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I. INTRODUCTION 

The following paper is mainly intended to 
present computational results pertaining . to 
linear and nonlinear orbits in two-way scaling 
FFAG Synchrotrons. The study was initiated 
by the desire to investigate the possibilities of 
designing at CERN a two-way model for 
electrons in the region of 100 Mev final energy. 
The results are, however, presented in scaled 
units, and are therefore, by proper choice of 
scale, relevant to particles of any charge, mass 
and energy. 
Similar investigations have been carried out 

at other accelerator centers. In particular the 
MURA group in Madison, Wise, has investi
gated the same problem in great detail with 
relation to their two-way 40 Mev electron 
model.1 
Under the provision that the machines under 

investigation shall be equally able to accom
modate particles going round the machine in 
both directions along geometrically identical 
orbits, this two-way feature requires the exist
ence of an axial plane of azimuthal antisym
metry for the magnetic guide field.2 Conse
quently, only radial-sector field configurations 
come into consideration. Furthermore, pri
marily for reasons of keeping the two betatron-
oscillation frequencies under control, in order to 
avoid the multitude of nonlinear resonances, 
but also for reasons of mathematical simplicity, 
we have restricted the present study to cover 
only so-called scaling structures.3 For these 
the two betatron frequencies are left rigorously 
constant throughout the acceleration process. 
From the point of view of an rf acceleration 

by means of radially positioned accelerating 
cavities, it must be considered desirable, in 
order to avoid an unnecessarily excessive excita
tion of radial betatron oscillations by the cavity 

gap fields, that the family of equilibrium orbits 
in the machine cross the gaps perpendicularly. 
To achieve this simultaneously for both direc
tions of rotation, there must exist axial planes of 
symmetry at which the gaps must be placed. 
Furthermore, if the positioning of rf cavities 
requires the existence of straight sections, these 
will presumably have the least effect, on beta
tron frequencies and nonlinear stability limits, 
when placed at a point of symmetry in the 
field. Accordingly, all fields investigated have 
axial planes of symmetry in addition to the 
planes of antisymmetry mentioned above. In 
the cases of straight sections, these are invari
ably to be placed at the planes of symmetry. 
Finally, the existence of symmetry planes per
mits the use of greatly simplifying methods of 
calculation. 
The general radial-sector scaling accelerator 

field is defined, in polar coordinates, on the 
median plane by the axial component, 

Bx(r,θ)=B0(r/r0)kƒ(θ), (1) 
where ƒ(θ) defines the azimuthal flutter (in
volving the features of antisymmetry and 
symmetry), and the constant parameter k is the 
so-called field index. B0 and r0 are constants, 
B0 being the field at radius r0 at an azimuth θ 
for which ƒ(θ) equals unity. 
Magnet model studies performed at CERN,4 

seem to indicate that the type of flutter, for 
which the scaling requirement and the design 
tolerances are most easily met, is of purely 
sinusoidal shape. For this reason the majority 
of fields investigated have ƒ(θ) = sin Mθ, M 
being the number of magnet periods of the 
machine. However, the effect of small amounts 
of higher order harmonics is also studied, as 
well as the introduction of a small number of 
hard-edged radial field-free straight sections of 
varying length. 
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During the study a number of digital comput
er programmes have been designed. All 
computational methods and programmes are 
described in detail in a previous report.5 Most 
of these were finally compiled into a multi
purpose programme by means of which one 
may perform any of the various types of calcu
lation necessary in connection with an FFAG 
radial-sector scaling accelerator study. The 
basic equations and relations used in the pro
grammes may be found in the appendix of ref. 
(4) or in ref. (5). For further information on the 
results of the present study, the reader is 
referred to a more extensive and detailed 
CERN report which will appear shortly under 
the same title as that of the present paper. 

II. COMPUTATIONAL METHODS 

The orbital equations governing the motion 
of charged particles in the field (1) become 
independent of the field constants B0 and r0 and 
of the particle mass, charge and energy, when 
expressed in terms of the scaled variables 

ρ = r/S, ζ = z/S (2) 
with a scale factor 

S = r0( P ) 

1 

(3) S = r0( P ) 
k+1 (3) S = r0( qB0r0 ) 
k+1 (3) 

r,z being the conventional cylindrical coordi
nates, q the charge of the particle and p its 
momentum. Using the azimuthal angle θ as 
independent variable, the scaled equations of 
motion are then derivable from the Hamiltonian 

H = ±ρ[1 - (pρ, - U 1) 2-p ζ2. (4) 

Here the double sign corresponds to a motion 
in the positive or negative angular direction 
respectively, pρ, pζ denote the canonical 
conjugate momenta to ρ, ζ, and 

U1 = ρk+1 Cj,α d
2α-1ƒ(θ) 

( 
ζ )2j (5) U1 = ρk+1 Cj,α dθ2α-1 ( ρ )

2j (5) 
The coefficients Cj,α, dependent only on the 
field index, may be derived from the recursion 
formulas: 

c1,1 = - 1 
C 2 , 1 = 

k2 
C 2 , 2 = 

1 c1,1 = - 2 C 2 , 1 = 24 C 2 , 2 = 24 

Cj,1 = — 
(k + 4 - 2j)2 

cj-1,1 Cj,1 = — 2j(2j - 1) cj-1,1 

cj,α = -(k + 4 - 2j)
2CJ-1,α + Cj-1,α-1 (6) cj,α = - 2j(2j - 1) (6) 

(α = 2, 3, ... , j - 1 ) 

Cj,j = 
(-1)j (j = 3,4, 5, ...) Cj,j = (2j)! (j = 3,4, 5, ...) 

