλ

2
pþqÞ þ 16ððλp · λqÞ2 − λ2pλ

2
qÞ�; ð3:5Þ

where λp, λq and λpþq represent the ð−2ϵÞ-dimensional
components of loop momenta p, q and ðpþ qÞ, respec-
tively. We take D ¼ 4 − 2ϵ > 4 so that λp · ki ¼ 0, where
the ki are four-dimensional external momenta. We have
suppressed loop momentum labels for the numerators. The
state-counting parameter is defined by Ds ¼ δμμ so that
Ds − 2 corresponds to the number of gluons states for each
color circulating in the loop. The permutation-invariant
kinematic prefactor is given by

T ≡ ½12�½34�
h12ih34i ; ð3:6Þ

where ½ij� and hiji are spinor products, defined in, for
example, Ref. [33], and s ¼ ðk1 þ k2Þ2 is a Mandelstam
invariant. We have slightly rearranged the form of the
amplitude given in Ref. [19] by absorbing the “bow-tie”
contributions into the planar double box. With this choice
the planar double-box numerator is nonlocal since it
contains a term with a factor of 1=s. In this representation
of the amplitude, all numerators of diagrams with topol-
ogies not matching either the planar or nonplanar double-
box diagram are taken to have vanishing numerators.
Now let us examine the issue of BCJ duality. As a first

example, consider duality relation (a) in Fig. 3. Since all
numerators except the planar and nonplanar double-box
ones vanish, the duality relation reads

nP2134 ¼ nP1234: ð3:7Þ
In this case, the duality is satisfied trivially, even without
any cut conditions imposed, because the planar numerator
in Eq. (3.5) has a symmetry under the interchange of legs 1
and 2. The same holds for the nonplanar diagrams in BCJ
relation (b) of Fig. 3. As a somewhat less trivial example,
the third BCJ relation, (c), is also satisfied. This happens
because the nonplanar numerator, nNP12;34 of Eq. (3.5), is
independent of external labels except for the overall factor
of s. Consequently, the BCJ relation is then

nNP12;34 þ nNP13;24 þ nNP32;14 ∝ ðsþ tþ uÞ ¼ 0; ð3:8Þ

where t ¼ ðk2 þ k3Þ2 and u ¼ ðk1 þ k3Þ2 are the two other
four-point Mandelstam invariants.
BCJ relation (d) in Fig. 3, however, does not hold if we

do not impose cut conditions. Since the “triangle-in-box”
numerator is zero in our representation, the relation reduces
to a two-term identity,

nNP12;34 ¼ nP1234: ð3:9Þ

This identity is obviously not satisfied by the numerators in
Eq. (3.5) since the planar and nonplanar expressions are
different. However, applying either the cut conditions in
Fig. 7(a) or Fig. 7(b) discards all terms proportional to
ðpþ qÞ2, thereby removing discrepant terms in Eq. (3.9).
[Note that for this relation we only need to consider the
cut conditions of Fig. 7(a), (b) since the BCJ relation of
Fig. 3(d) does not appear in cut (a) of Fig. 6.]
By systematically proceeding through all of the cuts in

Fig. 6, it is straightforward to check that all BCJ identities
hold for all diagrams composing each cut. This implies that
a double-copy gravity integrand is obtained simply by
replacing the color factors in Eq. (3.3) with a kinematic
numerator and replacing the gauge-theory coupling with
the gravitational one. Thus we obtain an expression for the
identical-helicity two-loop four-graviton amplitude in the
double-copy theory (3.2),

Mð2Þ
4 ð1þ;2þ;3þ;4þÞ

¼−i
�
κ

2

�
6 1

4

X
S4

�
IP½ðnP1234Þ2�þINP½ðnNP12;34Þ2�

�
: ð3:10Þ

The kinematic numerators are the squares of the gauge-
theory ones in Eq. (3.5). We have directly confirmed that
the spanning set of unitarity cuts (Fig. 6) of Eq. (3.10) are
all correct, where the internal legs are taken to be in D
dimensions.

