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a b s t r a c t

After the LHC Run 1, the standard model (SM) of particle physics has been completed. Yet,

despite its successes, the SM has shortcomings vis-à-vis cosmological and other observa-

tions. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a

lack of direct evidence for new physics phenomena at the accelerator energy frontier. From

this state of affairs arises the need for a consistent theoretical framework in which devia-

tions from the SM predictions can be calculated and compared to precision measurements.

Such a framework should be able to comprehensively make use of all measurements in

all sectors of particle physics, including LHC Higgs measurements, past electroweak preci-

sion data, electric dipole moment, g − 2, penguins and flavor physics, neutrino scattering,

deep inelastic scattering, low-energy e+e− scattering, mass measurements, and any search

for physics beyond the SM. By simultaneously describing all existing measurements, this

framework then becomes an intermediate step, pointing us toward the next SM, and hope-

fully revealing the underlying symmetries. We review the role that the standard model

effective field theory (SMEFT) could play in this context, as a consistent, complete, and

calculable generalization of the SM in the absence of light new physics. We discuss the

relationship of the SMEFT with the existing kappa-framework for Higgs boson couplings

characterization and the use of pseudo-observables, that insulate experimental results from

refinements due to ever-improving calculations. The LHC context, as well as that of previ-

ous and future accelerators and experiments, is also addressed.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. The Higgs boson

During the LHC Run 1 a new resonance was discovered in 2012 [1,2]. That resonance, with a mass measured to be

125.09 ± 0.24 GeV [3], is a candidate to be the Higgs boson of the standard model (SM). The spin-0 nature of the resonance

is well established [4–6], all the available studies on the couplings of the new resonance conclude it to be compatible

with the Higgs boson of the SM within present precision [7,8], and, as of yet, there is no direct evidence for new physics

phenomena beyond the SM (BSM).
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Inevitably, after the LHC Run 1 results comes a need for a better understanding of the current “we haven’t seen anything

(yet)” theoretical zeitgeist. Is the SM with a 125 GeV Higgs boson the final theory, or indeed can it be? The associated

problems with the SM are known and include the neutrino masses as well as cosmological evidence for dark matter.

The discovery of a scalar resonance and the absence of direct evidence for new physics forces us to change perspectives

and to redefine the problem. In this review, the starting point is to assume quantum field theory (QFT) as the framework

with which to study the basic constituents of matter. The parameters of QFT Lagrangians describe the dynamics, something

that is at the heart of the needed change of perspective. At LEP, the dynamics were fixed by the SM Lagrangian, with the

unknowns being parameters such as the Higgs mass MH, the strong coupling constant αs(MZ), etc. [9]. In other words, at

LEP the SM was the hypothesis and bounds on MH were derived from a comparison with high-precision data. At the LHC,

after the 2012 discovery, the unknowns are deviations from the SM, given that the SM is fully specified and constrained by

experimental measurements of increasing precision and accuracy. The definition of SM deviations requires a characterization

of the underlying dynamics. Whereas (concrete) BSM models represent specific roads toward the Planck scale, it would be

of great interest to employ a (more) model-independent approach, a framework that could describe a whole class of paths

to the Planck scale.

While studies performed with limited precision may only claim the discovery of a SM-like Higgs boson, as soon as

greater precision is available, it may be possible to decipher the nature of the Higgs through the accurate determination of

its couplings [10–13].

Given the precision that was expected for LHC Run 1 results, it was natural to begin exploring the couplings using

the (original) κ -framework [14,15]. There is no need to repeat here the main argument, of splitting and scaling different

loop contributions in the amplitudes of processes mediated by Higgs bosons. The main shortcoming is that the original κ -

framework is only an intuitive language that lacks internal consistency when moving beyond leading order (LO). In parallel,

recent years have witnessed an increasing interest in Higgs effective Lagrangians and SM effective field theory (EFT); see in

particular Refs. [11,16–42]. EFTs can be used to describe the full set of deviations from the SM and therefore a better name

is certainly SMEFT, as used in Ref. [19,43–45].

It is worth noting that there is no formulation which is completely model-independent and the SMEFT, as any other

approach, is based on a given set of (well-defined) assumptions. In full generality we can distinguish a top-down approach

(model-dependent) and a bottom-up approach (with fewer assumptions).

The top-down approach is based on several steps. First one has to classify BSM models, possibly respecting custodial sym-

metry and decoupling of high mass states, then the corresponding SMEFT can be constructed, e.g. via a covariant derivative

expansion [43]. Once the SMEFT is derived one can construct the corresponding SM deviations, that may be different for

each BSM model or class of BSM models. In a recent example, Ref. [46] studied the adequateness of dim = 6 operators

to describe LHC observables for a comprehensive set of BSM models. The authors succinctly summarized their results as

“Forcing the EFT approach into a spectacular breakdown was the original aim [. . .], but to our surprise this did not happen.”

The bottom-up approach starts with the determination of a basis of dim = 6 (or higher) operators and proceeds directly

to the classification of SM deviations, possibly respecting the analytic structure of the SM amplitudes. The synthesis is that

dim = 6 operators are supposed to arise from a local Lagrangian, containing heavy degrees of freedom decoupled from the

presently-probed energy scales. Of course, the correspondence between Lagrangians and effective operators is not bijective

because different Lagrangians can give rise to the same operator. For recent developments on the classification of SMET

operators with dim > 6, see Refs. [47,48].

The change of perspective after the LHC Run 1 is equivalent to saying that we have moved from a fully predictive (SM)

phase to a “partially predictive (fitting)” one. The predictive phase is defined as follows: in any (strictly) renormalizable

theory with n parameters we need to match n data points, and the (n + 1)th calculation is a prediction, e.g. as can be done

in the SM. In the fitting (partially predictive) phase there will be (N6+N8+ · · · = ∞) renormalized Wilson coefficients to be

fitted, e.g. by measuring the SM deformations due to a single O(6) insertion. This represents a departure from the use of

a strictly renormalizable theory, with the compromise of gaining, order-by-order, the ability to explore deviations that can

only be constrained by fitting to data. As the number of parameters increases it becomes inevitable that only combinations

of the parameters can be constrained.

There is a conceptual difference between Higgs physics at the LHC, for which the UV completion is unknown, and other

scenarios where EFT techniques are applied and for which there are known UV completions. When the UV completion is

known, we consider a theory with both light and heavy particles; the Lagrangian is L(m) where m is the mass of the

heavy degree of freedom. Next, we introduce the corresponding Leff, the effective theory valid up to a scale � = m. We

renormalize the two theories, say in the MS -scheme, taking care that loop-integration and heavy limit are operations that do

not commute, and impose matching conditions among renormalized “light” one-particle irreducible (1PI) Green’s functions.