On the median plane the Hamiltonian reduces 
to 

H m = ρ(1 - pρ2)½ + f(θ) ρk+2 (7) H m = ρ(1 - pρ2)½ + k + 2 ρ
k+2 (7) 

The closed equilibrium orbit for an M-sector 
machine is described by the periodic solution 
governed by this Hamiltonian. The scaled 
equilibrium orbit will be correct for a particle of 
momentum 

p = qB0r0-k (8) 
whereafter any other orbit may be found by 
linear scaling with the factor (3). 
The simplest and most economical manner 

used to determine the equilibrium orbit is based 
on the assumed existence of symmetry and 
antisymmetry in the field flutter. Due to 
these, there will exist points of symmetry in the 
flutter function ƒ(θ) spaced by one-half magnet 
period. These points of symmetry are re
flected in the geometry of the equilibrium orbit, 
which may be defined as the median-plane orbit 
for which the canonical momentum pρ vanishes 
at the points of field symmetry. During com
putation, a succession of orbits starting with 
pρ=0 at a point of flutter symmetry is auto
matically computed through one half field 
period such that, by a method of interpolation, 
each new orbit is chosen closer to the required 
one defined by pρ = 0, also at the final half-period 
point. This method gives a rapid convergence 
towards the equilibrium orbit. The process is 
stopped when a given accuracy, usually six 
figures, is attained. 
The programme may equally be set to deter

mine, by the same method, higher order, closed, 
median-plane orbits; i.e., orbits which are 
periodic with some multiple n of the field 
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period 2π./M. Thus an nth-order closed orbit 
may be found by using the same method 
through to/2 magnet periods. 
Having successfully determined the equilib

rium orbit, the digital computer automatically 
sets about finding the two linearized betatron-
oscillation frequencies QR, Qz. This is ac
complished by solving the two pairs of linear 
equations 

x' = ± Pρ0 X ± ρ0 Px x' = ± ψ0 X ± ψ03 Px 

p'x = - (k + 1)ƒρ0kx ±  Pρ
0 
Px p'x = - (k + 1)ƒρ0kx ±  ψ0 Px 

ζ' = ± pζ (9) 

P'ζ = ρ0k(kf  Pρ0 f')ζ P'ζ = ρ0k(kf  ψ0 f')ζ 
ψ0 = (1 - P2ρ0)½ 

where ρ0, Pρ0 denote the equilibrium orbit and 
x, px the relative coordinates ρ — ρ0, ρP — ρρ0 
respectively. The equations (9) are derived by 
introducing these new coordinates in the 
Hamiltonian (4), expanding this in a power 
series in x, px,ζ, pζ and retaining only the terms 
of second order. From these equations, the 
two linear transfer matrices TR, Tz for the two 
modes of oscillation through one magnet period 
are determined, whereafter the frequencies are 
given in units of oscillations per period by 

cos (Qj 2π ) = ½ trace Tj (j = R, Z) (10) cos (Qj M ) = ½ trace Tj (j = R, Z) (10) 
The significance of the two Q-values, as basic 

design parameters, reaches further than that of 
the linearized betatron oscillations alone. As 
is well known,6 the working point (QR, Qz) 
must not be chosen too close to the set of 
dangerous higher-order intrinsic or error-in
duced resonance lines for the coupled nonlinear 
betatron oscillations defined by certain linear 
relations between the Q's. 
An arbitrary median-plane orbit will behave 

in a very complex manner when followed around 
the machine. This is due partly to the scallop 
of the equilibrium orbit to which it belongs, and 
partly to the nonlinear radial betatron oscilla
tions about this orbit. For a general off-median-plane 
orbit, matters are further com
plicated by the axial oscillations and the 

coupling between the two modes of motion. As 
is well known, the major part of the orbit 
complexity is suppressed by displaying the 
phase points as they occur, successively, at 
azimuthal positions spaced by one magnet field 
period. Viewed stroboscopically in this man
ner, only the pure betatron oscillations are left 
for observation. Thus in a ρ, pρ phase plane, 
the equilibrium orbit is displayed as a fixed 
point, and nth-order closed median-plane 
orbits as a set of n periodic points, or nth-order 
fixed points. 
Experience with digital computers seems to 

show that each set of higher-order fixed points 
lies on a corresponding set of invariant curves, 
or separatrices. For stable radial motion, these 
separatrices are closed curves whereas, for un
stable motion, they tend towards the point at 
infinity. This definition for stability is used for 
median-plane motion throughout this report. 
One must assume that, for the more com

plicated off-median plane coupled motion, there 
also exist invariants, but as these are now em
bedded in a 4-dimensional phase space they are 
impossible to detect by the simple means of 
plotting. Accordingly, a more crude definition 
is used for the 4-dimensional motion; viz., that 
an orbit is stable if it successfully traverses a 
preset number of magnet periods (usually 250). 
The stability boundaries obtained in this 
manner are surprisingly sharp, provided that 
the number of magnet periods used is not 
chosen too low. 

III. FIELD WITH SINUSOIDAL FLUTTER 
FUNCTIONS 

A. Extent of the Investigation 

As mentioned in the introduction, the fields 
most intensively studied are those having 
a purely sinusoidal flutter function f(θ) = 
sin (Mθ). The field is thus defined by only two 
basic parameters; viz., the period number M 
and the field index k. All phase-space plots 
presented pertain to the point of symmetry 
θ = 2π/M at maximum field. 
The computations have been carried out for 

values of k between 5 and 15, and M values 
between 13 to 22, as indicated by the encircled 
points in Fig. 1. The radial stability limits 
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Fig. 1 Linear betatron oscillation frequencies for sinusoidal flutters. 

have been determined for the majority of these 
cases, whereas the vertical limits, for reasons of 
time economy, only for a limited subset of cases. 

