

A new approach to front-end electronics interfacing in the ATLAS experiment

Andrea Borga Nikhef,The Netherlands andrea.borga@nikhef.nl

On behalf of the ATLAS FELIX Developer Team

FELIX development team

ERN

- John Anderson
- Soo Ryu
- Jinlong Zhang

- Hucheng Chen
- Kai Chen
- Waihao Wu
- Francesco Lanni

- Frans Schreuder
- Andrea Borga
- Henk Boterenbrood
- Jos Vermeulen
- Mark Donszelmann
- Julia Narevicius
- Alex Roich
- Lorne Levinson

- Giovanna Lehmann
- Wainer Vandelli
 - Benedetto Gorini
- Joern Schumacher

Radboud Universit

WEIZMANN

OF SCIENCE

INSTITUTE

Outlook

- Roadmap of the ATLAS DAQ from current run until run 4
- The FrontEnd Link eXchange (FELIX) system's novelties in the readout approach
- Given Felix PC
- □ FELIX hardware development platform (FLX)
 - □ Planning for the final hardware platform
- □ FLX firmware
 - $\hfill \Box$ Including data format for high throughput detector readout
- Current test bench components
- □ FLX firmware: status
- □ FLX software: status
- Achievements and test results
- Conclusions

FrontEnd Llnk eXchange (FELIX)

Routing of multiple traffic types: physics events, detector control, configuration, calibration, monitor

SW based data processors and handlers; less custom electronics, more COTS components; flexibly upgradable (PCs, FPGAs, NICs)

Integrated Timing Trigger and Control (TTC), and LHC clock distribution

Scalable bidirectional architecture: off-detector endpoints freed from one-to-one geographical mapping of FE GBTs

* E-link: variable-width logical link on top of the GBT protocol. Can be used to logically separate different streams on a single physical link.

FELIX PC: Server PC with PCIe card (FLX)

FELIX Development Cards (FLX)

FLX-710 (FELIX)

- HiTech Global HTG-710
- Virtex-7 X690T
- PCIe Gen 3 x 8 lanes
- 2x12 bidir CXP connectors
- FMC connector

FLX-709 (MiniFELIX)

- Subset of the full FELIX functionality, intended for FE development support
- Xilinx VC-709
- Virtex-7 X690T
- PCIe Gen 3 x 8 lanes
- 4 SFP+ connectors
- FMC connector

TTCfx

- Custom FMC accepting TTC input
- Outputs TTC clock and CH A-B info
- VI:ADN2814 + CDCE62005
- V2:ADN2814 + Si5338

Ongoing development: BNL-711 (FLX-711)

- BNL is developing a PCIe card for the ATLAS LAr Calorimeter Phase-I Upgrade
 - The PCIe card will be used as the DAQ platform for the LTDB (Liquid Argon Trigger Digitizer Board) production test stand
 - Close collaboration with Nikhef, Weizmann and IRI Frankfurt (Heiko Engel) on module design for the FELIX use case
- □ Features:
 - Xilinx Kintex Ultrascale FPGA
 64 GTH transceiver (16.375 Gb/s)
 - 4 MiniPOD TX and 4 MiniPOD RX
 48 duplex optical links (14 Gb/s)
 - PCIe Gen3 x16 lanes
 - Two DDR4 SODIMM up to 16GB
 - Onboard:
 - o Clock conditioner (Si5338)
 - TTC receiver (ADN2814)
 - TTC BUSY lemo output

BNL-711 (FLX-711): status

Development of LAr PCIe card is progressing well

- Layout complete: Sep 2015
- Fabrication: early Oct 2015
- Assembly: early Nov 2015
- Testing: Nov 2015 Jan 2016
- □ Can be easily reconfigured as FLX
 - 24 GBT links and PCIe Gen3 x16 meet FELIX specs.
 - 48 GBT links can be used as TTC distributor

FLX firmware simple block diagram

GBT Wrapper

FELIX "GBT-FPGA" is based on **CERN GBT-FPGA**, with some changes:

- Ported to Xilinx Vivado
- Transceiver independent (Xilinx GTH, GTX, etc.)
- Support for quads (4 transceivers + PLLs) and a parametrized number of quads
- Run-time choice of GBT Normal (FEC) mode, GBT Wide mode, "Full mode"
 o "Full mode" is a FELIX addition: 9.6Gb/s byte stream (encoding TBD)
- Lower (fixed) latency (worst cases: Tx 57.1 ns; Rx FEC 63.2ns; Rx Wide 50.7 ns)