When we compare the present situation with the past an analogy can be drawn. Consider the QED Lagrangian and

complement it with dim = 6 Fermi operators eL γ μ eL eL γμ eL, etc. This EFT can be used to study the muon decay but also

νe(νμ)e scattering in the approximation of zero momentum transfer. Using data on σνle
/σνle

, one can derive predictions for

the Z couplings [49], e.g. for the ratio ge
V
/ge

A
. In principle, one could have realized the possibility of having neutral currents.

Understanding that the Yang–Mills theory could match this EFT at very low energy scales took longer [50], and pretending

to use this theory to describe the Z -lineshape is not feasible as the Z boson mass is beyond the validity of this EFT.

One could ask: would there be a way to take the Fermi theory and show how this theory would have pointed to massive

vector bosons? The answer is yes, due to unitarity violations at large energies (pure S-wave unitarity); for instance, with
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intermediate vector bosons the νe− → νe− scattering is better behaved as it is no longer a pure S-wave process. For νμe− →
νeμ− scattering, unitarity applied to the l = 0 LO partial wave requires that Ecm ≤ (π/2

√
2 GF)

1/2 ≈ 310 GeV . Furthermore,

the interaction had a well-known structure, e.g. in neutron decay, muon decay, and neutrino events, that strongly suggested

the existence of massive spin-1 particles. In hindsight, the Fermi Lagrangian could have been built from symmetries (of the

SM) only, e.g. left-handed leptons are doublets under SU(2) and flavor universality. In that case the Fermi theory contains

the only dim = 6 operator with a charged current (CC).

Retrospectively one could have written

LF = GF ψ ψ ψ ψ =
∑

i

ψp Oi ψn

[
Ci ψe Oi ψν + C′

i ψe Oi γ
5 ψν

]
+ h. c., (1)

where the Oi refer to scalar, . . . , tensor structures, and extended it to become

LF = GF ψ ψ ψ ψ + a� G2
F ψ ψ �ψ ψ + · · · (2)

add counterterms, making it possible for the theory to become predictive at the loop level.

Historically, events went differently: charged currents were measured to be flavor universal, parity violation was discov-

ered, the V-A structure detected, the SU(2) symmetry was postulated, and neutral currents (NC) predicted; finally NCs were

discovered and the SM made its success.

The SMEFT used so far is based on several assumptions: one Higgs doublet with a linear representation (for the non-

linear case see Ref. [51]), no new “light” degrees of freedom and decoupling of heavy degrees of freedom, and absence of

mass mixing of new heavy scalars with the SM Higgs doublet. Furthermore, most of the approaches present in the literature

are LO SMEFT, e.g. they include SM up to next-to-leading order (NLO) and SMEFT “contact” terms. There are two directions

for improving upon this scenario: adding dim > 6 operators without touching the SM loops and inserting dim > 4 operators

in SM loops. Ideally one should move along the diagonal direction in this space, doing both.

In Ref. [52] it was re-established that a SMEFT can provide an adequate answer for describing SM deviations beyond

LO. The direction chosen in Ref. [52] and also in Refs. [45,53] is to work with the insertion of dim = 6 operators. In this

construction, the scale � that characterizes BSM physics cannot be too small, because dim = 8 operators were neglected. But

� can also not be too large, because dim = 4 higher-order corrections may be more important than the dim = 6 interference

effects. It is worth noting that these statements do not imply an inconsistency of SMEFT. They only mean that higher-

dimensional operators and/or higher-order electroweak (EW) corrections (e.g. Ref. [54]) must also be included if one wants

to explore larger ranges of �. The general SMEFT decomposition of any amplitude,1 projected into the αs = 0 plane, reads

as follows:

A =
∞∑

n=N

gn A(4)
n +

∞∑
n=N6

n∑
l=0

∞∑
k=1

gn gl
4+2 k A

(4+2 k)
n l k

, (3)

where g is the SU(2) coupling constant, and g4+2 k = (
√

2 GF �2)
−k

. For each process, N defines the LO for dim = 4: e.g.

N = 1 for H → VV and other tree-level couplings, but N = 3 for H → γγ, a loop-induced process at LO. N6 = N for tree-level

processes and N6 = N − 2 for loop-induced processes.

Eq. (3) is fully general and, referring to the amplitude, can be used for both total cross sections and differential distribu-

tions.

Generally speaking, there is no factorization of SM higher-order terms. Therefore, reweighing the leading-order SM pre-

dictions to account for higher-order QCD and EW corrections, assuming factorization from the EFT effects, is not a procedure

that produces accurate results (see Ref. [55]).

At the LHC, the EW core is always embedded into a QCD environment, subject to large perturbative corrections and we

expect considerable progress in the “evolution” of these corrections. That said, it still makes sense to “fit” the EW core. The

suggested procedure is based on the fact that the parameterization must be as general as possible with no a-priori drop-

ping of terms. This allows to “reweight” the sub-amplitudes of Eq. (3) whenever new (differential) QCD K-factors become

available.

As far as QCD factorization is concerned let us consider the well-known example

g(p1) + g(p2) → A(pa) + B(pb) + X (p1 = zx1P1, p2 = x2P2) , (4)

where (pa + pb)
2 = Q2, τ s = Q2, and z → 1 is the soft limit

d σ
(
τ , Q2 , . . .

)
=

∫
dx1 dx2 dz fg(x1 , μF) fg(x2 , μF) δ(τ − x1x2z)d σ̂

(
z , αs ,

Q2

μ2
R

,
Q2

μ2
F

. . .

)
, (5)

where d σ̂ = d σ̂ 0 z G and

GNLO(z , αs)

∣∣∣
soft

= δ(1 − z) + αs

2 π

[
d1 D1(z) + (c0 + c1 + · · · ) δ(1 − z)

]
, Dn(z) =

[
ln

n
(1 − z)

1 − z

]
+

. (6)
1 In our metric, space-like p corresponds to positive p2. Furthermore, p4 = i p0 with p0 real for a physical four-momentum.
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The soft-approximation for QCD corrections in Eqs. (5) and (6) is well-known in the literature; see Ref. [56] for applica-

tions.

Non-universal NLO corrections (that are process-dependent) enter through the coefficient c1 and Dn(z) (plus sub-leading

terms,) imply convolution, and dominate the cross-section in the soft limit. For re-evaluation it is important to have the

answer in terms of SM deviations: this allows to “reweight” when new (differential) K-factors become available. New input

will touch only the dim = 4 components.

The rationale in building a QFT of SM deviations is not so much the numerical impact of higher orders (even if some

can be sizable) but in promoting a phenomenological tool (the κ -framework) to the full-fledged status of QFT. Another

reason for having a complete formalism is to avoid a situation where experimentalists will have to go back and “remove” a

provisional formalism from the analysis. To explain SMEFT in a nutshell, consider a process described by a SM amplitude

ASM =
n∑

i=1

A(i)
SM

, (7)

where the A(i)
SM

are gauge-invariant sub-amplitudes. In general, the same process is given by a contact term or a collection

of contact terms of dim = 6; for instance, direct coupling of H to VV(V = γ, Z, W). In order to construct the theory one has

to select a set of higher-dimensional operators and start the complete procedure of renormalization. Of course, different sets

of operators can be interchanged as long as they are closed under renormalization.