B. Linearized Oscillations 

For all values of k and M studied, both the 
radial and vertical betatron-oscillation fre
quencies QR/M and Qz/M, measured in 
betatron oscillations per magnet period, lie in 
the interval 0.2 to 0.5. Their variation with k 
for each value of M is shown on Fig. 1. On 
the figure are also shown the intrinsic reso
nance lines Q/M = ½, ⅓, ¼ and 2QZ/M+ 
QR/M = 1; Qz/M+2QR/M = 1, of which the 
latter and Qz/M = ⅓ are excited only by im
perfections in the median-plane geometry. 
One is, of course, interested in choosing an 

operating point (k,M) such as to give the largest 

possible nonlinear radial and vertical stability 
limits. In this case, higher-order resonances 
than the ones shown in Fig. 1 are of importance, 
as is shown in the next section. Since the 
betatron frequencies will, in general, decrease 
with increasing amplitude of oscillation about 
the equilibrium orbit (though in certain cases 
the betatron frequency increases initially), and 
since the lower-order resonances are the most 
dangerous, it would be expected that the operat
ing points which lie the furthest above Q/M = 
⅓ or Q/M = ¼ (provided that, if they are below 
the ⅓ resonance, they are not so near to it as to 
become unstable while Q is increasing with 
amplitude) would give the largest stability 
limits. This is borne out, approximately, by 
the results reported in the next section. 
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For certain purposes it is of interest to have 
an operating point at which QR = Qz, for in
stance, where it is intended to deal with radia
tion anti-damping by coupling the vertical and 
radial oscillations. 
It is found that the relation between k and M 

subject to this condition is very nearly linear 
and may be expressed by the empirical formula 

k ≈ 0.80M-5.0. (11) 
In view of the practical difficulty of making 

an FFAG magnet for which k is constant over 
the radial aperture, it is of interest to choose a 
value of M for which the sensitivity of Q to k 
is as low as possible. It is evident from Fig. 1 
that this sensitivity tends to decrease with in
creasing M. From the practical point of view, 
however, it becomes increasingly difficult to 
construct a magnet of a given size with a 
nutter function independent of radius as M is 
increased. Consequently, a realistic figure of 
merit for the k-sensitivity would be the 
quantity Mk(∆Q/∆k) which is plotted in Fig. 2. 
The curves indicate a preference for values of 
M between 16 and 18. 

C. Nonlinear Radial Stability Limits 

In this section the median plane orbits, as 
computed from the Hamiltonian (7), are in
vestigated for the sinusoidal fields under con-

Fig. 2 "k-sensitivity" (scaled with M ) in region Qz=QR. 

sideration. All the orbits studied start at the 
point of field maximum with the canonical 
momentum pρ = 0. Thus the orbits are dis
tinguished by only one further parameter, viz., 
the initial scaled radius ρ. 
To determine the radial stability limit or 

limiting separatrix on the ρ, pρ phase plane, we 
have used the digital computer to find the 
existing fixed points of increasing order, and 
studied their limiting separatrices. For topo
logical reasons, the limiting separatrices must 
be of one of the forms indicated, for example, by 
a set of third-order limiting fixed points in Fig. 
3. The separatrix cross-over points on the 
diagrams are the unstable fixed points, while 
the circles represent stable fixed points. On 
each diagram, the positive sense of the p-axis 
may be inverted. With a stroboscopic view at 
a point of field symmetry, as exclusively used in 
this connection, all diagrams will be symmetric 
about the ρ-axis. Hence, for odd-order limiting 

Fig. 3 Topology of third-order limiting separatrices 
a. Simple separatrix 
b. Separatrix with edge islands 
c. Separatrix with corner islands 
d.e.} Separatrix with unstable external fixed points 

f. Separatrix with external islands 
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separatrices there will always exist unstable 
fixed points on the ρ-axis, which is what our 
computer programme is capable of finding. 
This may not be so for even-order cases. 
In such cases a stroboscopic view one-half 

magnet period ahead will again yield unstable 
fixed points with pρ = 0. As is readily inferred 
from Fig. 3, each type of topology may be 
distinguished by the number of locally stable 
and unstable fixed points on the ρ-axis and their 
positions mutual, and relative, to the known 
first-order equilibrium-orbit fixed point. That 
one really has determined the limiting separa-trix 
is tested by starting an orbit slightly out
side the unstable pρ = 0 fixed point. Such an 
orbit will rapidly find itself in a region where the 
magnetic field is sufficiently strong to reverse 
the azimuthal sense of rotation in the ac
celerator. This is registered by the digital 
computer, and the orbit counted as unstable. 
The search for radial-stability limits, by this 

fixed point method, is considerably facilitated 
by the use of a table of rational fractions in 
the range 0.2 to 0.5 of interest in the present 
study. As an illustration, the linear QR/M 
in a particular case (M = 14, k = 7.4) has the 
value 0.4789. With increasing amplitude, fixed 
points of order 15,37, 31,20, etc., corresponding 
to the decreasing rational fractions, 

7/15=0.4666 17/40=0.4250 
17/37=0.4595 13/33=0.4242 
14/31=0.4516 11/26=0.4231 
9/20=0.4500 8/19=0.4210 
4/9 =0.4444 13/31=0.4194 
3/7 =0.4286 5/12=0.4167 

were searched for and determined. Of these, 
the 7th-order points (rational fraction = 3/7) 
were identified as lying on the limiting separa-trix 
by the methods outlined previously. 
In a number of cases, for all of which the 

linear QR/M lies somewhat below ⅓ the non
linear Qr/M is found to increase initially, 
moving, that is, towards ⅓, and then to de
crease, giving a double set of internal fixed 
points of the same order within the limiting 
separatrix. In such cases it is the presence of 
the ⅓ resonance that determines the motion at 
smaller amplitudes, while the ¼ resonance 
dominates the motion at larger amplitudes. 
The variation of the radial betatron-oscilla

tion frequency with amplitude is shown for 
some representative cases in Figs. 4 and 5. 

Fig. 4 Fixed point curves for M = 14. 

Fig. 5 Fixed point curves for M = 19. 

