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We show how the Higgs boson mass is protected from the potentially large corrections
due to the introduction of minimal dark matter if the new physics sector is made supersymmetric.
The fermionic dark matter candidate (a 5-plet of SUð2ÞL) is accompanied by a scalar state. The weak
gauge sector is made supersymmetric, and the Higgs boson is embedded in a supersymmetric multiplet.
The remaining standard model states are nonsupersymmetric. Nonvanishing corrections to the Higgs
boson mass only appear at three-loop level, and the model is natural for dark matter masses up to
15 TeV—a value larger than the one required by the cosmological relic density. The construction
presented stands as an example of a general approach to naturalness that solves the little hierarchy
problem which arises when new physics is added beyond the standard model at an energy scale
around 10 TeV.

DOI: 10.1103/PhysRevD.93.055017

I. INTRODUCTION

Minimal dark matter (MDM) [1] is an attractive model
because the stability of the dark matter (DM) candidate is
not enforced by an additional ad hoc symmetry, and the
coupling to ordinary matter is fixed and equal to that of the
weak gauge interaction. The model contains one or more
new particles belonging to multiplets in a representation of
the weak SUð2ÞL gauge group that makes their coupling to
standard model (SM) particles by means of renormalizable
operators impossible, except for the gauge interaction itself.
A fermionic multiplet with n ¼ 5 is singled out by the
simultaneous requirements of containing a stable (neutral)
state and preserving the perturbative running of the gauge
coupling—that would be destroyed by too large a
representation.
This model suffers a (mild) problem of naturalness

[2] insofar as the mass of the DM candidate must be
around 10 TeV to satisfy the current relic abundance
constraint [3]. Such a value turns into a correction to the
Higgs boson mass roughly 1 order of magnitude larger than
its value and therefore give rise to a little hierarchy
problem.
In this work, we show how MDM can be made natural

by making the DM sector and its interaction with
the SM supersymmetric while leaving the SM itself
nonsupersymmetric.

A. Naturalness

Naturalness [4] requires quantum corrections to the
Higgs boson mass to be of the same order as the mass
itself. It is not a physical principle as long as the Higgs
boson mass is an input in the model and not a computable
parameter. It is just a requirement we add on a model to
satisfy a prejudice we entertain about the size of radiative
corrections. It is best seen as a problem of decoupling in a
theory with two separated energy scales for which we want
the low-energy parameters not to depend on those at high-
energy (i.e., no large thresholds in the effective theory).
The naturalness requirement cannot be stated in general

because it depends on the specific kind of new physics one
has introduced. It is best expressed in terms of finite
corrections without reference to cutoff dependent quantities
that render the issue moot.
In the absence of new physics the SM by itself is natural

[2,5]. When new physics is added at an energy threshold
significantly larger than the electroweak (EW) scale,
corrections proportional to such a scale and the coupling
of the new states to the Higgs boson mass appear, the
size of which require an unnatural cancellation in the
definition of the mass parameter.
For very large thresholds, a serious problemof hierarchy is

present. As shown by the example of GUT [6], this problem
can be solved by making the theory supersymmetric. For
more modest energy scales, a little hierarchy problem might
be identified and solved by a partial implementation of
supersymmetry (SUSY) that only includes the new physics
sector and the Higgs boson. This approach was recently
emphasised in [7] and it is here applied to the MDM
hierarchy problem (for a similar approach to the problem
of naturalness and DM see also [8]).
The correction to the Higgs boson mass in the MDM

model comes at the two-loop level because MDM only
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interacts with the SM particles via the SUð2ÞL gauge
bosons. It is given by
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; ð1Þ

respectively, for a Majorana ψ and a scalar ϕ DM
candidate, both with n ¼ 5 and hypercharge Y ¼ 0.
Notice that the two contributions do not cancel against
each other, not even in their nonpolynomial parts.
Naturalness would require that this correction be of the
same order as the Higgs boson mass mh. By taking
the matching scale at its natural value μ ¼ mh, we find
that the largest value of M satisfying this requirement is
1.5 TeV in the fermionic case and 4.2 TeV in the scalar case.
In Ref. [2], lower values for this limiting masses are found,
namely M ≤ 400 GeV because the matching scale is taken
to be the Planck mass. Such a choice does not seem
justified in as much as the only threshold assumed in the
model is the new states of mass M.
We thus have a little hierarchy problem because the DM

candidate must have M ¼ 10 TeV [3] in order to saturate
the cosmological relic density. Such a problem, given the
numbers involved, can be waved away by a (rather mild)
fine tuning or by increasing the number of DM candidates.
On the other hand, one can use the naturalness requirement
in an heuristic way to define an improved model.