IV. BCJ NUMERATOR CONSTRUCTION:
TWO-LOOP FOUR-POINT AMPLITUDE

IN D DIMENSIONS

In this section, we describe the construction of the two-
loop four-point double-copy gravity numerators with gen-
eral formal polarization tensors in D dimensions. This
example demonstrates how one can sidestep difficulties
when Ansätze are not sufficiently general to satisfy global
BCJ duality. We do so by loosening the duality require-
ments to be manifest only on a spanning set of generalized
unitarity cuts. Although the use of formal polarization
vectors and tensors leads to much more complicated
expressions than those for helicity amplitudes, it does have
the advantage that formal polarization amplitudes are
valid in all dimensions, and the more straightforward
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conventional dimensional-regularization scheme [34] can
be used instead of the four-dimensional-helicity scheme
[35]. They are also useful for studying evanescent effects in
gravity, which can be quite subtle [26].

A. Constraining an Ansatz

The construction begins in pure Yang-Mills theory. Our
goal is to find a representation of the pure Yang-Mills two-
loop four-point amplitude of the form given in Eq. (2.6) that
has the double-copy property, allowing us to immediately
obtain the corresponding gravity amplitude in the form
of Eq. (2.7).
To start, we build an Ansatz for the kinematic numerators

with the following properties imposed:

(1) Locality. The numerators are local polynomials in
momenta and polarization vectors, meaning the only
allowed kinematic denominators in the amplitude
are ordinary scalar Feynman propagators.

(2) Power counting. The same loop-by-loop power
counting found from Feynman-gauge Feynman rules
is imposed. For example, each term in the numerator
of diagram (2) in Fig. 9 should have a maximum of
five powers of p, three powers of q and exactly six
powers total of internal or external momentum.

(3) Cubic vertices. The allowed diagrams are ones with
only cubic vertices as in Eq. (2.6).

(4) Relabeling. The diagrams are functions of the
external labels. That is, we can obtain a relabeled

FIG. 9. Diagrams (1)–(14) are the relevant two-loop four-point diagrams with only cubic vertices. All other diagrams in the amplitude
are obtained by relabeling external legs. Tadpole and bubble-on-external-leg diagrams, which integrate to zero, are not included.
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diagram’s numerator simply by relabeling momenta,
polarizations and color factors.

(5) Diagram symmetries respected. The numerator
should reflect the symmetries of the diagrams. For
instance, if the color factors change by sign under
the symmetry, then the numerator should also
change by the same sign.

(6) Unitarity cuts. The cuts of the Ansatz should
correctly match a spanning set of unitarity cuts.
This is simply a requirement that the Ansatz be a
correct representation of the Yang-Mills amplitude.

(7) BCJ double-copy property. The double-copy prop-
erty (2.4) should hold, allowing us to obtain ampli-
tudes in the double-copy theory from gauge-theory
ones simply by replacing color factors with kin-
ematic numerators.

Except for properties 3 and 7, these are standard properties
that ordinary Feynman diagrams in Feynman gauge possess.
The ghost contributions of Feynman diagrams ensure that
physical-state projectors are properly reconstructed across
unitarity cuts, but they do so in a way that maintains the
manifest locality of the numerators. We are of course seeking
a representation of the amplitude with all of these properties
as well as additional ones, in particular the nontrivial final
property 7 that the double-copy property holds. Note that we
have not imposed that the global BCJ identities hold
manifestly, only that the weaker double-copy property holds.
For the two-loop four-point amplitude, the set of dia-

grams with only cubic vertices is given by the independent
relabelings of the diagrams in Fig. 9. As usual, tadpoles
have a vanishing color factor, and bubble-on-external-leg
contributions are dropped because they integrate to zero in
dimensional regularization through a cancellation of ultra-
violet and infrared singularities. (However, one needs to be
aware of this cancellation when trying to extract only an
ultraviolet divergence or an infrared divergence from the
amplitude.)
We start by imposing the first five conditions on the