Here the value of Qr/M appropriate to each 
higher-order fixed point on the p-axis is plotted 
as a function of the normalized radial displace
ment (ρ/ρ0 —1), p being the radius at which the 
fixed point is located and ρ0 the equilibrium-orbit 
radius. The two parameters attached to 
each curve are (M, k). The case (19, 9) in 
Fig. 5 is an example of the previously mentioned 
double-fixed-point set in the region between the 
⅓ and ¼ resonances. A corresponding phenom
enon has been found for M = 22 in the region 
between the ¼ and 1/5 resonances. For these 
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cases, the radial Q is nearly constant out to very 
large amplitudes, and the radial stability limits 
are found to be exceptionally large. 
To indicate the magnitude of the region of 

radial stability, we have used the quantity 
SR = 100∆ρ/ρ0, (12) 

∆ρ being the radial extent along the ρ-axis of the 
stable region viewed stroboscopically at a point 
of field maximum symmetry. In Fig. 6, SR is 
plotted for various values of M as a function of 
the linear (zero-amplitude) QR/M. The curves 
probably have a finer structure than is apparent 
with the limited number of points available, 
with subsidiary minima at resonances of order 
higher than 4. The sharp destructive reso
nance at ⅓ and the less sharp one at ¼ are 

clearly shown, however, as are the regions be
low ⅓ and ¼ where the radial limits are ex
ceptionally wide. 
Fig. 7 shows an example of a ρ, ρρ phase plot 

(M = 18, k = 1, QR/M = 0.2885, SR = 7.03 per
cent). Here the limiting separatrix is of 7th 
order of the edge island type (Fig. 3b). 
It should perhaps be mentioned that evi

dence, due to other investigators in this field, 
seems to indicate that, for working-points in 
the neighborhood of resonances involving Qz, 
an infinitesimally small initial axial motion 
might cause instability. Hence, in such re
gions of the Q-diagram the results given here 
might be taken with some reserve. For the 
cases studied here (see sections 3D, 4C and 5), 
no such anomalies have been detected. 

Fig. 6 Radial stability limits for sinusoidal flutters. 
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Fig. 7 7th order limiting separatrix (M = 18, k =7). 
1,2 : 7th order separatrix fixed points 

3 : 7th order island fixed points 
4 : 7th order islands 
5,6 : 7th order internal fixed points 
7-13: Quasi-linear internal trajectories 

D. Nonlinear Axial Stability Limits 

In order to determine the stability limits for 
the coupled 4-dimensional motion, the more 
crude method was used of systematically run-ning-off 
orbits, with stepwise decreasing beta
tron-oscillation amplitudes, until one finally 
finds one which survives a large prechosen 
number of periods (usually 250). By repeating 
the method with smaller and smaller steps, a 
sharp stability limit could be found. 
The geometrical significance of the two 

canonical momenta, ρρ and ρζ, is that of repre
senting the angular and axial slope of the orbit 
under consideration. If one remembers that 
the orbits are invariably viewed at a point of 
field symmetry where the equilibrium orbit 
slopes vanish, it is clear that the canonical 
momenta will be fairly small in any actual 
design. For reasons of simplicity and digital-

computer-time economy, the dependence of the 
axial-stability limits on small values of the two 
initial canonical momenta has only been 
checked in a few cases, and then found to have 
no significant influence on the results. Thus, 
for the present exploratory study, it has been 
considered sufficient to set the initial momenta 
at the field maximum to zero, and introduce 
only one additional parameter for the digital 
computer runs, namely, the initial scaled axial 
coordinate ζ. The computed orbits, therefore, 
differ only in the four parameters: M, k and the 
initial ρ, ζ. 
The results may be illustrated graphically by 

the representative example shown for M = 15 in 
Fig. 8. For each value of the field index k, a 
series of ζ-limit searches, as outlined above, 
have been performed at a set of values of the 
initial ρ within the radially stable region. The 
resulting limits are indicated by the encircled 
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points on the figure. The area beneath the 
curve, drawn through these points and the ex
treme points for radial-stable motion, together 
with the symmetric image of this area with 
respect to the ρ-axis, then represents with fair 
accuracy the ρ, ζ-section of the phase space 
available for stable coupled oscillations. 
Corresponding to the quantity (12), denning 

the magnitude of the median-plane stable re
gion, we introduce here the number 

Sz = 200ρζlim/ρ0 (13) 
to indicate the degree of axial stability, ρζlim is 
then the height of the curves in Fig. 8 measured 
directly above the equilibrium-orbit scaled 
radius ρ0; ζlim does not, in general, coincide 
with the maxima of the curves in Fig. 8. 
Table 1 gives the quantity Sz for the fields 

investigated for axial oscillations. 

TABLE 1 

Sinusoidal Fields 

M k QR/M Qz/M sR Sz 

13 5.00 0.4157 0.4657 6.24 1.8 

14 5.50 0.3738 0.4305 4.44 4.2 14 
6.50 0.4131 0.3957 5.22 5.0 

14 

7.40 0.4789 0.3719 5.13 4.4 

15 5.00 0.3206 0.4486 2.14 2.8 15 
6.00 0.3458 0.4076 1.49 4.0 

15 

7.10 0.3771 0.3763 3.91 6.2 

15 

7.50 0.3902 0.3668 4.65 4.6 

15 

8.25 0.4188 0.3509 4.56 4.6 

15 

8.50 0.4305 0.3461 4.41 4.4 

16 6.00 0.3135 0.4044 3.20 5.4 16 
7.86 0.3560 0.3569 2.14 2.6 

16 

8.00 0.3595 0.3538 2.51 2.2 

16 

10.00 0.4200 0.3191 4.10 2.2 

17 8.00 0.3265 0.3520 0.82 2.0 17 
9.00 0.3470 0.3335 1.31 0.6 

18 8.00 0.3009 0.3504 6.79 0.3 

22 12.00 0.2791 0.2875 5.10 3.6 

If one compares these results with the posi
tions of the corresponding working points in 
Fig. 1, it is seen that, generally speaking, the 
axial extent of the stable region is of the same 

Fig. 8 Axial stability limits for sinusodal flutters 
(M = 15): 
1. k = 8.5 
2. k = 8.25 
3. k = 7.5 
4. k =7.1 
5. k =6.0 
6. k =5.0 

magnitude as the radial extent, and fairly 
large, for points well away from any resonance 
lines. For points in the proximity of these 
lines, one notices a corresponding reduction in 
the extent of the stability region. 