II. THE MODEL

We embed the MDM n ¼ 5 states and the SM Higgs
boson into three chiral supermultiplets

ΦA
DM ¼ ϕA þ θ · ψA þ FAθ2; ð2Þ

Φa
Hu;d

¼ Ha
u;d þ θ · ~hau;d þ Ga

u;dθ
2; ð3Þ

where A and a are SUð2ÞL indices: ΦA
DM belongs to the

5-dimensional (real) representation of SUð2ÞL with zero
hypercharge while the two Higgs doublets Φa

Hu;d
belong to

the fundamental of SUð2ÞL with hypercharges Yu ¼ −1=2,
Yd ¼ 1=2. ψ and ϕ are, respectively, the fermionic and
scalar DM candidate. By construction, ψ is a two-
component left Weyl fermion, while ϕ is a complex scalar.
We adopt the following parametrization (before EW sym-
metry breaking) for the four neutral and two charged
degrees of freedom:

Hu ¼
� 1ffiffi

2
p ðH0cα − h0sα þ iA0sβ − iG0cβÞ

H−sβ −G−cβ

�
;

Hd ¼
� Hþcβ þGþsβ

1ffiffi
2

p ðH0sα þ h0cα þ iA0cβ þ iG0sβÞ
�
; ð4Þ

where sx ≡ sin x, cx ≡ cos x, tx ≡ tan x. In Eq. (4), α, β are
two mixing angles and the neutral h0 component is the
physical Higgs of the SM. Finally, FA and Ga

u;d are
nondynamical complex auxiliary fields, and they feature
the same SUð2ÞL transformation properties of the chiral
superfield they belong to.
The supersymmetric Lagrangian is that of the gauged

Wess-Zumino model [9]

LWZ ¼
Z

d2θd2θ½Φ†
DMe

2gVΦDM þ Φ†
Hk
e2gVΦHk

�

þ
�
1

2

Z
d2θTrðW ·WÞ þ

Z
d2θWðΦDMÞ þ H:c:

�
;

ð5Þ

and it consists of three parts. The first term in LWZ, in
which the sum over k ¼ u, d is implicit, is the usual non-
Abelian Kähler potential. The vector superfield is defined
in the adjoint representation of SUð2ÞL, VAB ¼ VαðTα

3ÞAB.
In the Cartesian basis, the generators of the adjoint
representation of SUð2ÞL are explicitly given by
ðTα

3ÞAB ¼ −iϵαAB. In the Wess-Zumino gauge, the vector
superfield is

Vα ¼ θ · ðσμθÞWα
μ þ θ2θ · λα þ θ2θ · λα þ 1

2
θ2θ2Dα; ð6Þ

where Wα
μ and λα are, respectively, the SUð2ÞL gauge

bosons and the corresponding gaugino triplet. Finally,Dα is
a nondynamical real auxiliary field. The supersymmetric
field strength is Ws ¼ −ð1=8gÞD2ðe−2gVDse2gVÞ, where s
is a spinorial index and the supersymmetric covariant
derivative is Ds ¼ ∂s − iðσμÞs_sθ_s∂μ.
The superpotential in Eq. (5) does not contain inter-

actions and is given by

WðΦDMÞ ¼
M
2
ðϵ5ÞABΦA

DMΦ
B
DM; ð7Þ

where the parameter M is the mass of the DM candidate.
The isospin invariant coupling is guaranteed in Eq. (7)
by the presence of the symmetric tensor ϵ5 realizing the
equivalence between the 5-dimensional representation
of SUð2ÞL and its conjugate. Considering the representa-
tion n of SUð2ÞL with generators Ta¼1;2;3

n , the tensor ϵn is
defined by the equivalence relation ϵnTa

nðϵnÞ−1 ¼ −ðTa
nÞ�.