Input/output Interfaces: I 20-bit registers clocked at 40MHz

Central Router

High throughput detector readout

- For each E-link fixed size blocks (1 kByte) are filled with received data
- Each block has a 4-Byte **header**: E-link ID, a sequence number and a start of block symbol
- Data packets ("chunks") received can be of arbitrary length and are subdivided (typically after e.g. 8B/10B decoding) in sub-chunks as needed to fill the blocks
- Each sub-chunk has a trailer with information on its length and type
- In case of low data rates time-outs will cause incompletely filled blocks to be padded and sent (the last sub-chunk in this block is then of type "null")
- Blocks are transferred using continuous DMA (Direct Memory Access) into a large (e.g. 4 GByte) circular buffer in host PC memory
- The buffer consists of contiguous memory allocated by a dedicated driver
- The DMA is controlled with two pointers, a write pointer maintained by the DMA controller in the FPGA, and a read pointer maintained by the FELIX application

Wupper*: PCIe Engine for FELIX

 Developed for use in FELIX
 Published as OpenSource (LGPL) on OpenCores <u>http://opencores.org/project,virtex7_pcie_dma</u> PCle Engine with
 DMA interface to the
 Xilinx Virtex-7 PCle Gen3
 Integrated Block for
 PCI Express (PG023)

Xilinx AXI (ARM AMBA) Stream Interface (UG761)

MSI-X compatible interrupt controller

Applications access the engine via simple FIFOs

Register map for programmed I/O synchronized to a lower clock speed

* The person performing the act of bongelwuppen, the version from the Dutch province of Groningen of the "famous" Frisian sport Fierljeppen (canal pole vaulting) <u>https://www.youtube.com/watch?v=YP32iWoqjnQ</u>

FELIX PC: Motherboard and NIC

Supermicro motherboards, e.g.:

SuperMicro X9SRL-F

- Ix Ivy Bridge CPU, 6 cores
- 6x PCle Gen-3 slots
- I6 GB DDR3 Memory

http://www.supermicro.com/products/motherboard/Xeon/C600/X9SRL-F.cfm

SuperMicro XI0DRG-Q

- 2x Haswell CPU, up to 10 cores
- 6x PCIe Gen-3 slots
- 64 GB DDR4 Memory

http://supermicro.com/products/motherboard/Xeon/C600/X10DRG-Q.cfm

Mellanox ConnectX-3 VPI

- FDR/QDR Infiniband
- 2x10/40 GbE

http://www.mellanox.com/page/products_dyn?product_family=119&mtag=co nnectx_3_vpi

Current test bench components

- □ Server PCs
- TTC equipment

 - TTCvi,TTCoc
- □ VME SBC (Single Board Computer)
- FELIX: FLX-710
- MiniFELIX: FLX-709
- BNL GBTx chip board
- Front End Emulator: KC-705
- FELIG, FrontEnd LInk (GBT) Generator:
 - GLIB + TTC FMC

FLX firmware: status

□ FELIX (FLX-710, HTG-710)

- 8 channels with local loopback works
- Data generated by internal data generators
- Scaling to more channels ongoing
- Improving overall fitting in the FPGA
- Improving overall firmware reliability
- □ MiniFELIX (FLX-709,VC-709)
 - 4 channels with local loopback works
 - physical connectivity OK
 - Improving reliability

FLX software: status

- Growing ecosystem of low level and debugging tools
 - Board communication and control
 - Data flow control and check
 - Performance testing
- QT based GUI for various configuration and control
 - Loading emulator data in FPGA RAM works
- Defined software stack
 - Define interfaces for interoperability
 - Split development effort among software designers
- Documenting software

daqmustud@gimone:\$./fel -u 2048 -f 64 -t 8 -s 2 -Z .																	
FelixCardBuffer 1 Loophack via GBT links																	
													tors				2.3
Вι	BufSize 4194304																
2	8 (9.00	000	58					ge	nera	tor				5.5		
	0	a0	1	cd	ab	aa	0	89	0	0	ЬЬ	aa	4	0	1	2	3
	16	4	5	6	7	8	9	а	ь	с	d	e	f	10	11	12	13
	32	14	15	16	17	18	19	1a	1b	1c	1d	1e	1f	20	21	22	23
	48	24	25	26	27	28	29	2a	2b	2c	2d	2e	2f	30	31	32	33