IV. INTRODUCTION OF STRAIGHT SECTIONS IN 
SINUSOIDAL FIELDS 

A. Sinusoidal Flutters with Superperiods 

In the design of a radial-sector FFAG ac
celerator, a problem of some importance is the 
insertion of a number of straight sections for the 
accelerating cavities. 
In the case of a symmetrical (two-way) ac

celerator, it is necessary to preserve the condi
tion that there shall exist at least one plane of 
antisymmetry at some azimuthal position. 
This imposes a restriction on the number of 
pole pairs, N, for a given number of gaps, n. 
If the n gaps are to be located at planes of 
symmetry, which is necessary if the orbits are 
to cross the gaps normally, there must also be n 
planes of anti-symmetry. It then follows that 
the number of magnet poles between symmetry 
planes must be odd, i.e., 2N/n = 2j'+l, j = 0, 1, 
2,... Consequently, the allowable values of N 
and n are as shown in Table 2. 
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TABLE 2 

No. of gaps Allowable no. of magnet pole pairs 
n N 

2 --- 1 3 5 7 9 

4 --- 2 6 10 14 18 

6 --- 3 19 15 21 27 

The values of N chosen for the present study 
were 14, 15, and 18, with the corresponding 
values of n = 4, 6 and 4. In the first and last 
cases, there are two superperiods around the 
magnet, and in the second case there are three. 
They are, therefore, designated Af = 2(14), 
M = 3(15) and M = 2(18), respectively, the first 
number denoting the number of true magnet 
periods—or superperiods. 
For the purpose of a preliminary study of the 

effects of straight sections of various lengths, an 
idealized field configuration was chosen, which 
has the form shown in Fig. 9. The azimuthal 
length of one magnet pole is called Y, and the 
azimuthal length of the straight section X. 
The flutter function is sinusoidal except at the 
straight sections, where it drops discontinuously 
to zero. This configuration is designated 
"hard-edge, zero-field, straight section." Some 
computations have been made on modified 
forms of this configuration, which will be 
described in subsection E. 

B. Linearized Oscillations 

Owing to the effects of integral and half-integral resonances of the superperiod structure, 
the radial and axial linear betatron-oscillation 
frequencies QR/N and Qz/N are confined to 
narrower limits than was the case with sinus
oidal fields without superperiods. Their vari
ation with k and with the ratio X/Y is shown in 
Figs. 10-12 for the three structures M = 2(18), 
2(14) and 3(15) respectively. Each curve is 
labelled with the appropriate value of X/Y, and 
the relevant integral and half-integral super-
period resonance lines are shown. 
The three sets of curves show certain similari

ties and certain much more striking dissimilari
ties. The similarities are confined to the 

Fig. 9 Hard-edge zero-field straight section. 

variation of Qz with k, as can be seen from 
Figs. 10(a), 11(a), and 12(a). In all three 
cases, the vertical focusing increases with 
the straight-section length, as does the k-
sensitivity, particularly at the lower values 
of k. For the 2(18) structure, above the 
half-integral superperiod resonance at Qz = 7, 
and for the 3(15) structure, above the integral 
superperiod resonance at Q = 6, stable vertical 
motion is obtained, but there is a marked dis
continuity in the curves at the resonance. The 
same is probably true of the 2(14) structure, but 
the region above the integral superperiod 
resonance was not studied in this case. It is in 
the radial motion that the dissimiliarities occur. 
See Figs. 10(b), 11(b), and 12(b). Whereas the 
radial focusing increases with X/Y in the 2(18) 
case, it decreases in the other two cases, which 
also show very marked differences in form. 
The reasons for these differences are not yet 
understood. In all three cases the k;-sensitivity 
increases with X/ Y towards the larger values of 
k and as the integral or half-integral resonances 
are approached, but the 2(14) case shows an 
extraordinary reversal of the sign of the k-sensitivity 
at intermediate k-values. In the 
2(18) case, it is clear that between X/Y = ¼ 
and X/Y = 2/5 , some new effect has become 
predominant, and further increases in the 
straight-section length produce a very rapid 
decrease in radial focusing and a similar increase 
in k-sensitivity. In Figs. 10(c), 11(c), and 
12(c) these effects are, of course, combined. 
It may be concluded from these results that, 

considered from the standpoint of the existence 
of stable orbits, it should be possible, in prin
ciple, to introduce straight sections of the type 
described into radial-sector magnets, but there 
is a limit to the length of the straight section 
that is permissible. The indications are that a 
higher basic periodicity is more favorable but, 
even in the M = 2(18) case, the straight sections 
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Fig. 10 Linear betatron oscillation frequencies for hard-edge zero-field straight sections: Basic period N =18; 
Superperiod M = 2. (a) Qz vs k. (b) QR vs k. (c) Qz/N vs QR/N. The fractions indicate the superperiodicity 
ratio X/Y. 
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Fig. 11 Similar to Fig. 10, but with N = 14, M = 2. 
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Fig. 12 Similar to Fig. 10 but with N = 15, M =3. 
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are not very long and the "k-sensitivity" 
rapidly becomes uncomfortably large. Even in 
the case M = 2(18), X/Y= 3/5, which has the 
largest straight section studied, a machine with 
a maximum orbit circumference of 18 meters 
would have four straight sections 30 cm wide 
at the corresponding radius; and although these 
could accommodate rf cavities, they would be 
uncomfortably short for most experimental 
purposes. 
It is true that the hard-edged type of flutter 

function used for these computations may be 
thought to be a somewhat severe representation 
of realizable superperiod fields, and that the 
conclusions may accordingly be pessimistic. 
Unfortunately, this is not borne out by the 
admittedly limited results of computations with 
modified superperiod flutters, which are sum
marized in subsection E. 
It is, of course, necessary to examine also the 

effect of superperiods on the nonlinear radial 
and vertical stability limits, and some results 
have been obtained for a limited number of 
structures. These are shown in subsection C. 