If n is even, ϵn is antisymmetric; in this case (pseudo-real
representation of SUð2ÞL) the mass term in Eq. (7)
vanishes.
In components, the supersymmetric Lagrangian of the

model takes the form
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LWZ ¼ ðDμϕÞ†ðDμϕÞ −M2jϕj2 − g2

2
ðϕ†TA

5ϕÞðϕ†TA
5ϕÞ þ ψiσμðDμψÞ −

M
2
ðϵ5ÞABðψA · ψB þ ψA · ψBÞ

þ ðDμHkÞ†ðDμHkÞ −
g2

2
ðH†

kT
a
2HkÞðH†

jT
a
2HjÞ þ ~hkiσμðDμ

~hkÞ −
1

4
Wα

μνWα;μν þ λiσμðDμλÞ

−
ffiffiffi
2

p
g½ðϕ†Tα

5ψÞ · λα þ λα · ðψTα
5ϕÞ� −

ffiffiffi
2

p
g½ðH†

kT
α
2
~hkÞ · λα þ λα · ð ~hkTα

2HkÞ� − g2ðH†
kT

a
2HkÞðϕ†Ta

5ϕÞ; ð8Þ

where the ordinary SUð2ÞL covariant derivatives are Dμϕ¼∂μϕþigWα
μðTα

5ϕÞ, Dμψ¼∂μψþigWα
μðTα

5ψÞ, DμHk ¼
∂μHk þ igWα

μðTα
2HkÞ, and Dμλ ¼ ∂μλþ igWα

μðTα
3λÞ. For

the fundamental SUð2ÞL representation, we have Tα
2 ¼

σα=2, with σα¼1;2;3 the usual Pauli matrices. Thanks to the
supersymmetric structure, the model—despite the introduc-
tion of new fields—preserves its simplicity: all the coupling
are set by gauge interactions, and the only free parameter is
the mass of the chiral supermultiplet ΦDM. The fermionic
mass term in the first line of Eq. (8) is not diagonal. It can be
easily diagonalized as follows,

−
M
2
½ðψA

LÞTCðϵ5ÞABψB
L þ H:c:� ¼ −

M
2
ΨAΨA; ð9Þ

where on the lhs we just rewrote the mass term in four-
component notation while the Majorana mass eigenstates on
the rhs are defined by Ψ≡ U†ψL þ ðU†ψLÞC. The unitary
transformation matrix is implicitly defined via UTϵ5U ¼ 1,
and the charge conjugation is ψC ¼ CðψÞT .
The complete Lagrangian for the model is given by

LnMDM ¼ LSM þ LWZ −
1

2
~mλðλα · λα þ H:c:Þ

þ μðϵαβ ~hαu · ~hβd þ H:c:Þ; ð10Þ

where LSM is the (nonsupersymmetric) SM Lagrangian,
and the last term in the first line gives mass to the gauginos.
The two Higgsinos are coupled via a μ term, with ϵ≡ iσ2.

A. Physical states and their masses

The two mass parameters ~mλ and μ (taken to be real for
simplicity) are of the order of the EW scale and do not
therefore give rise to unnatural corrections to the Higgs
boson mass. By defining ~W0 ≡ λ3, ~W� ≡ ðλ1∓iλ2Þ= ffiffiffi

2
p

,
and introducing the analogous of the neutralino ~G0 ≡
ð ~W0; ~h0d; ~h

0
uÞT and chargino ~gþ ≡ ð ~Wþ; ~hþd ÞT , ~g− ≡

ð ~W−; ~h−u ÞT states, we extract from Eq. (10) the following
mass terms:

Lχ0 ¼ −
1

2
ð ~G0ÞT

0
BB@

~mλ − gv
2
sβ

gv
2
cβ

− gv
2
sβ 0 −μ

gv
2
cβ −μ 0

1
CCA ~G0 þ H:c:

≡ −
1

2
ð ~G0ÞTMχ0

~G0 þ H:c:; ð11Þ

Lχ� ¼ −
1

2
½ð~gþÞTMT ~g− þ ð~g−ÞTM~gþ� þ H:c:; ð12Þ

withM ¼ ð ~mλ gvsβ=
ffiffiffi
2

p

gvcβ=
ffiffiffi
2

p
μ

Þ. The off-diagonal entry
in M is due, after EW symmetry breaking with hHdi ¼
ð0; vsβ=