Ansatz. Each diagram numerator Ansatz, nj, is a linear
combination of monomials, Mjk, subject to the power-
counting constraint in property 2 above:

nj ¼
X
k

ajkMjk; ð4:1Þ

where ajk are the undetermined coefficients of the Ansatz
for diagram ðjÞ. The monomials are built out of indepen-
dent dot products,

εi · εj; εi · kj; εi · p; εi · q; ki · p;

ki · q; p2; q2; p · q; s; t;

ð4:2Þ
with leg labels i; j ¼ 1, 2, 3, 4. We only include monomials
that are independent under momentum-conservation,
on-shell and transversality conditions:

k4 ¼ −k1 − k2 − k3; k2i ¼ 0; ki · εi ¼ 0: ð4:3Þ

By imposing constraints 1–4, we obtain an Ansatz with
9814 terms for diagram (1), 9452 terms for diagram (2),
9902 terms for diagram (3) and so on. Due to property 5,
many terms are related by diagram symmetries. Imposing
these symmetry relations reduces the number of undeter-
mined coefficients respectively to 2703, 4748, 2546 and so
on for these diagrams.

B. Global BCJ identities on integrand

Can we consistently impose the global BCJ identities
with the above constraints? If we could, then this would
be an efficient route to constructing the loop integrand. In
attempting this, we follow the strategy described in detail
in Ref. [5]. By imposing global BCJ identities, we are
strengthening constraint 7 to
(7′) BCJ duality manifest in integrand. We demand that

the diagram numerators obey the full set of global
dual Jacobi relations in Eq. (2.2).

This constraint allows us to express all numerators in terms
of two master diagrams. For the two-loop four-point
amplitudes, we choose the masters to be diagrams (1)
and (2) in Fig. 9. These are then the only diagrams that
require an Ansatz, and the values of the remaining diagrams
are generated by the BCJ numerator relations. This gives us
an Ansatz for the entire amplitude. As mentioned, the two
master diagrams start with 9814 and 9452 terms, respec-
tively, where each term is multiplied by a free parameter.
With the first five constraints and global BCJ constraints
imposed, we are reduced to 1279 total free parameters,
noting that diagram-symmetry constraints fix a large
number of coefficients. We then systematically step
through and impose the spanning set of unitarity cuts
in Fig. 6.
The standard way to evaluate the cuts is to sew together

tree amplitudes appearing in the cuts using physical-state
projectors. The D-dimensional projectors introduce light-
cone denominators, which must cancel away in the final
gauge-invariant cut expressions. We avoid introducing such
spurious denominators by using ghost fields via Feynman
diagrams. While a Feynman-diagram representation is not
particularly enlightening or compact, it gives a simple
means to generate target expressions for checking unitarity
cuts. The cuts of ordinary Feynman-gauge Feynman dia-
grams automatically contain only the usual Feynman
propagators and therefore never introduce spurious denom-
inators in the first place. In any case, the unitarity cuts are
gauge invariant, and their values do not depend on how they
are generated.
Once target expressions for the cuts are generated, the

next step is to fix some or all of the remaining parameters in
the Ansatz by matching its cuts to the target cuts. After
some effort, we find that the result of this procedure is that
the constraints 1–6 listed above are incompatible with
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finding a solution to the global BCJ identities. We can
consistently impose unitarity cuts (b) and (c) of Fig. 6, but
the iterated two-particle cut (a) by itself is inconsistent
with conditions 1–6 and 70. We can localize the problem
by observing that unitarity cuts (b) and (c) of Fig. 6 are
simultaneously consistent and fix all relevant contact terms
in the Ansatz except those proportional to ðpþ qÞ2,
corresponding to the labels in Fig. 9. Hence, the contact
terms involving the middle propagator of diagrams (1), (4)
and (8) in Fig. 9 cannot be consistently constrained. [We
directly confirmed that this is the source of the problem by
using a cut-merging procedure [36] through which we
added terms to these diagrams proportional to ðpþ qÞ2,
making them consistent with unitarity at the cost of losing
the double-copy property.]
One could hope to conquer this obstacle by relaxing

some or all of constraints 1–4. In simple cases, this is
usually the best strategy. However, the minimal Ansatz for
each diagram numerator is already fairly complicated,
and the complexity grows rapidly as these constraints
are released. This becomes more problematic as the number
of loops increases. The difficulty here in finding an Ansatz
compatible with both unitarity and global BCJ constraints
is a simpler version of difficulties encountered at five loops
in N ¼ 4 super-Yang-Mills theory [17].