	1	10-1	A 161 -		
	daqmustuc	J@gimone:	:\$./TU	ρ-ιπτο	
	General i	Informati	ion		
		ariou	s-carc	l info	
	Board ID		8261718		
	Card ID:		VC-709		
	FW versio	on date:	26/8/15	17:18	
	SVN versi	lon:	1966		
	Interrunt	s descu	rintors	& chan	nels
	Number of	interru	upts: 8		
	Number of	f descrip	otors: 8		
	Number of	channel	ls: 4		
1					
	Internal	PLL Lock	k : Yes		
	CDCE Loci	<	: Yes		
	CXP1 @ 24	10 MHZ	: NO !	!	
	CXP2 @ 24	10 MHZ	: NO !	!	
	EMC ADN 1	TC Stati			
			131 ON		
stud@g	jimone:\$./f	lip-info (GBT -d 1		
	vai		card s	tatus	Jes
CHANN	IEL ALIGNMEN	IT STATUS			. 2
	0 1	2 3	4	5 6	

aqmustud@gimone:\$./flip-i2c list -d 1 ard model HTG 710 witch I2C address: 0x70 HW peripheral monitor								
ist of available devices:								
evice 	Model	Switch port	Address					
LOCK_RAM	ICS8N4Q001L IDT	0:0	0хбе					
LOCK_SYS	ICS8N4Q001L IDT	1:0	0x6e					
LOCK_CXP1	IDT 8N3Q001	2:0	0хбе					
LOCK_CXP2	IDT 8N3Q001	3:0	0хбе					
MC_ADN	ADN2814 (on TTCfx FMC)	4:0	0x40					
MC_TEMP_SENSOR	TC74 (on CRORC TEST FMC	() 4:0	0x4a					
XP1_TX	AFBR-83PDZ	5:0	0x50					
XP1_RX	AFBR-83PDZ	5:0	0x54					
XP2_TX	AFBR-83PDZ	6:0	0x50					
XP2_RX	AFBR-83PDZ	6:0	0x54					
DR3-1	SRAM-MT16JTF25664HZ	7:0	0x50					
DR3-2	SRAM-MT16JTF25664HZ	7:0	0x51					

Yes

Yes

Yes

Yes

GBT

Alianed

Yes

Yes

Yes

Achievements

- **Wupper**: PCIe DMA transfers to Host memory **demonstrated**
 - Simple counter with direct connection
 - GBT Emulator through Central Router
- **CentralRouter**: E-proc based data routing **demonstrated** for 8 GBT links
- **GBTWrapper**: GBT links software calibration ("training") and monitoring
- Tested bidirectional communication from GBT Wrapper to Front-End
 - GBT Emulated data
 - TTC information (LIAs, clock)
- □ In parallel developed and tested data handling software
 - See papers at <u>DEBS</u> and <u>CHEP</u> conferences

Conclusions

- The FrontEnd LInk eXchange (FELIX) is a PC based Data Acquisition system designed for bridging custom links (GBT) to a COTS computer network
- It is designed to be flexible and highly-configurable
- Development is progressing well and according to schedule
- A scaled (sub-set of the full functionality) demonstrator had been positively reviewed in May 2015
- Support for data transfers to Front-End is to be implemented
- Scaling to more channels is to be implemented
- □ Final design review foreseen for May 2016

BACKUP

TTCfx:TTC/busy FMC mezzanine

- □ None of the development cards provide interfacing to the TTC system
- FMC mezzanine produced to recover TTC clock and data and to provide a stable reference suitable for 10G SerDes
- Input:
 - legacy TTC fibre
 - 40.079MHz oscillator
 - clock from FPGA
- Output:
 - recovered clock (x4 BC clock) and data from TTC fibre (the 80Mb/s bit stream, same Clock and Data Recovery (ADN2814) as on CERN's GLIB)
 - 3 jitter-cleaned programmable clocks (CDCE62005 as on GLIB)
 - sent to FPGA global clock pins via FMC and/or an external connector
 - BUSY out to lemo connector
- TTFfx V2
 - Limitations of the CDCE chip: phase reproducibility, awkward chip control
 - Second revision with Si5338 chip (recommended by Sophie Baron)

FLX firmware detailed block diagram

FELIX firmware: overall clocking

FLX internal data multiplexing to PCIe

to E-link buffers in PC host memory via PCIe gen 3 x8

LL_FELIX_internal_V12x

PCle throughput

- Measurements where done using a simple counter filling the PCIe FIFO
- For test purposes only : Single shot DMA transfers
- For normal operation: continuous DMA transfer is foreseen

Tools and tool-flow

Challenge: develop and maintain three platforms

- Subversion
- □ HDLWorks Ease for schematic design entry of HDL blocks
- □ Xilinx Vivado and tcl scripts
- Mentor Graphics Questasim and tcl scripts
- Code Documentation with Latex and Doxygen
- □ Python scripting and Jinja2 for Register Map to synchronize:
 - HDL register definition (VHDL)
 - Application software (C⁺⁺) and OKS (xml)
 - Documentation (tex)
- Ecosystem of low level software tools for development and debugging
- **QT** based GUIs to control and configure hardware