ffiffiffi
2

p ÞT , hHui ¼ ðvcβ=
ffiffiffi
2

p
; 0ÞT , to the supersymmet-

ric Yukawa interactions in Eq. (8). The neutralino mass
matrix can be diagonalized via the unitary transformation
NTMχ0N ¼ diagðm1; m2; m3Þ, and we denote the corre-

sponding mass eigenstates as ~χ0 ¼ N† ~G0. SinceMT ≠ M
(unless tβ ¼ 1) two distinct unitary transformations, V
and W, are needed for its diagonalization. We denote
the corresponding mass eigenstates as ~χþ ¼ V† ~gþ, ~χ− ¼
W† ~g−, with ~χ� ¼ ð~χ�1 ; ~χ�2 ÞT .
At the tree level, and before the EW symmetry breaking,

the scalar and fermion multiplets have the same mass M.
At one loop, SUSY preserves the degeneracy between the
multiplets, as a consequence of the nonrenormalization
theorem [10]. More explicitly, it is possible to show that the
mass renormalization induced by the one-loop diagram in
the first two rows of Fig. 1 is exactly the same for the scalar
and fermion multiplet. The (nonsupersymmetric) SM
Lagrangian introduces an explicit breaking of SUSY. All
the cancellations and properties inherent to the super-
symmetric structure of the model fail when higher-order

FIG. 1. First two rows: One-loop SUSY-preserving diagrams
involved in the renormalization of the mass M. Lower row:
Two-loop diagrams responsible—via SUSY-breaking SM
interactions—for the mass splitting between the scalar and
fermion multiplet; the gray blob represents the contribution of
nonsupersymmetric SM particles.

NATURAL SUPERSYMMETRIC MINIMAL DARK MATTER PHYSICAL REVIEW D 93, 055017 (2016)

055017-3



corrections involved nonsupersymmetric SM particles
are considered. At two loops, the mass degeneracy
between ϕA and ψA is broken, and we show in the lower
row of Fig. 1 the typical diagrams responsible for this
effect.
The size of this two-loop correction is

ΔMðϕ;ψÞ
SUSY ≃ g2

ð16π2ÞM ≃ 2.5 × 10−3M: ð13Þ

The actual value and sign of this correction depend on the
details of the two-loop computation, and in principle it can
be different for the scalar and fermion multiplet. The mass
shift ΔMðϕ;ψÞ

SUSY is of the entire multiplet—weather scalar or
fermion—and it does not introduce any split between the
single components.
A mass splitting within the components of the multiplet

is introduced (i) at one-loop by SM EW interactions [1],
(ii) at one-loop by supersymmetric interactions, and (iii) at
the tree level, after EW symmetry breaking, by the presence
of the operators ðH†

u;dT
a
2Hu;dÞðϕ†Ta

5ϕÞ in Eq. (8) [1,11].
The first correction—generated by the diagrams in the first
row in Fig. 1—does not depend on the spin, and it splits the
components of ϕA and ψA in the same way; the third
correction, on the other hand, only affects the scalar
multiplet. We have

MðQÞ
ϕ ¼ Mϕ þQ2ΔMg þ ΔMϕ

SUSY −Qðs2β − c2βÞ
g2v2

8Mϕ
;

MðQÞ
ψ ¼ Mψ þQ2ΔMg þ ΔMψ

SUSY; ð14Þ

where the electric charge Q ¼ �2;�1; 0 distinguishes the
components of the multiplets, and

ΔMg ≃ 166 MeV ð15Þ

is the splitting induced by the EW interactions; finally, as
discussed before,

Mϕ ¼ M þ ΔMðϕÞ
SUSY and Mψ ¼ M þ ΔMðψÞ

SUSY: ð16Þ

The mass splitting in Eq. (14) induced by supersymmetric
interactions—the diagrams in the second row in Fig. 1—is
given by