C. BCJ duality on generalized unitarity cuts

Here we explore an alternative tactic of preserving
constraints 1–5 that keeps the complexity of each numer-
ator Ansatz under control, but instead releases the constraint
that global BCJ duality is manifest in the integrand. We do
so in such a way that preserves the crucial double-copy
property that allows us to obtain gravity integrands from
gauge-theory ones. This strategy amounts to a trade-off
between maintaining the relative simplicity of minimal
Ansätze and losing the global BCJ relations that allow us to
write the full amplitude in terms of master diagrams.
In order to maintain the double-copy property 7, we

impose instead the following condition:
(7′′) BCJ duality on generalized unitarity cuts. Demand

that BCJ duality is manifest in a spanning set of
generalized unitarity cuts of the amplitude.

This effectively means that the cuts of amplitudes are
expressed in terms of sums of products of tree amplitudes,
where each tree is in a form where BCJ duality is manifest.
Tree amplitudes can always be put into a BCJ-satisfying
form, but what makes this condition nontrivial is the
requirement of a single integrand having the property that
for each cut in a spanning set of cuts, BCJ duality is
manifest without needing rearrangements. This then guar-
antees that under the replacement (2.4) in the integrand,
the cuts match those of the double-copy gravity theory. It
is however a weaker condition than requiring that BCJ
duality be manifest globally in the integrand itself.

To find an integrand with the desired properties, we use a
distinct Ansatz for each diagram in Fig. 9. Applying
conditions 1–4 above, we start with a rather large Ansatz
containing 120904 parameters. This is reduced to 28204
free parameters by condition 5, which requires that the
numerators respect the diagram symmetries.
As in Sec. IV B, we compare each unitarity cut against

the target cuts. In addition, we impose that the numerators
of the cut diagrams obey all BCJ relations, as illustrated in
the examples of Fig. 7. In this case, there is no problem
finding a solution to both the BCJ relations and the
spanning set of cuts in Fig. 6. In fact, the final solution
has 6322 free parameters. These free parameters do not
alter any unitarity cuts, but merely move contact terms
between diagrams while maintaining BCJ duality on the
spanning set of cuts in Fig. 6.
The solution is lengthy and is found in the Supplemental

Material [37].1 Its length is largely due to the fact that we
use formal polarization vectors, which allows us the
generality to work in D dimensions. In the Supplemental
Material [37], numerators.m, the vertices, inverse propa-
gators, numerators, color factors and symmetry factors of
each diagram in Fig. 9 are given in Mathematica syntax as a
list. In this syntax, the information of diagram ðjÞ needed
for Eqs. (2.6) and (2.7) can be accessed by vertices[[j]],
propagators[[j]], numerators[[j]], color[[j]] and symmetry
[[j]], where “[[j]]” takes the jth entry in the list. For
example, the planar double box, diagram (1), is accessed by
vertices[[1]], which returns

ff−1g; f−2g; f−3g; f−4g; f1; 9;−5g; f2;−7;−9g;
f3;−11;−8g; f4;−6; 11g; f5; 10; 6g; f7; 8;−10gg:

ð4:4Þ

The structure of vertices[[j]] is such that a one-element
list represents an external momentum label, a three-
element list represents a cubic vertex in clockwise order-
ing, and a positive (negative) number represents an
outgoing (incoming) momentum from (to) the vertex.
These labels match those displayed in Fig. 10 for the
planar double box.
Considering diagram (1) as an example, the inverse

propagators, denoted
Q

α1
p2
α1 in Eqs. (2.6) and (2.7), are

accessed by propagators[[1]], which returns

ðk½1� − k½5�Þ^2 � ðk½1� þ k½2� − k½5�Þ^2 � k½5�^2 � k½6�^2�
ðk½1� þ k½2� þ k½6�Þ^2 � ðk½1� þ k½2� þ k½3� þ k½6�Þ^2�
ðk½5� þ k½6�Þ^2: ð4:5Þ