Our findings support that renormalization is best performed when using the so-called Warsaw basis, see Ref. [57]. Moving

from SM to SMEFT we obtain

ASMEFT =
n∑

i=1

κi A(i)
SM

+ g
6
κc + g

6

N∑
i=1

ai A(i)

nfc
, (8)

where g−1
6

=
√

2 GF �2 and κi = 1 + g
6

κi. The last term in Eq. (8) collects all NLO contributions that do not factorize (nfc)

and the ai are Wilson coefficients. The 
κi are linear combinations of the ai.

We conclude that Eq. (8) gives the correct generalization of the original κ -framework at the price of introducing ad-

ditional, non-factorizable, terms in the amplitude. In strict LO SMEFT and in the linear realization, only the κc contact

term is included with the following drawback: κc is non-zero but 
κi = 0. Therefore, when measuring a deviation from

the SM prediction we would find a non-zero value for κc. However, at NLO the 
κi are non-zero, leading to a (NLO)

degeneracy. The interpretation in terms of κLO
c or in terms of {κNLO

c , 
κNLO
i

} is rather different. Indeed, mapping of ex-

perimental constraints to Wilson coefficients at LO, or at NLO, should be corrected for if an inferred constraint on a

coefficient is to be used in predicting another process. For the H → γγ decay process, within LO SMEFT (middle row

of Fig. 1) only aAA = s2
θ

aφ W + c2
θ

aφ B + s
θ

c
θ

aφ WB can be “measured” and the dim = 4 part is UV-finite. To go to NLO,

as illustrated in the bottom part of Fig. 1, we introduce counterterms for fields and parameters, and a mixing among

{aφ W, aφ B, aφ WB}. With this procedure, the dim = 6 part is also rendered UV-finite. At NLO there are contributions pro-

portional to at W, at B, ab W, ab B, aφ W, aφ B, aφ WB and we derive κ parameters multiplying the dim = 4 fermionic (top-quark,

bottom-quark, etc.) and bosonic loops, as well as the non-factorizable contributions. Consider a measure of deviation from

the SM prediction written as R� = �SMEFT/�SM − 1, where � = �(H → γγ). Allowing each Wilson coefficient to have a uni-

form probability distribution in an interval In = [−n , +n], the result from sampling random values for the Wilson coefficients

and calculating R� in the LO and NLO SMEFT produces results that are substantially different. This demonstrates how the

LO and NLO procedures inherently lead to different inferences on the Wilson coefficients.

In NLO SMEFT each κ-parameter has a second index that specifies the corresponding process. One easily discovers that

there are correlations among the different κ-parameters and cross-constraints as well: this can be seen by solving the in-

version problem (c2
θ

= M2
W

/M2
Z

):


κHAZ
b − 
κHAZ

t − 
κHAA
b + 
κHAA

t = c2
θ

κHAZ

W +
(

3

2
+ 2 c2

θ

)(

κHAZ

t − 
κHAA
t

)
+

(
1

2
+ 3 c2

θ

)

κHAA

W = 0 . (9)

at φ = 1

2s2
θ

aφ D − 2 aφ� + 
κHAA
t , ab φ = − 1

2s2
θ

aφ D + 2 aφ� − 
κHAA
b ,

aφ� = 1

4s2
θ

aφ D + 1

2

κHAA

W , 2 c2
θ

aφ D = s2
θ

(

κHAZ

b − 
κHAA
b

)
. (10)

Considering decay processes, H → {F}, we define “effective” kappas

AH{F}
SMEFT

(s) = κH{F}(s)ASM(s) �H =
∑
{F}

| κH{F}(M2
H) |2 �SM

H→{F} . (11)

In writing Eq. (11) we have assumed that the Higgs may not decay to new invisible or undetectable particles. Another

important point to mention is the dependence of the effective kappas on the scale relevant for the process; that has the

consequence that rescaling couplings at the H peak is not the same thing as rescaling them off-peak [34,58]. Therefore,
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Fig. 1. Diagrams contributing to the amplitude for H → γγ in the Rξ -gauge: SM (first row), LO SMEFT (second row), and NLO SMEFT. Black circles denote

the insertion of one dim = 6 operator.
∑

• implies summing over all insertions in the diagram (vertex by vertex). For triangles with internal charge flow

(t, W±,φ±, X±) only the clockwise orientation is shown. Non-equivalent diagrams obtained by the exchange of the two photon lines are not shown. Higgs

and photon wave-function factors are not included. The Fadeev–Popov ghost fields are denoted by X.
off-shell measurements are (much) more than consistency checks on �H: observing an excess in the off-shell measurement

will be a manifestation of BSM physics, which might or might not need to be in relation with the H width.

It is worth noting that (a priori) discarding subsets of dim = 6 operators is not advisable and, as usual, approximations

should be the last step in the procedure, after full calculations are performed. The theory of SM deviations, workable to all

orders, is still in its infancy but clearly marks the irrelevance of protracted discussion of which SMEFT basis to use; a basis

is by definition closed under renormalization, and anything that is not a basis, such as many effective Lagrangians, should be

viewed with due care. With NLO SMEFT we can study Higgs couplings to very high accuracy and try to understand sources

of deviations that may appear in the data from multiple sectors. Potentially, there will be a blurred arrow in the space of

Wilson coefficients pointing the way to the UV completion of the SM, and we should simply focus the arrow.

Another important point to mention is the limit where SM deviations are set to zero. In this limit one should recover

the most accurate SM predictions. Therefore, it is certainly allowed to decompose an amplitude into form factors multi-

plying Lorentz structures (as long as the form factors have a known analytical structure) but the limit where “anomalous

couplings” vanish (see Eq. (4) of Ref. [59]) should not be interpreted as the LO value of the SM amplitude. This is to say

that a measurement that deviated from the LO SM predictions is not necessarily “anomalous”. From a constructive point of

view, it seems reasonable to require a common language in describing SM deviations, e.g. “HVV anomalous couplings” can

be easily incorporated into the more universal notion of SMEFT.