ΔMψ
SUSY ¼ g2M

16π2

�
1

2
ðQ2 −QÞV1kV

†
k1R

2
~χþk
ð1þ lnR2

~χþk
Þ

þ 1

2
ðQ2 þQÞW1kW

†
k1R

2
~χ−k
ð1þ lnR2

~χ−k
Þ

−Q2ðN1kN
†
k1ÞR2

kð1þ lnR2
kÞ
�
; ð17Þ

ΔMϕ
SUSY ¼ −

g2M
16π2

�
1

2
ðQ2 −QÞV1kV

†
k1R

2
~χþk
ð3 − lnR2

~χþk
Þ

þ 1

2
ðQ2 þQÞW1kW

†
k1R

2
~χ−k
ð3 − lnR2

~χ−k
Þ

−Q2ðN1kN
†
k1ÞR2

kð3 − lnR2
kÞ
�
; ð18Þ

where Ra ≡ma=M. In the square brackets, the first two
terms (last term) are (is) generated by loop exchange of
charginos (neutralinos). Notice that in the absence of EW
symmetry breaking there is no mixing in the mass
matrices Mχ0 and M; as a consequence, the neutral
and charged contributions in Eqs. (17) and (18) cancel out
each other. An analogous cancellation is valid also in the
pure EW sector, and ΔMg ¼ 0 in the unbroken EW phase.
On the other hand, after EW symmetry breaking,
ΔMϕ;ψ

SUSY ¼ 0 vanishes in the limit tβ ¼ 1 since neutral
and charged degrees of freedom are diagonalized in the
same way.
The splitting Q2ΔMg makes all the charged components

heavier than the neutral one; the mass splitting induced by
the Higgs vacuum expectation value v, on the contrary,
depends on the sign of the difference s2β − c2β, and for s2β −
c2β > 0 makes the positively (negatively) charged compo-
nents lighter (heavier) than the neutral one. The coupling in
front of the operators ðH†

u;dT
a
2Hu;dÞðϕ†Ta

5ϕÞ is fixed by
SUSY to be equal to g2, and cannot be neglected as usually
assumed in MDM-inspired scalar models. Furthermore, the
correction induced by ðH†

u;dT
a
2Hu;dÞðϕ†Ta

5ϕÞ dominates if

compared to ΔMϕ;ψ
SUSY since the latter has an extra sup-

pression of order gv=M.
As far as the scalar multiplet is concerned, therefore, in

order to avoid the presence of a charged particle as the
lightest component of the multiplet, it is necessary that
Mϕ > ðs2β − c2βÞg2v2=8ΔMg. In turn, this condition can be
recast into a constraint on β for a given Mϕ.
The model with only one chiral multiplet Φa

Hd
(with the

Higgs boson as its scalar component), while more attractive
because simpler, receives a tree-level EW correction that is
not suppressed by the mixing we have in the presence of a
second scalar doublet and therefore may produce a scalar
DM candidate with a charged component lighter than the
neutral one.
Finally, we remark that all the splittings generated

by the Higgs vacuum expectation value—hence
either ΔMg, ΔMϕ;ψ

SUSY or the splitting induced by
ðH†

u;dT
a
2Hu;dÞðϕ†Ta

5ϕÞ—depend on the temperature, since
they vanishes for T > Tc—with Tc the critical temperature
of the EW phase transition—when the SUð2ÞL symmetry is
restored. We shall return to this point when we compute the
relic density.
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B. Stability of the DM candidates

Nonrenormalizable operators could in principle open
new decay channels and make MDM unstable. In the
framework we are following, this is not possible without
introducing a new scale and therefore negate the entire
approach.
By assuming a unique threshold scale, we know the UV

completion of the SM and therefore know what non-
renormalizable operators can or cannot be present. In
our case, there is no way to construct operators leading
to DM decay like

1

M
ϕHHH�H� or

1

M2
ψLHH� ð19Þ

by means of the Lagrangian in Eq. (10), and both ϕ and ψ
are stable. Therefore, as opposed to the original MDM
model, both multiplets may contain a DM candidate (the
neutral component of ψA and ϕA), and it is their combined
abundance that has to be compared to the cosmologi-
cal bound.
As discussed in the previous section, interactions medi-

ated by nonsupersymmetric SM particles break the degen-
eracy between the multiplets ψA and ϕA. As a consequence,
the trilinear Yukawa interaction

ffiffiffi
2

p
g½ðϕ†Tα

5ψÞ · λα þ H:c:�
in Eq. (8) could lead to decays ψ → ϕλ (or ϕ → ψλ,
depending on which one between the two multiplets turns
out to be the lightest once the corrections in Eq. (13) are
properly computed) with final state gauginos. However, the
size of the typical mass splitting in Eq. (13) is far too small
to kinematically open these decay channels since the mass
of the gaugino in the final state is of the order of the
EW scale.