1The remaining 6322 free coefficients are set to zero in this
file. It would be interesting to see if there are other useful
properties that could be enforced with wise choices of the free
parameters.
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These of course follow from momentum conservation. The
corresponding numerator for diagram (1), n1, is accessed
by numerators[[1]], which returns

ðI=189Þ � ð−140278þ 24959 � DsÞ � ke½1; 2� � ke½2; 1��
ke½2; 3� � ke½2; 4� � kk½1; 2� þ � � � ; ð4:6Þ

where the “� � �” signifies 8223 additional terms found in the
Supplemental Material [37]. Note that we group factors of i
coming from the Feynman propagators with the numerator.
Also, take note of the overall prefactors in Eqs. (2.6) and
(2.7). The parameter Ds is a state-counting parameter that
comes from the contraction of metric tensors. It is the same
parameter as Ds in Eq. (3.5). Depending on the regulari-
zation scheme, in four dimensions it can be Ds ¼ 4
or Ds ¼ 4 − 2ϵ.
The color factor can be read off directly from the vertices

by replacing each triplet of numbers in the vertices fi; j; kg
with an ~faiajak (dropping the index signs). For example,
color[[1]] returns

tf½1; 9; 5� � tf½2; 7; 9� � tf½3; 11; 8��
tf½4; 6; 11� � tf½5; 10; 6� � tf½7; 8; 10�; ð4:7Þ

corresponding to the diagram (1) color factor,

c1 ¼ ~fa1a9a5 ~fa2a7a9 ~fa3a11a8 ~fa4a6a11 ~fa5a10a6 ~fa7a8a10 : ð4:8Þ

Finally, the symmetry factor S1 for diagram (1), for
instance, is given by symmetry[[1]], which returns 4.
Taking the numerators, propagators, color and symmetry

factors in the Supplemental Material [37] and inserting
them into Eq. (2.6) gives the two-loop four-point Yang-
Mills amplitude. Similarly, the corresponding double-copy
gravity amplitude is obtained by inserting the appropriate
factors into Eq. (2.7). We have explicitly checked that the
constructed gauge and gravity amplitudes correctly satisfy
the spanning set of generalized unitarity cuts given in
Fig. 6. In the gravity amplitude verification, the integrands
were constructed in two different ways as a cross check:
The primary way uses two copies of the gauge-theory
numerators from the Supplemental Material [37], whereas
the second way uses one copy from the Supplemental
Material [37] and the other copy from numerators

generated by nonsupersymmetric Yang-Mills theory
Feynman-gauge Feynman rules. Both ways give correct
gravity results compatible with the unitarity constraints.

V. ULTRAVIOLET PROPERTIES

In this short section, we summarize results on the
ultraviolet singularities derived from the identical-helicity
four-graviton amplitude discussed in Sec. III. The counter-
term is the well-studied two-loop R3 counterterm [26,38].
These results summarize those of Ref. [18] for the bare
contribution and Refs. [26] and [39] for the subdivergence
subtractions.
The result for the two-loop bare divergence is already

given in Ref. [18]. That paper uses a different representation
of the integrand, where global BCJ relations hold between
the diagrams. In any case, after integrating we obtain the
same bare ultraviolet divergence. Integral tables may be
found in the appendices of Ref. [18]. Using dimensional
regularization, the infrared and ultraviolet divergences are
mixed together. However, the infrared singularities are
simple and known ahead of time [40], so they are easily
subtracted out. (Ref. [18] also used an alternate method
based on introducing a mass regulator; the results for the
ultraviolet divergences are the same for either method.) The
net result is that the bare two-loop divergence is