Before the LHC, when there was no measurement of the Higgs boson mass, there were two interesting scenarios in VLVL

→ VLVL longitudinal scattering: M2
W, M2

Z 	 M2
H 	 s and M2

W, M2
Z 	 s 	 M2

H. With a 125 GeV Higgs boson we analyze a new

option, M2
W

, M2
Z
, M2

H
	 s, for which the SM result for the transition matrix is

d

dt
σVLVL→VLVL

=

∣∣∣T(s, t)

∣∣∣2

16 π s2
, T0

LO = 1

16 π s

∫ 0

−s

dt TLO , T0
LO

(
W+

L W−
L → W+

L W−
L

) s→∞∼ − GFM2
H

4
√

2 π
. (12)
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As well know, anomalous couplings violate perturbative unitarity. However, one has to be careful in formulating the

problem, as the region of interest is M2
W, M2

Z, M2
H 	 s 	 �2. In this case, when s approaches �2, the SMEFT must be re-

placed by its UV completion and it makes no sense to study the limit s → ∞ in SMEFT. However, it is known that heavy

degrees of freedom may induce effects of delayed unitarity cancellation [60] in the intermediate region. These effects could

be detectable in vector boson scattering if there is enough room between MH and the scale of BSM physics. We derive

T0
SM+SMEFT ∼

2∑
n=0

Tn (GF s)
n
. (13)

As expected, the SM part contributes to the constant term, while dim = 6 operators have positive powers of s (up to a

power of two). The leading behavior is controlled by the Oφ WB = �† τ a � F
μν
a F0

μν operator. Delayed unitarity cancellations

might very well be the best window for detecting BSM physics.

2. Not just the LHC Higgs

In our quest for a UV completion of the SM we cannot neglect the sensitivity of electroweak precision data (EWPD).

By its general nature, the SMEFT is not confined to describe Higgs couplings and their SM deviations: it can be used to

reformulate the constraints from EWPD and to analyze the whole set of processes measurable at LHC and future colliders,

such as single and multiple gauge boson production, Drell-Yan physics, associated production of gauge bosons and jets, triple

gauge coupling searches, MW, asymmetries such as AFB, extraction of sin 2θW, etc. Here we present a few examples of EWPD

evaluated in NLO SMEFT.

2.1. αQED at the mass of the Z

If we neglect loop-generated (LG) operators [61] in loops, the following result holds for vacuum polarization:

�(dim=6)
AA

(0) = −8 (c2
θ
/s2

θ
) aφ D �(dim=4)

AA
(0) . (14)

One of the key ingredients in computing precision (pseudo-)observables is αQED at the mass of the Z, defined by

α(MZ) = α(0)

1 − 
α(5)(MZ) − 
αt(MZ) − 
αααs

t (MZ)
, (15)


α(5)(MZ) = 
αl(MZ) + 
α(5)
had

(MZ) . (16)

The numerical impact of the different corrections is


α(5)
had

(MZ) = 0.0280398,


αl(MZ) = 0.0314976,


αt(MZ) ≈ [−0.62 , −0.55] × 10−4
,


αααs

t (MZ) ≈ [−0.114 , −0.095] × 10−4
.

The effect of the SMEFT is equivalent to multiply 
αl,t(MZ) by 1 − κα, where

κα = 8 g
6
(c2

θ
/s2

θ
) aφ D = 0.188 aφ D for � = 3˜TeV . (17)

Therefore, | κα 
αt |≈| 
αααs
t |.

2.2. The ρ -parameter

Consider the following decomposition of the gauge-boson self-energies (see Ref. [62]):

SWW = g2

16 π2
�WW , SZZ = g2

16 π2 c2
θ

(
�33 − 2 s2

θ
�3Q − s4

θ
�AA s

)
,

�F = �WW(0) − Re �33(M2
Z ) + Re �3Q (M2

Z) (18)

and define ρ−1 = 1 + GF

2
√

2 π2
�F = 0.99490; 
ρ depends on aφ D, aφ�, aφf, and a(1,3)

φf
(with f = l, u, d,) when considering

only potentially-tree-generated (PTG) operators [61]. The leading term, that should not be used for accurate predictions, is


ρ = M2
t

[
κρ 
ρ(4) + g

6

∑
i


ρ(6)
i

ai

]
, κρ = 1 + g

6

11

[
7

6
aφ D + 28 (a(1)

φq
+ a(3)

φq
) − 20 aφt

]
, (19)

where ai = aφ D, aφt, a(1,3)
φq

. The explicit form for the dim = 6 corrections, 
ρ(6)
i

, can be found in Ref. [52].
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2.3. The W mass

Working in the α -scheme we can predict MW [62]. The solution is

M2
W

M2
Z

= ĉ2
θ

+ α

π
Re

{(
1 − 1

2
g

6
aφ D

)

(4)

B
(MW) +

∑
gen

[(
1 + 4 g

6
a(3)
φ l

)

(4)

l
(MW)

+
(

1 + 4 g
6
a(3)
φ q

)

(4)

q (MW)
]

+ g
6

[

(6)

B
(MW) +

∑
gen

(

(6)

l
(MW) + 
(6)

q (MW)
)]}

, (20)

where 
(4,6)
i

(with i = l, q, and B) are the dim = 4, 6 corrections due to leptons, quarks, and bosons. Their explicit expres-

sions can be found in Ref. [52]. Furthermore, we have introduced the LO solution (in the α -scheme) for the weak-mixing

angle:

ŝ2
θ

= 1

2

[
1 −

√
1 − 4

π α√
2 GF M2

Z

]
. (21)

The expansion can be improved when working within the SM (dim = 4), e.g. by expanding in powers of α(MZ).

2.4. Dijet data

In the Warsaw basis [57] there are two distinct sets of dim = 6 operators: dim = 6 four-fermion operators (Table 3 in

Ref. [57]) and other dim = 6 operators (Table 2 in Ref. [57]). The first set is relevant for (a) NLO SMEFT predictions involving

processes with external fermions (e.g. H → bb, Z → ff, etc.) and for (b) processes dominated by QCD interactions, such as

dijet distributions, etc. In the first case, four-fermion operators modify the fermion self-energy, contributing to the fermion

mass renormalization and to the fermion wave-function factor, and any �ff vertex (� = H, Z and W). Alternatively, this set

of operators is relevant in probing the SM with dijets, e.g. in the study of angular distributions of dijets in the process pp →
jj, see Ref. [63]. The relevant partonic processes are uu → uu, dd → dd, and ud → ud. It is worth noting that operators such

as (qL γ μ qL)
2

are PTG and their Wilson coefficients are not necessarily suppressed by the loop factor 1/(16 π2), which might

be important when considering strongly-coupled BSM physics. At the moment, NLO SMEFT predictions for dijet production

are not available.

2.5. Flavor physics

Searches for BSM physics in flavor observables have been interpreted in terms of an effective Hamiltonian description

using dim = 6 operators [64]. The usage of SMEFT, instead of an effective Lagragian or Hamiltonian, would allow to have a

consistent and comprehensive way to also incorporate any observed deviations from the SM in flavor physics observables.