C. Nonlinear Motion 

The method of fixed-point searches, described 
in section 3C, was applied to the superperiod 
structures also, taking into account the fact that 
in this case two sets of resonances are involved, 
one pertaining to the superperiod structure and 
the other to the basic period structure. Tables 
of rational fractions were again used to predict 
the order of the resonances that would be en
countered as the nonlinear QR moved away 
from its initial, linear value. 
As an illustration, the linear QR/N in a 

particular case [M = 3(15), X/Y = l/27] has the 
value 0.3988. As the amplitude increases, the 
motion rapidly becomes nonlinear and passes 
through the 18th and 13th-order basic-period 
resonances and the 10th and 9th-order super-period 
resonances, before becoming unstable on 
the 8th-order superperiod resonance. The cor

responding rational fractions and their quo
tients are shown in Table 3. 

TABLE 3 

QR QR/N 
Super-period 
resonance 
QR/M 

Basic period 
resonance 
QR/N 

Shift of 
nonlinear 

QR 
6.0000 0.4000 1 2/5 

5.8333 0.3889 7/18 
5.7692 0.3846 5/13 
5.7000 0.3800 9/10 
5.6667 0.3778 8/9 
5.6250 0.3750 7/8 3/8 

In other cases, the betatron frequency is ob
served to traverse a number of internal super-period 
resonances before becoming unstable on 
a higher-order basic period resonance. 
Complete fixed-point determinations of the 

limiting separatrices were made in the cases 
listed in Table 4. The fixed-point curves for 
one set of cases [M = 2(18)] are given in Fig. 13. 
If the radial stability limits SR are compared 

with the values SR0 already found for the cor
responding sinusoidal fields without straight 
sections, it is apparent that the introduction of 
straight sections very rapidly reduces the size of 
the stable region, and that this effect is more 
pronounced the smaller the basic periodicity N. 
With M = 2(18), however, and x/y = 2/5 (cor
responding to a straight-section length of about 
7 percent of the orbit radius), the radial sta
bility limit is still large enough for practical 
purposes. 
The form of the fixed-point curves is essen

tially similar to that of the corresponding struc
tures without superperiods, except for the exist
ence of a much larger number of resonances. 
When the superperiodicity is weak (small 
values of X/Y), several internal resonances, 
both superperiod and basic period, may be 
traversed before the limiting separatrix is 
reached, whereas, if the superperiodicity is 
strong, the separatrix is reached at the nearest 
superperiod resonance or after traversing only 
one such resonance if this is near the linear 
QR/N. 
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Fig. 13 Fixed point curves for M =2(18): 
Curve No. X/Y K 

1 1/5 8 
2 2/5 8 
3 1/7 7 
4 1/7 7.5 
5 1/7 8 
6 1/27 7 
7 1/27 7.5 
8 1/27 8 

TABLE 4 
Radial Stability Limits for Sinusoidal Structures with 

Superperiods 

Periodicity: M =2 N = 14 

Superperiodicity strength X Field index k 
Order of limiting aeparatrix SR 

percent 
SR0 
percent y 

1/5 8 5 2.04 6.79 
2/5 8 5 0.98 6.79 
1/7 7 7 5.11 7.03 
1/7 7.5 3 3.34 
1/7 8 5 2.73 6.79 
1/27 7 7 6.68 7.03 
1/27 7.5 37 6.15 
1/27 8 5 4.56 6.79 

Periodicity: M =2 N = 14 
X K Order 

SR 
percent 

SR0 percent Y K Order 
SR 
percent 

SR0 percent 

1/12 6 11 0.39 5.28 
1/12 6.5 3 0.43 5.22 
1/25 6 3 1.73 5.28 
1/25 6.5 5 2.30 5.22 
1/25 7.5 7 0.40 5.31 

Periodicity: M =3 N =15 
X k Order SR percent SR0 

percent 
Y k Order SR percent SR0 

percent 

1/27 6.5 4 2.00 2.8 
1/27 7.5 7 2.52 4.65 
1/27 8 8 1.17 4.42 

Because of the close spacing of the super-period 
resonances, it is obvious that structures 
with appreciable superperiodicity must in
evitably have much smaller stability limits 
than the corresponding structures without 
superperiodicity. The nonlinear axial stability 
limits for this type of structure were checked in 
a very limited number of cases, the reason for 
this being the considerable computer time in
volved for superperiod fields. It was found 
that the introduction of straight sections of even 
moderate length causes a drastic reduction in 
the axial limits. For the case of an M = 3(15) 
field, with 6 gaps and a field index k = 7.5, the 
axial limit Sz was reduced from 4.6 percent 
with zero gaps to 0.25 percent with a gap of 
X/Y= 1/9 . 

D. Modified Straight-Section Configurations 

The results reported in subsections B and C 
referred to the particular "hard-edge zero-field" 
straight-section configuration described in sub
section A. To determine whether this configu
ration had an important influence on the orbits, 
or whether the main factor was the length of the 
straight sections, a partial study was made of 
certain modified configurations. 

1. Hard-edge non-zero-field configuration 

In this configuration, the field in the straight 
section is no longer zero, but some fraction, h, 
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of the maximum field. Two values of h were 
studied, namely h = 1.0 and h = 0.4. 

2. Soft-edge non-zero-field configuration 

In this configuration, the field in the straight 
section is not zero (the value h = 0.4 was used), 
and, in addition, the field was assumed to have a 
sinusoidal form in the straight section, as shown 
in Fig. 14. 