Mð2Þð1þ; 2þ; 3þ; 4þÞjbareUVdiv ¼
1

ϵ

83

2700
K; ð5:1Þ

where

K≡
�
κ

2

�
6 i
ð4πÞ4 stu

� ½12�½34�
h12ih34i

�
2

: ð5:2Þ

However, as discussed in Ref. [26], an important subtlety
is that there are also subdivergence subtractions even though
there are no corresponding one-loop divergences in D ¼ 4.
The double-copy theory does have one-loop divergences
[18,41], but these divergences are in four-matter amplitudes
which cannot appear as subdivergences in the two-loop four-
graviton amplitude. The origin of this curious behavior is
evanescent operators, which can act as counterterms. The
Gauss-Bonnet term is one such evanescent operator. In the
double-copy theory, the Gauss-Bonnet counterterm is

LCT
GB¼−

1

ð4πÞ2
�
53

90
þ 1

360
þ 91

360

� ffiffiffiffiffiffi
−g

p ðR2−4R2
μνþR2

μνρσÞ;

ð5:3Þ

where the three numbers in the parenthesis correspond to the
contributions from the graviton, dilaton and antisymmetric
tensor, respectively. The coefficients are proportional to the
ones that appear in the trace anomaly [42]. The Gauss-
Bonnet theorem implies that in four dimensions, the operator

FIG. 10. A diagram with labels corresponding to those of the
Supplemental Material [37]. The arrows give the direction of the
momenta.
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(5.3) is a total derivative. When antisymmetric tensors are
coupled to gravity, another relevant one-loop four-point
divergence is that of two gravitons and two antisymmetric
tensors, which has a counterterm,

LCT
RHH ¼ −

5

3

�
κ

2

�
2 1

ð4πÞ2
1

ϵ

ffiffiffiffiffiffi
−g

p
Rμν

ρσHμναHαρσ: ð5:4Þ

Like the Gauss-Bonnet counterterm (5.3), this operator is
evanescent. In D ¼ 4, we can dualize the antisymmetric
tensors to scalars, which collapses the Riemann tensor into
the Ricci scalar and tensor. Under field redefinitions, they
can then be removed in favor of the dualized scalars,
eliminating the one-loop divergence in two-graviton two-
antisymmetric-tensor amplitudes when the external states
are in D ¼ 4.
As discussed in Ref. [26], there are two types of

counterterm subtractions, as illustrated by representative
diagrams in Fig. 11. The single-counterterm insertion
subdivergence corresponding to Fig. 11(a) is [39]

Mð2Þð1þ; 2þ; 3þ; 4þÞjsingle CT ¼ 1

ϵ

�
−
6004

675
þ 25

3

�
K;

ð5:5Þ

where the first number is the contribution from the
Gauss-Bonnet counterterm in Eq. (5.3) and the second is
the contribution from the RHH counterterm in Eq. (5.4). In
addition, there is the double Gauss-Bonnet counterterm
insertion illustrated by a representative diagram in
Fig. 11(b). This is given by

Mð2Þð1þ; 2þ; 3þ; 4þÞjdouble CT ¼ 1

ϵ

11552

675
K: ð5:6Þ

Adding together the three contributions in Eqs. (5.1),
(5.5) and (5.6) gives the total two-loop divergence,

Mð2Þð1þ; 2þ; 3þ; 4þÞjtotal ¼
1

ϵ

199

12
K: ð5:7Þ

This divergence can be removed from the amplitude by
adding an R3 counterterm to the theory,

LCT
R3 ¼ 199

720

�
κ

2

�
2 1

ð4πÞ4
1

ϵ

ffiffiffiffiffiffi
−g

p
Rαβ

γδRγδ
ρσRρσ

αβ: ð5:8Þ

Up to the coefficient, this is the same divergence that
appears in pure gravity at two loops [26,38]. As already
noted, the double-copy theory also has a one-loop diver-
gence in the matter sector [41].
As discussed in Ref. [26], the divergence itself is not

physical and is modified by duality transformations.
However, the renormalization scale is unaltered. The
coefficient of the ln μ2 dependence is easily extracted by
noting that, for the bare two-loop part, the ln μ2 coefficient
is twice the coefficient of the 1=ϵ divergence, for the single
counterterm, it is equal to the 1=ϵ coefficient, and for the
double-insertion tree contribution, it vanishes. This follows
from dimensional analysis of the loop integrals, with
measure