2.6. Lepton dipole operators

The Wilson coefficients al W, al B, and a(3)
lequ

(see Tables 2 and 3 of Ref. [57]) give a LO contribution to remarkably clean

windows to BSM physics, namely the μ → e + γ decay, the anomalous magnetic moment of the muon, and to the electric

dipole moment of the electron (see Ref. [21]). The NLO calculation is presently not available and will be useful for future

precision studies.

2.7. Other examples

Other processes that can be treated within a SMEFT framework are: top pair production [65,66], top-quark flavor-

changing interactions [67], neutral triple gauge boson interactions [68], Higgs boson plus jet production [69], and boosted

Higgs boson production [70].

2.8. Electroweak precision data

There are several ways to incorporate EWPD. So far, the most common option has been to reduce (a priori) the number

of dim = 6 operators considered. Open questions regarding this procedure are [71]: should one fit one κ at a time? Should

one fit first to the EWPD and then to H observables? A combination of both? The SMEFT is the framework and we are

just at the beginning of a new phase that should witness the consolidation of a “common language” between the theory

and experimental communities, linking together many different LHC and non-LHC analyses. In any case, it is essential that

the derivation of constraints is done in a consistent and basis-independent manner [20]. A recent analysis [72] reaches

conclusions that differ from the usual claim, namely that it is not justified to set individual Wilson coefficients to zero in

the analysis of LHC data as an attempt to incorporate pre-LHC (EWPD) data.
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3. The strategy: from the multi-pole expansion to pseudo-observables to kappas

Concerning the κ -framework, we can say that the κ -parameters are easy to understand in terms of how they change

cross sections and partial decay widths. Extending the framework should be seen as expressing the κ parameters in terms

of SMEFT coefficients. One question that remains to be answered is the following: could we use and translate part of the

LEP language, e.g. that of pseudo-observables (PO), to recast SMEFT parameters into inclusive POs?

What are POs? To be concise we could say that what the experimenters do is to collapse (and/or transform) some “pri-

mordial quantities” (such as the number of observed events in some pre-defined set-up) into some “secondary quantities”

which we feel that are closer to the theoretical description of the phenomena. How were POs defined at LEP? We will give

one example: within the context of the SM, fiducial observables (FO) at LEP are described in terms of some set of amplitudes

and cross sections:

ASM = Aγ + AZ + non-fact., σ
(
ŝ
)

=
∫

dzHin

(
z, ŝ

)
Hfin

(
z, ŝ

)
σ̂
(
z, ŝ

)
, (22)

where Hin, fin are QED/QCD radiators. Once the amplitude, dressed by the weak loop corrections, is given we use the fact

that in the SM there are several effects, such as the imaginary parts or the γ–Z interference or the pure QED background,

that have a negligible influence on the line shape. Therefore, POs are determined by fitting FOs but some ingredients are

still taken from the SM, making the model-independent results dependent upon the SM prediction.

In this way, the exact (de-convoluted) cross-section is successively reduced to a Z-resonance. It is a modification of a

pure Breit–Wigner resonance because of the s -dependent width:

σff(s) = σ ff
0

s2 �2
Z(

s − M2
Z

)2 + s2 �2
Z
/M2

Z

σ ff
0 = 12 π

M2
Z

�e �f

�2
Z

. (23)

The partial widths are computed by including all we know about loop corrections. One needs to specify MZ and the

(remaining) relevant SM parameters for the SM-complement. For instance, the explicit formulae for the Zff vertex are

ρ f
Z γ μ

[(
I(3)
f

+ i aL

)
γ+ − 2 Qf κ

f
Z sin

2 θ + i aQ

]
= γ μ

(
Gf

V + Gf
A γ 5

)
, (24)

where γ+ = 1 + γ 5, and aQ,L are the SM imaginary parts. By definition, the total and partial widths of the Z boson include

also QED and QCD corrections.

From LEP to LHC, does history repeat itself? Why should it? It should because POs are a platform between realistic ob-

servables and theory parameters, allowing experimentalists and theorists to meet halfway between; e.g. theorists do not

have to run full simulation and reconstruction and experimentalists do not need to fully unfold to model-dependent param-

eter spaces.

Clearly, the LHC is not LEP and there are many differences. As a consequence, we face new problems, e.g. off-shell LHC

physics is not simple and resonant/non-resonant are perfectly tied together, posing severe questions of gauge invariance.

Despite inherent, albeit technical, difficulties the next job for the LHC is the high-precision study of SM-deviations; this

will require several steps. For each process, one can write down the SMEFT amplitude, both for resonant and non-resonant

parts and compute fiducial observables. Then, express the resonant part as a function of POs without altering the total,

something different from the strategy adopted at LEP. The SM non-resonant part also changes and cannot be subtracted.

At this point, conventionally-defined POs can be fit to data, and later interpreted in terms of SMEFT Wilson coefficients (or

BSM Lagrangian parameters).

In order to define POs at the LHC we need various ingredients [73], e.g. multi-pole expansion (MPE), see Refs. [74,75],

and phase-space factorization. In any process, the residues of the poles (starting from maximal degree) are gauge invariant

quantities, see Ref. [76]. The non-resonant part of the amplitude is a gauge-invariant, multivariate, function. That is to say

that the residue of the resonant poles can be POs by themselves and expressing them in terms of other objects (e.g. SMEFT

Wilson coefficients) is an operation that can be postponed to an interpretation step. The end of the chain, when no poles are

left, requires an (almost) model-independent SMEFT or model-dependent BSM description; numerically speaking, it depends

on the sensitivity of the measurements to the non-resonant part.

The MPE has a dual role: as we mentioned, poles and their residues are intimately related to the gauge-invariant splitting

of the amplitude (Nielsen identities); residues of poles (eventually after integration over other variables) can be interpreted

as POs, something that requires factorization of the amplitude squared. However, gauge-invariant splitting is not the same as

“factorization” of the process into sub-processes; indeed phase-space factorization requires the pole to be inside the physical

region

|
|2 = 1(
s − M2

)2 + �2 M2
= π

M �
δ
(
s − M2

)
+ PV

[
1(

s − M2
)2

]
,

d�n(P, p1 . . . pn) = 1

2 π
dQ2 d�n−( j+1)

(
P, Q, pj+1 . . . pn

)
d� j

(
Q, p1 . . . pj

)
. (25)

Here PV denotes the principal value (understood as a distribution, see Ref. [77]). To “complete” the decay (d�j) we need

the δ -function in Eq. (25). We can say that the δ -part of the resonant propagator opens the corresponding line and allows



A. David, G. Passarino / Reviews in Physics 1 (2016) 13–28 21

Fig. 2. Pseudo-observables for the triple-resonant (left) and double-resonant (right) parts of the qq → f1f1f2f2 j j process at NLO. Each of the five different

colors corresponds to a PO and the R blobs correspond to the cuts induced by the (resonant) δ -part of the propagator, shown in Eq. (25). (For interpretation

of the references to color in this figure, the reader is referred to the web version of this article.)
us to define POs. This is not the case for t -channel propagators, which cannot be cut. Consider the process qq → f1f1f2f2 j j:

given the structure of the resonant poles we can define different POs, e.g.