3. Hard-edge zero-field unmodified pole angle 
configuration 

In all the above configurations, the azimuthal 
length of the half-poles on either side of the 
straight section is the same as that of all the 
other half-poles in the magnet structure. It 
follows that, in order to accommodate the 
straight sections, the angles subtended by all 
the poles have to be reduced in proportion to the 
straight-section length, compared with the pole 
angles of the corresponding structure without 
superperiods. 
Straight sections could also be introduced 

without changing the pole angles except in the 
case of the poles adjacent to the straight sec
tions. The resulting configuration is then as 
shown in Fig. 15. 
In order to preserve the condition that the 

magnetic flux, through the half-poles adjacent to 
the straight sections, should be equal to that 
through the normal half-poles (i.e., that the 
shaded areas in Fig. 15 should be equal), it is 
necessary to increase the field at the edges of 
the straight section by a factor b', relative to 
the maximum field at the center of a normal 
pole, where b' will increase with the straight-section 
length. By adding or subtracting an 
appropriate number of ampere-turns, using a 
supplementary winding placed around each 
split pole, one can, with the horizontal return-
yoke structure envisaged in all these studies 

Fig. 14 Soft-edge nonzero-field straight section. 

Fig. 15 Hard-edge zero-field unmodified-pole-angle 
straight section. 

(and described in Ref. 4), make the field 
at the edges of the straight sections either 
greater, or less than, the value which would 
satisfy the condition of equal flux. That is, 
instead of the factor b', one could have a factor 
b, where the ratio β = b/b' may be greater or less 
than unity. In fact, the use of such supple
mentary windings was considered as a possible 
means of tuning the FFAG magnet described in 
Ref. 4. 

Fig. 16. Effect of straight section configuration on 
linear motion. 
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The results obtained with these modified 
configurations were confined to determinations 
of the equilibrium-orbit radius and the linear 
radial and axial betatron frequencies. A 
fairly typical example of one set of these results, 
for M = 2(18) and k = 7, is shown in Fig. 16. It 
is immediately apparent from these results that, 
contrary to what might have been expected, the 
precise configuration of the straight section has 
a more important effect than its size. The 
results for hard-edge zero-field configurations 
must therefore be treated with some reserve. 

V. FIELDS WITH NON-SINUSOIDAL FLUTTER 
FUNCTIONS 

Only a few fields with nonsinusoidal flutter 
functions of the particular type, 

ƒ(θ) = b2n-1 sin (2n - 1) Mθ (14) 
retaining the required features of both sym
metry and antisymmetry, have been investi
gated. For the actual choice of flutter function, 
we have been guided by measurements per
formed on the magnet model depicted on Figs. 
2,3 and 4 in Ref. 4. The flutter function, in this 
model, varies from nearly sinusoidal at smaller 
radii to nearly trapezoidal at larger radii (Fig. 8, 
Ref. 4). Calculations show that, whereas the 
radial betatron-oscillation frequency is almost 
unaffected by this particular change in flutter, 
the axial frequency increases as one moves to
wards the trapezoidal shape (Fig. 9, Ref. 4). 
The actual harmonic contents of the flutter 
functions used in these calculations are listed in 
Table 5, and Table 6 gives the results obtained 
for the radial and axial stability limits for 
machines of periodicity M = 14 and 15 and a 
field index of k = 6.5 and 7.0, respectively. 

TABLE 5 
Harmonic Content of Magnet Model Flutter 

Magnet Model Radius (cm) 

bj 65 80 95 100 110 

b1 1.000 1.000 1.000 1.000 1.000 
b2 0.006 0.025 0.101 0.178 0.206 
b5 -0.004 -0.004 0.010 0.021 0.030 
b7 0.008 0 0.008 -0.007 -0.019 
b9 0.001 -0.003 0.003 -0.005 -0.019 
b11 -0.003 0 0.002 -0.003 -0.006 
b13 0 002 0.002 0.004 -0.002 0.004 

TABLE 6 

Magnet Model Stability Limits 

M k 
Model 
radius 
(cm) 

QR/M Qz/M SR S z 

14 6 5 

65 0.4132 0 3962 4.87 2.8 

14 6 5 
80 0.4134 0.3981 5.06 2.8 

14 6 5 95 0.4142 0.4083 5.16 2 3 14 6 5 
100 0.4157 0.4234 5.06 1.9 

14 6 5 

110 0.4162 0.4309 5.07 1.3 

15 7.0 

65 0.3742 0.3793 3.90 3 4 

15 7.0 
80 0.3743 0.3808 3 80 3.5 

15 7.0 95 0.3749 0.3893 3.89 2 6 15 7.0 
100 0.3756 0.4014 3.90 1.8 

15 7.0 

110 0.3760 0.4071 3.80 2.0 

Like the radial frequencies, the radial sta
bility limits SR are practically equal for all 
flutters. The axial stability limit in the case of 
M = 15, k = 7.0 behaves normally and shows a 
dip around the Qz/M= 2/5 =0.4 resonance, 
whereas the case of M = 14, k = 6.5 shows an 
inexplicable anomalous behavior in this respect. 
It ought, perhaps, to be remembered that the 

calculations reported here are performed with a 
digital computer programme which utilizes 
the scaling property of the magnetic field, a 
feature which clearly is not present in the mag
net model. The results should, therefore, be 
treated with some reserve. They are only 
correct for the model field under the provision 
that the flutter function does not vary appreci
ably over the range covered by the radial os
cillations of the particles. 

VI. RADIATION LOSS 

In a high-current electron accelerator, as 
contemplated in the 100-Mev region, the radi
ated energy loss will become an important de
sign factor, of which it is consequently de
sirable to perform an accurate calculation. 
For this we have used the classical formula 

dW = µ0q2 γ4ν4 (15) dt = 6πC γ
4ν4 (15) 

valid for a single particle. In this expression, 
µ0 is the permeability of free space, c the ve
locity of light, γ = (1 — ν2/c2)-½ ν being the 
particle velocity, and K the curvature of the 
orbit at the point under consideration. For a 
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median-plane orbit, the curvature is immedi
ately given by the particle energy and the field 
(1). By introducing the scale factor (2), (3) 
and altering the independent variable from time 
t to angle θ, one arrives at the formula 
dW = µ0q2C2 γ(γ2-1)3/2 ρ2k+1(1-ρρ2)-½ƒ(θ)2 (16) dθ = 6πS γ(γ

2-1)3/2 ρ2k+1(1-ρρ2)-½ƒ(θ)2 (16) 
which may be integrated simultaneously with 
the orbital equations based on the Hamiltonian (7). 

