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Abstract We consider two potential non-accelerator sig-
natures of generalizations of the well-studied constrained
minimal supersymmetric standard model (CMSSM). In
one generalization, the universality constraints on soft
supersymmetry-breaking parameters are applied at some
input scale Min below the grand unification (GUT) scale
MGUT, a scenario referred to as ‘sub-GUT’. The other gen-
eralization we consider is to retain GUT-scale universality
for the squark and slepton masses, but to relax universal-
ity for the soft supersymmetry-breaking contributions to the
masses of the Higgs doublets. As with other CMSSM-like
models, the measured Higgs mass requires supersymmetric
particle masses near or beyond the TeV scale. Because of
these rather heavy sparticle masses, the embedding of these
CMSSM-like models in a minimal SU(5) model of grand
unification can yield a proton lifetime consistent with current
experimental limits, and may be accessible in existing and
future proton decay experiments. Another possible signature
of these CMSSM-like models is direct detection of super-
symmetric dark matter. The direct dark matter scattering rate
is typically below the reach of the LUX-ZEPLIN (LZ) exper-
iment if Min is close to MGUT, but it may lie within its reach
if Min � 1011 GeV. Likewise, generalizing the CMSSM
to allow non-universal supersymmetry-breaking contribu-
tions to the Higgs offers extensive possibilities for models
within reach of the LZ experiment that have long proton
lifetimes.

1 Introduction

Supersymmetry remains a favored extension of the Standard
Model (SM), despite its non-appearance during Run 1 of

a e-mail: sandick@physics.utah.edu

the LHC [1–5]. Indeed, the discovery of a 125-GeV Higgs
boson at the LHC [6,7] has supplemented the traditional argu-
ments for supersymmetry, including the naturalness of the
electroweak scale, the unification of the fundamental inter-
actions and the existence of a cold dark matter candidate (if
R-parity is conserved). The minimal supersymmetric exten-
sion of the SM (MSSM) predicts the existence of a Higgs
boson with mass mh � 130 GeV, and is a prime example
of new physics capable of stabilizing the electroweak vac-
uum for mh ∼ 125 GeV [8]. Moreover, global fits in the
framework of simple supersymmetric models suggest that
the couplings of the lightest supersymmetric Higgs boson
should be very similar to those of the Higgs boson in the
SM, as is indicated by the ATLAS and CMS experiments
[9–12]. When the supersymmetric particle masses are large,
which is the case we consider, the Higgs couplings become
even more like the SM couplings.

If these arguments are valid, the following questions
must be answered: which supersymmetric model is found in
Nature, and how may it be tested? To begin to answer these
questions, we focus here on the MSSM, and more specifically
on constrained versions in which the soft supersymmetry-
breaking scalar masses m0, gaugino masses m1/2 and trilin-
ear terms A0 are assumed to have universal values at some
high input mass scale Min. Typically, Min is chosen to be
at the grand-unified-theory (GUT) scale, a scenario called
the constrained MSSM (CMSSM) [13–38], in which the
ratio of Higgs vacuum expectation values, tan β, is a free
parameter.

In order to find models with less-constrained dark mat-
ter scenarios and simultaneously a sufficiently long life-
time for the proton, we focus here on two one-parameter
extensions of the CMSSM: ‘sub-GUT’ models [39–41] in
which Min < MGUT is free, and the NUHM1 [42–44], in
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which the two Higgs soft masses are equal at the input scale,
m1 = m2, but are allowed to differ from m0. We will also
discuss ‘sub-GUT’ models obtained from minimal super-
gravity (mSUGRA), which are more constrained than the
CMSSM, since the gravitino mass m3/2 = m0 and the tri-
linear and bilinear soft supersymmetry-breaking terms are
related: A0 − B0 = m0 [45–47]. Since mSUGRA models
have one fewer parameter, tan β is no longer free. Sub-GUT
mSUGRA models have the same number of free parameters
as in the CMSSM, but viable models can readily be found.

Although the standard CMSSM with Min = MGUT is still
viable, there remain only restricted regions of the parameter
space of the CMSSM (and, a fortiori, of the more restrictive
mSUGRA model) in which a successful prediction for mh

can be reconciled with the measured cold dark matter den-
sity [37,38,48–80]. The parameter spaces of these models
become more restricted when they are embedded in an SU(5)
GUT, because they tend to have a proton lifetime which is
shorter than the current experimental limits [81–83], even if
the supersymmetric sparticle masses are rather heavy.