σ (qq → f̄1f1f̄2f2 j j)
PO�−→ σ (qq → H j j) Br(H → Zf̄1f1) Br(Z → f̄2f2) ,

σ (qq → f̄1f1f̄2f2 j j)
PO�−→ σ (qq → ZZ j j) Br(Z → f̄1f1) Br(Z → f̄2f2) . (26)

These two possibilities are illustrated in Fig. 2. There are fine points to be considered when factorizing a process into

“physical” sub-processes. Consider an amplitude that can be factorized as follows:

A = A(1)
μ 
μν(p)A(2)

ν , (27)

where 
μν is the propagator for a spin-1 resonance. We would like to replace


μν → 1

s − sc

∑
λ

εμ(p, λ) ε∗
ν (p, λ) , (28)

where sc is the complex pole and εμ are the spin-1 polarization vectors. What we obtain is

| A |2= 1

| s − sc |2

∣∣∣[A(1) · ε
][

A(2) · ε∗
] ∣∣∣2

(29)

However, extracting the δ from the propagator does not necessarily factorize the phase space, e.g. we do not find back

the needed form,

∑
λ

∣∣∣A(1) · ε(p, λ)

∣∣∣2 ∑
σ

∣∣∣A(2) · ε(p, σ )

∣∣∣2

. (30)

Is there a solution? Yes, if and only if cuts are not introduced. In that case the interference terms between different

helicities oscillate over the phase space and drop out, e.g. we achieve factorization, see Refs. [78]. Furthermore, the MPE

should be understood as an “asymptotic expansion”, see Refs. [77,79], not as a narrow-width approximation (NWA). The

phase space decomposition is obtained by using the two parts in the propagator expansion of Eq. (25): the δ -term is what

we need to reconstruct POs, the PV-term gives the remainder, and POs are extracted without making any approximation.

It is worth noting that in extracting pseudo-observables, analytic continuation (of on-shell masses into complex poles) is

performed only after integrating over residual variables [80].

The MPE returns Green’s functions in well-defined kinematic limits, e.g. residues of the poles after extracting the parts

which are one-particle-reducible. These residues can then be computed within SMEFT (or any BSM model) and expressed

in terms of Wilson coefficients (or BSM Lagrangian parameters), see Ref. [74].

We can illustrate the MPE-PO connection by using a simple but non-trivial example: the Dalitz decay of the Higgs boson,

see Ref. [81]. Consider the process

H(P) → f̄(p1) + f(p2) + γ(p3) , (31)

and introduce invariants sH = −P2, s = −(p1 + p2)2
, and propagators 
A(i) = 1/si and 
Z(i) = 1/(si − sZ). With sH = μ2

H
−

i μH γH we denote the H complex pole, etc.. In the limit of mf → 0, the total amplitude for process Eq. (31) is given by the

sum of three contributions: Z -resonant, A -resonant, and non-resonant,

A
(
H → f̄fγ

)
=

[
A

μ
Z (sH , s)
Z(s) + A

μ
A (sH , s)
A(s)

]
eμ(p3, l) + ANR , (32)
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where eμ is the photon polarization vector. The two resonant components are given by

A
μ
V (sH , s) = THAV(sH , s) T

μ
ν (q , p3) JνV f(q ; p1, p2), (33)

where J
μ
V f

is the V-fermion (f) current, Tμν(k1 , k2) = k1 · k2 δμν − kν
1

k
μ
2

, q = p1 + p2, and V = A, Z. Having the full amplitude,

we start the MPE according to

THAZ(sH , s) = THAZ(sH , sZ) + (s − sZ) T (1)
HAZ(sH , s) etc., (34)

and obtain the following result:

A
(
H → ffγ

)
= Tμν(q , p3)

[
THAZ(sH , sZ)
Z(s) JνZ f(q ; p1, p2) + THAA(sH , 0)
A(s) JνA f(q ; p1, p2)

+ T (1)
HAZ(sH , s) JνZ f(q ; p1, p2) + T (1)

HAA(sH , s) JνA f(q ; p1, p2)

]
eμ(p3, l) + ANR (35)

It is easy to verify that∑
λ=0 , ±1

eμ(q , λ) e∗
ν (q , λ) = δμν + 1

s
qμ qν , q · q = −s . (36)

Consider now the single-resonant, Z, part

ASR ; AZ = THAZ(sH , sZ) Tμν(q , p3)
Z(s) JνZ f(q ; p1, p2) eμ(p3, l) (37)

and introduce

Ei(q) = J
μ
Z f(q ; p1, p2) e∗

μ(q, i) , Pμ, i(q) = THAZ(sH , sZ) Tμν(q , p3) eν (q, i) . (38)

Squaring and summing over spins gives

∑
spin

∣∣∣ASR ; AZ

∣∣∣2

= Pμ, i(q)
[

P
μ
j
(q)

]†

Ei(q) E†
j
(q)

∣∣∣
Z(s)

∣∣∣2

, (39)

instead of what is expected for a factorized term, namely

∑
spin

∣∣∣Afc
SR ; AZ

∣∣∣2

= 1

3

∑
i j

Pμ, i(q)
[

P
μ
i
(q)

]† ∣∣∣E j(q)

∣∣∣2 ∣∣∣
Z(s)

∣∣∣2

. (40)

The result in Eq. (40) is what we need to define the relevant PO, namely �(H → Zγ). Derivation continues by writing

�SR

(
H → f̄fγ

)
= 1

2 MH

1

(2 π)5

∫
dPS1→3

∑
spin

[∣∣∣Afc
SR ; AZ

∣∣∣2

+ 
ASR ; AZ

]
,

where |ASR ; AZ|2 = |Afc
SR ; AZ

|2 + 
ASR ; AZ. Let us now turn to the phase-space integral for the process in Eq. (31). With

P2 = −M2
H, we introduce the Mandelstam variables: s = −(P − p3)2 = −(p1 + p2)2

, t = −(P − p1)2 = −(p2 + p3)2
, and u =

−(P − p2)2 = −(p1 + p3)2
, such that s + t + u = M2

H. Then consider the n-dimensional integral

�n(s , t) =
∫ ∏

i

dn pi θ (p0
i ) δ(p2

i ) δn(P −
∑

i

pi) δ((P − p3)
2 + s) δ((p2 + p3)

2 + t) , (41)

that is related to the phase-space integral by∫
dPS1→3 =

∫ +∞

−∞
dsdt�n(s , t) . (42)

Using Eq. (42) as well as 0 ≤ s ≤ M2
H, 0 ≤ t ≤ M2

H, and 0 ≤ s + t ≤ M2
H, we can write

�SR(H → ffγ) = 1

2
MH

5 1

(2 π)5

∫ 1

0

dxs

∫ 1−xs

0

dxt �4(xs , xt )
∑

spin

[∣∣∣Afc
SR ; AZ

∣∣∣2

+ 
ASR ; AZ

]
, (43)

where we have introduced scaled variables, s = xs M2
H
, etc.