C = 0.01533 γ (γ2 - 1 ) 3 / 2 C = 0.01533 
r0 

(γ2 - 1 ) 3 / 2 

where γ is the total- to rest-energy ratio for the 
particles considered. 
It is interesting to compare the computed 

losses with the loss ε0 = 2.96 ev/turn pertaining 
to a 100-Mev electron rotating on a circular 
orbit of radius 3 meter. One finds, in agree
ment with the results of G. Parzen7, that the 
radiation factor F = ε/ε0 rises sharply with in
creasing period number M, as demonstrated by 
the example for k = 8 shown in Fig. 18. The 
reason for this increased loss is, of course, the 

Fig. 17 Radiation loss for electrons on scalloped orbits. 
Radiation loss ε in ev/turn for periodicities M =13 to 22. 
Electron energy 100 Mev. Orbit radius 3 m. 

In Fig. 17 are given curves showing the 
energy e in electron volts, radiated per turn 
from a single 100-Mev electron moving on its 
equilibrium orbit in azimuthally sinusoidal 
fields defined by r0 = 3 meter, B0 = l Wb/m2 in 
Eq. (1) and their parameters M, k. It is seen how 
the energy loss rises with increasing M and de
creasing k. The results in Fig. 17 may be 
converted to fields defined by any other values 
of r0 and B0 and particles of any other type or 
energy by multiplying the loss read off the 
figure by the factor 

k+1√ 
B0r0 38309 

3k+2 
(17) k+1√ 

■DO'O 

3√γ2 - 1 
38309 2(k+1) (17) 

equilibrium-orbit scallop, which results in a 
larger mean curvature along the orbit than 
that of the comparable circle. 
As demonstrated in section IV, the period 

number M should be chosen as large as possible 
if straight sections are to be introduced in the 
structure with a minimum loss of phase 
stability. Taking also the radiation losses 
rising with M into account, one obviously has 
to reach a compromise on the appropriate 
choice of M. 

Fig. 18 Radiation factor for electrons on scalloped 
orbits. Radiation factor F=ε/ε0 for k = 8. Electron 
energy 100 Mev. Orbit radius 3 m. 
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VII. S U M M A R Y AND CONCLUSIONS 

Digital computation methods have been 
developed and applied to a comprehensive 
study of orbits in Two-Way Scaling FFAG 
Synchrotrons. The computations have so far 
been confined to magnets of relatively low 
periodicity and field index, such as would be 
appropriate to electron accelerators in the ener
gy range up to about 100 Mev, but the methods 
and computer programmes could be applied 
equally well to larger proton accelerators with 
higher periodicity and field index. 
The main emphasis has been on machines 

with sinusoidal field flutter functions and with
out superperiods, but a preliminary study of the 
effect of straight sections of a particular ideal
ized form has been made. The calculations in
clude linear betatron-oscillation frequencies, 
nonlinear radial and axial stability limits and 
radiation loss. 
For sinusoidal fields without superperiods, it 

is shown that the radial stability limits can be 
made large enough for practical purposes, pro
vided that the linear radial betatron frequency 
is not too close to the third-order resonance, 
and that much larger stability limits can be 
obtained, together with pseudo-linear radial 
oscillations, up to very large amplitudes by a 
proper choice of the parameters M and k. The 
axial stability limits are generally comparable 
with the radial, unless the working point lies 
near the third-order axial resonance or an 
excitable third-order coupling resonance, in 
which case the axial limit is considerably 
reduced. 
For machines with approximately the same 

linear radial betatron frequency, the radial 
stability limit decreases with increasing periodic
ity. There is some indication that the same 
tendency applies to the axial stability limits. 
Thus, if it is desired to achieve the maximum 
possible radial and axial stability limits, the 
lower values of magnet periodicity are prefer
able, subject to the restriction that the operat
ing point should be correctly situated relative 
to the third-order and sum resonances. This 
also gives the lowest radiation losses. 
On the other hand, the results obtained for 

sinusoidal flutters with superperiods indicate 
that the stability limits are appreciably reduced 

by the superperiodicity, and that this effect 
is more marked with the lower values of basic 
periodicity. For the case of magnets with 
straight sections, the operating point must be 
much more carefully chosen to avoid being too 
close to the more closely spaced superperiod 
resonances, and this consideration, together 
with the great increase of k-sensitivity with 
superperiodicity, indicates that the problem of 
magnetic-field tolerances will be made increas
ingly difficult by the insertion of straight 
sections, even of moderate length. Indeed, it 
seems possible to insert straight sections long 
enough to accommodate accelerating cavities, 
but the longer straight sections, which would be 
desirable for a pulsed inflector or for experi
mental purposes, do not seem practicable. 
It must be concluded from this that a radial-sector 

FFAG accelerator is not a particularly 
convenient device for the study of beam-stack
ing processes, as such, although it may be of 
interest for other purposes. If, furthermore, 
it is desired to stack appreciable currents of 
electrons at energies in the 100-Mev region, for 
instance, to study relativistic space-charge 
effects, the large radiation factor, which in
creases rapidly with magnet periodicity, creates 
serious problems in connection with radiation 
anti-damping and with the design of an rf 
system to replace the radiative energy loss. 
It is for these reasons, and in view of the 

immediate interest in the question of stacking 
efficiency, as such, in relation to possible appli
cations to high-energy accelerators, that the 
Accelerator Research Division at CERN has 
decided not to proceed with the construction of 
the 100-Mev two-way FFAG electron syn
chrotron described in Ref. 4, but is constructing 
instead a 2-Mev electron storage ring. 
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DISCUSSION 

K. R. SYMON: When you introduced the straight sec
tions, did you readjust the parameters so that the 
Q-values with the straight sections are in a reasonable 
part of the working-point diagram? 

N. VOGT-NILSEN: No, but we tried to cover so many 
cases that we could choose an initial point such that, 
with the straight sections, we could end up at a 
reasonable place in the diagram. 
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