R
d4−2ϵl per loop, which requires an overall factor

of μ2Lϵ at L loops. The counterterm subtractions themselves
are pure poles which do not carry such factors. This then
gives the ln μ2 dependence,

M2-loop
4 ð1þ; 2þ; 3þ; 4þÞjln μ2 ¼ −K

1

2
ln μ2; ð5:9Þ

in agreement with the general formula given in Ref. [26],

M2-loop
4 ð1þ; 2þ; 3þ; 4þÞjln μ2 ¼ −K

Nb − Nf

8
ln μ2; ð5:10Þ

where Nb is the number of bosonic states and Nf is the
number of fermionic states.
Reference [39] will provide further details on a variety of

theories, including the double-copy gravity theory (3.2), as
well as present full amplitudes including their finite parts. It
is an interesting open problem to extract the divergences
from the amplitude in terms of formal polarization tensors
to ensure the consistency for all helicity configurations.
However, one encounters high-rank tensor double-box
integrals making the integration nontrivial.

VI. CONCLUSIONS

Constructions of higher-loop amplitudes in supergravity
have provided a wealth of new nontrivial information on
gravity theories. This includes tantalizing new effects such
as enhanced ultraviolet cancellations [20] and dependence
of leading divergences on evanescent effects and duality
transformations [26,39]. In addition, the only two known
divergences in four dimensions in pure Einstein gravity and
pure ungauged supergravity theories display anomaly-like
behavior, as discussed in Refs. [24,26].
To further explore these effects and to uncover new ones,

we need more efficient ways to obtain gravity amplitudes at
high loop orders. At present the most powerful means for
doing so is based on the duality between color and
kinematics [1,2] in conjunction with the unitarity method

FIG. 11. Representative diagrams of the (a) single-counterterm
and (b) double-counterterm insertions.
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[7]. However, at sufficiently high loop orders or in
complicated cases with little or no supersymmetry, it can
be nontrivial to find representations of the amplitude where
the duality is manifest. It may be that Ansätze that are
sufficiently general to be compatible with both unitarity
cuts and global BCJ constraints are impractical to work
with. The strategy presented here for dealing with such
difficulties is to loosen the BCJ constraints by demanding
that they hold manifestly only on unitarity cuts instead of
on uncut integrands. This allows us to use simpler Ansätze
for individual diagrams yet retain the key double-copy
property. The cost is that we lose the ability to determine
the gauge-theory integrand from a small number of master
diagrams.
After warming up on the case of identical helicities,

we demonstrated our strategy in action on the two-loop
four-point pure Yang-Mills amplitude with D-dimensional
external polarizations. We first showed that a minimal
Ansatz, where locality, crossing symmetry and Feynman-
diagram-like power counting are manifest is not compatible
simultaneously with both global BCJ duality on the
integrand and unitarity. On the other hand, no difficulties
are encountered when the duality requirements are loos-
ened so that they are manifest only on a spanning set of
generalized unitarity cuts. The so-constructed Yang-Mills
integrand immediately produces a corresponding gravity
integrand via the double-copy procedure.

Using results from Refs. [18,26,39], we extracted the
two-loop ultraviolet divergence from the identical-helicity
amplitude of the double-copy gravity theory. As explained
in Ref. [26], in contrast to the divergence itself, the
renormalization-scale dependence follows a universal for-
mula that depends only on the number of four-dimensional
bosonic and fermionic states and not on their spin. Further
details will be given in Ref. [39]. It would be interesting to
carry out the same analysis on the case of general polar-
izations using conventional dimensional regularization to
confirm the generality of the results.
We hope that the strategy presented here will help lead to

new constructions of multiloop (super)gravity amplitudes,
and we look forward to the new insights that they will
provide.
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