It is easily seen that 
ASR ; AZ vanishes after integration over 0 ≤ x ≤ 1, but this is not the case if cuts are introduced.

This result is an explicit example of a general proof given in Ref. [78]. We therefore derive the result in the extrapolated

scenario. To summarize the steps, we have the following:

The Z single-resonant amplitude: This is given by

THAZ(sH , sZ) Tμν(q , p3) eν (p3 , l) δμ
α JαZ f(p ; q, k)
Z(s) →∑

THAZ(sH , sZ) Tμν(q , p3) eν (p3 , l) eμ(q , i)
[

eα(q , i)
]†

JαZ f(p ; q, k)
Z(s) . (44)
i
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The fully extrapolated scenario: This allows to replace the (squared) S -matrix element with

∑
i j

∣∣∣THAZ(sH , sZ) Tμν(q , p3) eν (p3 , j) eμ(q , i)

∣∣∣2 ∣∣∣
Z(s)

∣∣∣2 1

3

∑
l

∣∣∣eα(q , l) JαZ f(p ; q, k)

∣∣∣2

. (45)

At this point, if cuts are introduced there is an extra contribution.

The decomposition of the resonant part: We obtain

�SR

(
H → f̄fγ

)
= 1

16

1

(2 π)5

π2

M2
H

∫ 1

0

dxs

∫ 1−xs

0

dxt

∑
i j

∣∣∣SH→Zγ

∣∣∣2 1

3

∑
l

∣∣∣SZ→f̄f

∣∣∣2 ∣∣∣
Z(s)

∣∣∣2

, (46)

where the scaled propagator is 
Z(s) = 1/(xs − sZ/M2
H
). The integrand does not depend on xt and we can use∫ 1−xs

0

dxt = 1 − xs ,

∫ 1

0

xn
s

∣∣∣
Z(s)

∣∣∣2

= π

μZγZ

δ

(
xs − μ2

Z

M2
H

)
+ reg. part (47)

We also introduce

Fproc(sZ , s) =
∑

spin

∣∣∣Sproc

∣∣∣2

. (48)

The reason for the dependence with s in Eq. (48) is due to kinematical factors. This is to say that the kinematic is real

and no approximation is made.

The PO definition: At this point the POs may be defined as

�PO(H → Zγ) = 1

16 π

1

MH

(
1 − μ2

Z

M2
H

)
FH→Zγ

(
sZ , μ2

Z

)
, �PO

(
Z → f̄f

)
= 1

48 π

1

μZ

F
Z→f̄f

(
sZ , μ2

Z

)
. (49)

The final result: The final result can be expressed as

�SR

(
H → f̄fγ

)
= 1

2
�PO(H → Zγ)

1

γZ

�PO

(
Z → f̄f

)
+ remainder . (50)

In the narrow-width approximation the remainder is neglected; we keep it in our formulation where the goal is to define

POs without making approximations. Fig. 3 illustrates the MPE of the H → γff process as described above.

We can repeat the question: what are POs? The conclusion is that residues of resonant poles, κ -parameters, and Wilson

coefficients are different layers of POs. The layer closest to theory refers to Wilson coefficients or non-SM parameters in

BSM models, such as α, β , Msb, etc. in two-Higgs-doublet models. There is then a layer using kappas, an intermediate

layer defined by residues that is similar to ge
V A

at LEP, and a layer closer to experiment that is similar to �(Z → ff) at LEP.

However, while �(Z → ff) can be defined, �(H → ZZ) cannot because not all three particles can be on-shell simultaneously;

in other words, POs are defined by convention, but they cannot violate kinematics.

One has to be careful to not confuse the residue of the two Z poles in the H → 4 f amplitude (needed for a question of

gauge invariance) with a partial decay width. The crucial step is shown in Eq. (25): let sV be the complex pole for a particle

V, parametrized as sV = μ2
V − i μVγV. Consider the following integral

I(a , b , sV) =
∫ b

a

ds
1

| s − sV |2
=

∫ b

a

ds
1

(s − μ2
V
)2 + μ2

V
γ 2

V

. (51)

From Ref. [82] we obtain

I(a , b , sV) = π

(A λ)
1/2

θ (X ) θ (1 − X ) + Ireg(a , b , sV) ,

Ireg(a , b , sV) = −1

2

∑
l=1,2

∣∣∣Xl

∣∣∣2 ∫ 1

0

dx x−1/2
(
A X2

l + λ x
)−1 = − 1

A

∑
l=1,2

2F1

(
1 ,

1

2
; 3

2
; − λ

AX2
l

)
,

2F1

(
1 ,

1

2
; 3

2
; −z2

)
= 1

z
arctan z , (52)

with parameters

A = b − a , X = μ2
V − a

b − a
, λ = μ2

Vγ
2

V

b − a
, X1 = X2 = −X . (53)

In general we have

In(a , b , sV) =
∫ b

a

ds
sn

| s − sV |2
= π

(A λ)
1/2

(μ2
V)n θ (X ) θ (1 − X ) + I

reg
n (a , b , sV) . (54)
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Fig. 3. Multi-pole-expansion for H → γff. G stands for Green’s function and GNR denotes the non-resonant part of the amplitude. The sum of amplitudes

in the second (third) row is gauge-parameter independent. In the last row, an amplitude with an external line of virtuality s and mass M is put on-shell.
The integral that is needed for the four-body decay,

I =
∫ M2

H

0

ds1

∫ (MH−√
s1)2

0

ds2 λ1/2
(
M2

H , s1 , s2

) ∣∣∣
Z(s1)
Z(s2)

∣∣∣2

, (55)

can be worked out along the same lines. Factorization of phase-space (the “opening” of a line) requires the identification of

“virtuality with mass” (s with μ2
V

), which requires 0 ≤ X ≤ 1, e.g. a ≤ μ2
V

≤ b. Therefore, the natural PO is �(H → Z + ff).

It is worth noting that Eqs. (51)–(55) represent the core steps of a phase-space factorization algorithm that can be applied

to other processes.

Some of the POs that were used at LEP have now been calculated at the two-loop level, see Refs. [83–87], and two-loop

renormalization of the full SM has been completed in Refs. [82,88,89]. While the corresponding theoretical uncertainties are

adequate to compare with current precision measurements, significant improvements will be necessary to make full use of

the precision foreseen at future facilities, e.g. the FCC-ee. Preliminary studies [90] seem to indicate the need for full two-

loop exponentiation for QED ISR, relevant for the measurement itself, and full three-loop EW radiative corrections, relevant

for the interpretation. New POs will appear, e.g. σ ZH relying on accurate threshold cross section measurements sensitive to

loop corrections.