III. CORRECTIONS TO THE HIGGS BOSON MASS

Because of the supersymmetric structure, the first cor-
rection to the Higgs boson mass comes at three-loop level
(see Fig. 3) as opposed to the two-loop result in Eq. (2). At
two loops, the cancellation of large quadratic corrections

proportional to M2 is guaranteed by the supersymmetric
structure of the theory.
For simplicity, we illustrate the cancellation mechanism

in the limit α ¼ 0, β ¼ π=2. In this limit, there is no mixing
between the components of the two Higgs doublets, and the
SM Higgs can be identified with the real part of the neutral
component of Hd. The two-loop diagrams involved in
the cancellation are shown in Fig. 2. Since we are only
interested in the renormalization of the Higgs boson mass
induced by the MDM scale M, we compute the two-point
function of the Higgs boson setting the external momentum
to zero, and we work in the massless EW theory. Moreover
we work in the Landau gauge, where diagrams with
gauge bosons attached to external scalar lines with zero
momentum vanish. We find the following contributions
(see Fig. 2 for the corresponding notation):

iΠð1Þ
S ¼ −

ig4C5
4

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

4k22 − 4ðk1 · k2Þ=k21
Df2;0g

k1
Df1;Mg

k2
Df1;Mg

k2−k1

;

iΠð2Þ
S ¼ ig4C5

4

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

6

Df2;0g
k1

Df1;Mg
k2

;

iΠð3Þ
S ¼ ig4C5

4

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

1

Df1;0g
k1

Df1;Mg
k2

Df1;Mg
k2−k1

;

iΠð1Þ
F ¼ −

ig4C5
4

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

8k1 · k2

Df2;0g
k1

Df1;Mg
k2

Df1;Mg
k2−k1

;

iΠð2Þ
F ¼ ig4C5

4

Z
d4k1
ð2πÞ4

d4k2
ð2πÞ4

×
−4ðk1 · k2Þ=k21 þ 6k1 · k2 − 2k22 þ 6M2

Df2;0g
k1

Df1;Mg
k2

Df1;Mg
k2−k1

; ð20Þ

with C5 ≡ δABTrðTA
5T

B
5 Þ, where ðTA

RT
A
RÞij is the quadratic

Casimir operator for the generic irreducible representation

R. For the quintuplet, we find TrðTA
5T

B
5 Þ ¼ 10δAB. We used

the shorthand notation Dfn;Mg
k ≡ ðk2 −M2Þn. Notice that

the class of double-bubble corrections like the last diagram
in the second row of Fig. 2 gives a vanishing contribution
since it involves the trace in the isospin space

FIG. 2. Two-loop corrections to the Higgs boson self-energy
involved in the cancellation of the corrections proportional toM2.
For each diagram, we mark in red the contribution of the MDM
chiral multiplet.

FIG. 3. Representative diagrams giving rise to three-loop order
corrections to the Higgs boson mass proportional to M2.
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TrðTA
5T

3
5T

B
5 Þ ¼ 0. The diagram Πð2Þ

S vanishes, since the
two integrations are factorized, and the integral over k1
does not possess any scale. As far as the other diagrams
are concerned, it is possible to show—retaining only

corrections proportional to M2—that Πð1Þ
S þ Πð1Þ

F þ Πð2Þ
F ¼

−Πð3Þ
S —thus enforcing the cancellation.
The three-loop correction to the Higgs boson mass is

δm2
h ∼

g6

ð4πÞ6M
2; ð21Þ

with a coefficient in front which depends on many diagrams
(see Fig. 3) and that we take of O(1). The naturalness
constraint on the mass M is accordingly shifted by a factor
g=ð4πÞ with respect to the two-loop result given by Eq. (2)
and becomes 15 TeV for the Majorana state and 42 TeV for
the scalar.