4. What to fit

In the linear realization of SMEFT, a subset of dim = 6 operators involves a Higgs doublet � that contains both the phys-

ical Higgs field H and its vacuum expectation value, v. When using a dim = 6 operator there is a term coming from the

replacement of � with v (not with H) and one gets a shift in dim = 4 operators, e.g. kinetic and mass terms. Normalization

of these terms must always be the canonical one, e.g. the one appearing in the SM Lagrangian. This means that one has to

redefine all fields and parameters, including the ghost sector, even before starting the actual calculation of observables. Fur-

thermore, this set of redefinitions affects the sources and this must be taken into account when building S -matrix elements

out of Green’s functions, for details see Ref. [52]. These extra terms are essential in defining the SMEFT content of all POs.

A question that is often raised concerns the “optimal” parameterization of the dim = 6 basis. Clearly all bases are equiv-

alent and there is no obstacle in “extracting” (Wilson) coefficients as defined in a particular basis. However, certain linear

combinations of Wilson coefficients in one basis become a single Wilson coefficient in another basis and a mapping of this

type, that puts coefficients and (pseudo-)observables in a one-to-one correspondence, may seem appropriate when con-

sidering LO constraints from EWPD [37]. But even at this level one should be careful, since Wilson coefficients mix under
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renormalization. Furthermore, it could be sensible to start with fits at the level of POs (or kappas), as usually done in flavor

physics, instead of directly on Wilson coefficients.

Based on these considerations there are suggestions on separating weakly- and strongly-constrained combinations of Wil-

son coefficients, possibly disregarding the latter. However, this is currently done in the lowest order implementation of the

experimental constraints and there is already strong evidence that NLO SMEFT provides non-negligible corrections, which

are relevant for per-mille/few percent constraints. For a given observable O one can compute the deviation OSMEFT/OSM − 1

and the corresponding probability distribution function (pdf) with the result that the LO pdf differs from the NLO pdf at the

level required by the projected accuracy.

The problem is as follows: we have a basis where constraints are not in one-to-one correspondence with the POs, which

is ideal for the NLO extension (renormalization, mixing of Wilson coefficients, etc.) and a basis where LO implementation of

constraints is automatic but (much) less suitable for NLO extension. The obvious solution is to perform the full NLO SMEFT

analysis in the basis which is well-suited (therefore reducing the SMEFT theoretical uncertainty), not only for Higgs physics

but also for EWPD, and only after that one identifies weakly- and strongly-constrained combinations.

To summarize, mapping of experimental constraints to Wilson coefficients at LO, and at NLO, should be corrected for if

an inferred coefficient is to be used in another process. Any LO analysis will miss contributions from the running of Wilson

coefficients (renormalization group) and from finite “non-factorizable” terms that are not negligible: as stressed in Section

2.4 of Ref. [72] this source of uncertainty (pertinent to the LO studies) is not currently included in the fits. The best way to

improve the uncertainty due to missing higher orders is to move a step forward in the perturbative expansion (both in g

and in �).

5. Effective solutions

There is now convincing evidence from the LHC results that one should use more theoretical tools; not only consider

more theories (e.g. specific models) but also make use of EFTs. Both have specific functions, and both are required [91].

The Euler-Heisenberg theory of photon-photon scattering and the Fermi theory of weak interactions are prototypical ex-

amples of EFTs. In both theories only “relevant” fields are considered and other fields are hidden. Both theories are valid only

up to a scale �, e.g. Eγ 	 me, and unitarity is violated at large scales by Fermi theory. Both theories are non-renormalizable,

are based on certain symmetries, and provided stepping stones for scientific advancement.

Also gravity is amenable to an EFT description, see Refs. [92,93]. This allows to predict the effect of quantum physics on

the gravitational interaction of two heavy masses. However, such an EFT would only be valid for “ordinary” distances (where

the curvature is small) and far away from singularities. Of course, for such a description to be relevant would require there

being no new physics all the way up to the Planck scale.

If one has a full BSM model it is not necessary to use SMEFT to describe BSM (Higgs) physics because one can always

compute anything from the full BSM model. However, is very convenient to use SMEFT because that forces us to concentrate

on universal aspects of SM deviations. Of course, the SMEFT modifies the high energy behavior of any UV completion and the

effective theory is only a valid description of the physics at energies below the scale of new physics. Essentially, interpreting

data via Wilson coefficients may allow to discern the UV completion of the SM. In general, we should strive to devise a

more fundamental description, since the idea of an ultimate theory has a powerful aesthetic pull. However, do we have

that theory? We have models, mostly “ad hoc” models that cannot be the “fundamental theory” and that are sometimes

introduced to “cure” a specific set of experimental results. Without entering a detailed discussion, even if we assume that a

“fundamental” theory does exist, e.g. superstrings, presently we cannot test its “resolved” regime, e.g. phenomena at a very

large scale.

This is why SMEFT in the bottom-up approach is so useful: we do not know what the tower of UV completions is (or if

it exists at all) but we can formulate the SMEFT and perform calculations with it without needing to know what happens

at arbitrarily high scales.

6. Through the precision straits

Directly marrying Wilson coefficients and precision data to quantify deviations from the SM is one option, but not nec-

essarily the most convenient. Another way of taking the next step is based on POs, any quantity that is connected to “data”

by a set of well-defined assumptions. Properly defining POs requires care, since we cannot randomly isolate portions of an

observable and break gauge invariance. That is why the MPE is useful, as it provides (gauge parameter independent) subsets

of the amplitudes. Of course, residues of resonant poles can be computed within the SMEFT in terms of Wilson coefficients,

but that is more akin to an interpretation step. Instead, we argue for defining POs closer to the experimental observations

by defining POs similar to those at LEP; the LEP POs have stood the test of time and still today accurately encode the infor-

mation contents of the data they were derived from. Introducing such POs and splitting one observable into products of POs

related to “sub-processes” requires factorization of the full phase-space and to either make no cuts (implying an extrapola-

tion) or compute (and include) correction terms. This review has concentrated on describing the procedure for the inclusive

case, that is presently better understood, hopefully providing a solid foundation for work on differential quantities.

To conclude, the journey to the next standard model may require crossing narrow straits of precision physics. If that is

what nature has in store for us, we must equip ourselves with both a range of concrete BSM models as well as a general
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SMEFT. Both will be indispensable tools in navigating an ocean of future experimental results. The LEP experience has proven

that those results can stand the test of time when expressed in terms of POs. And as long as POs are well defined and

calculations are performed in a general and coherent way, nature can be systematically probed and our knowledge of it

improved.
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