IV. RELIC DENSITY AND DM MASS

MDM is a constrained model in which the only free
parameter is the massM of the DM candidate. This is fixed
by the thermal relic abundance—which is constrained by
Planck data [12] to be

ΩDMh2 ¼
Y∞Ms0
ρ0ch−2

¼ 0.1188� 0.0022; ð22Þ

where s0 ≃ 2.71 × 103 cm−3 and ρ0ch−2 ≃ 1.05 ×
10−5 GeV cm−3 are the present entropy and critical energy
density of the Universe while Y∞ is the asymptotical value
of the DM comoving density. In the usual freeze-out
scenario, the value of Y∞ is controlled by a system of
coupled Boltzmann equations describing, as the Universe
gradually expands and cools, the evolution of the DM
density driven by its interactions with SM particles.
In our case, we have two DM candidates, the scalar ϕ

and the fermion ψ , with the same mass M, both SUð2ÞL
multiplets with n ¼ 5; the thermally averaged cross sec-
tions for coannhilation into SM states are given by,
respectively, [1]

hσviϕ ¼ g4

64πM22n

�
3 − 4n2 þ n4 þ n2 − 1

2

�
ð23Þ

hσviψ ¼ g4

64πM22n
½2n4 þ 17n − 19�: ð24Þ

The problem reduces to the solution of two separated
Boltzmann equations for the two multiplets since the only
interactions between ϕA and ψA are those mediated by
gaugino exchange, and the phase space of these interactions
is kinematically closed if the mass splitting is neglected.
For the values of masses we will find, the freeze-out
temperature Tf ≃M=25 is above the EW phase transition

and we can neglect the mass correction in Eq. (14) induced
by the Higgs vacuum expectation value.
By solving the Boltzmann equations (Fig. 4), we find

that the relic density is saturated by the two DM states for a
value M ≃ 3 TeV of their common mass (lighter lines, see
caption). This result does not take into account the
Sommerfeld enhancement of the cross section. The
Sommerfeld enhancement is a nonrelativistic effect gen-
erated by the exchange of light force carriers between the
two annihilating DM particles [13]. In the MDM scenario,
the EW gauge bosons are the mediators responsible for this
effect [3,14]. After including this correction—which we
compute following closely [14]—we conclude that the relic
abundance Eq. (22) is saturated by a valueM ≃ 7 TeV (see
Fig. 4). Such a value is inside the naturalness limits found
in the previous section.

V. PHENOMENOLOGICAL SIGNATURES

The model requires, in addition to the DM candidates,
that gauginos and two Higgsinos be added to the SM states.
As already discussed, these states combine to form a
neutralino ~G0 and charginos ~gþ and ~g− with masses of
the order of the EW breaking scale. The neutralino does
not contain the hypercharged component and—because of
the value of its mass—it cannot be a DM candidate [15].
Searches for these states are under way at the LHC (see, for
example, [16]) as winolike chargino and neutralino pro-
duction within the minimal supersymmetric extension of
the SM.

FIG. 4. Thermal relic density of DM as a function of its massM
for the two DM components ϕ and ψ taken one at the time and
together. Darker (lighter) curves with (without) the Sommerfeld
enhancement. In the inset, the DM comoving density as a
function of the variable x ¼ MDM=T shows the freeze-out
temperature Tf .
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The scalar components of the chiral multiplets Φa
Hu;d

give rise to a two Higgs doublet model (2HDM), the
phenomenology of which is actively under study at the
LHC—primarily in the decay modes of the Higgs boson.
Limits on the parameter space can be found in the literature
(see, for instance, [17]).
The model, contrary to most SUSY models, does not

require the existence of any colored super-partner, in
particular there is no partner for the top quark.

VI. OUTLOOK

We have shown that a model with a distinctive phe-
nomenology can be defined by requiring MDM to be
natural. A partial implementation of SUSY solves the little
hierarchy problem which arises when new physics is added
beyond the SM at an energy scale around 10 TeV.
The same approach can be extended to other hierarchy

problems. First, the SM Higgs boson is protected by some
custodial symmetry (SUSY in our case) under which the
new physics sector is invariant. After the introduction of

new physics determines the energy threshold, this scale will
decide the degree of SUSY (or of whatever custodial
symmetry one is using) required within the SM particles
to make the new physics sector natural.
We thus obtains a class of telescoping models for which

a little hierarchy, like the one discussed here, requires the
introduction of only Higgsinos and weak gauginos (or
sleptons in the model of [7]). Little hierarchies originating
in weakly interacting new physics, only require weakly
interacting SUSY partners to be introduced. An intermedi-
ate hierarchy, as one generated by a threshold between 100
and 103 TeV, also requires—in addition to the states
introduced for the case of a the little hierarchy—the
presence of squarks. A large hierarchy, like that of GUT
models, requires the full supersymmetrization of the SM.
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