These problems can be avoided, however, if Min is iden-
tified with some scale lower than the typical GUT scale.
An effective scale of supersymmetry breaking significantly
below the GUT scale, Min < MGUT, is not without the-
oretical motivation. For example, mirage unification mod-
els [84–94] and other scenarios such as [95] give exactly such
boundary conditions for the soft supersymmetry-breaking
parameters. Phenomenologically, these sub-GUT models
with Min < MGUT have been shown to have an appropriate
cold dark matter density in a considerably larger parameter
space [51]. As could be expected, a significant part of this
parameter space contains points that are compatible with the
LHC measurement of mh and other phenomenological con-
straints, such as the non-detection of supersymmetric parti-
cles at the LHC [1–5].1 This reduced tension in sub-GUT
models is due to the reduced running of the soft masses,
which leads to a sparticle spectrum that is, in general, more
compressed than models with Min = MGUT. Moreover, this
compression of the spectrum leads to more avenues for coan-
nihilation [98], which is effective in reducing the relic neu-
tralino density into the range allowed by cosmology.

Similarly, if the Higgs soft masses are allowed to differ
from the soft masses of the matter scalars, as in the NUHM,
there are more viable options for dark matter. In both the
CMSSM and the NUHM, the Higgs mixing mass, μ, and
the pseudoscalar mass, mA, are determined through the min-
imization of the Higgs potential. However, either μ and/or
mA can be traded for the Higgs soft mass, which can be cal-
culated using the minimization of the Higgs potential.

1 Note that we do not impose any constraint from the anomalous mag-
netic moment of the muon, gμ − 2 [96,97].

Here we examine two potential non-accelerator observ-
ables in the contexts of these less-constrained models: the
proton lifetime and the elastic scattering cross section for the
direct detection of dark matter.

In [99], the proton lifetime was computed by renormaliza-
tion group (RG) running the gauge couplings up to the GUT
scale, defined to be where the two electroweak couplings
are equal. The imperfection in the unification of the elec-
troweak couplings with the strong coupling was then used
to determine the size of the color-triplet Higgs threshold,
which then determined the color-triplet Higgs mass [100–
102]. Using this procedure with sub-TeV stops and Higgsi-
nos and decoupled first- and second-generation sfermions, it
was shown that the lifetime of the proton was shorter than the
experimental constraints. Since the experimental constraints
are now stronger, this problem has become even worse.

This problem can be avoided in many ways. One partic-
ularly simple way is to include an additional pair of 5 and
5̄ Higgs boson supersymmetric multiplets that do not cou-
ple to any of the SM fields. Below the SU(5)-breaking scale,
the colored and flavored Higgs mass become free parame-
ters. If the portion of the Higgs supersymmetric multiplet
that has SU(3) charges is lighter than the portion with SU(2)
charges, the thresholds in the couplings will be different from
those of minimal SU(5), and the colored Higgs masses can
be made sufficiently heavy that the proton decay constraints
can be met [99]. Other possibilities for alleviating this prob-
lem include forbidding the dimension-five operator leading
to proton decay using extra dimensions [103], more com-
plicated Higgs sectors [104], flipped SU(5) [105–108], or
a Peccei–Quinn symmetry [109]. The problem is also alle-
viated in models with scalar masses that are O(100) TeV
[110–115], as in pure gravity mediation [116].

The LHC constraints on sfermion masses and the observed
Higgs mass of 125 GeV motivate us to consider once again
the decoupling limit as an explanation for the long lifetime
of the proton. The decoupling limit was unsuccessful in [99]
due to the assumption of a light third generation. However,
if the third generation is also decoupled, the proton lifetime
is extended. Since a heavier third generation is favored by
the 125 GeV mass of the Higgs, we find this to be a rea-
sonable scenario for suppressing proton decay. However, the
real challenge in this scenario is to find regions of parameter
space that combine a viable dark matter candidate with an
acceptably long proton lifetime.

We will find that the minimal supersymmetric grand-
unified theory based on SU(5) [117,118] with a CMSSM
spectrum does have a very small region of parameter space
that combines a 125 GeV Higgs, a sufficiently long proton
lifetime, and a viable dark matter candidate. This may occur
either in the focus-point region [119–122] or in a region
where the dark matter density is obtained by stop coanni-
hilation with the bino [77,123–127]. However, as we show

123



Eur. Phys. J. C (2016) 76 :8 Page 3 of 26 8

below, sub-GUT and NUHM1 models are less restricted by
proton decay constraints. The proton lifetime is longer in sub-
GUT models, in general, because the stop masses are larger
due to reduced RG running. Since the lifetime of the proton
scales as a power of the stop mass, this enhances the proton
lifetime. Moreover, these sub-GUT models have an accept-
able dark matter density in regions where the bino and the
lighter stau coannihilate [128–135]. In the NUHM1, ∼ TeV
Higgsinos are possible for any value of m0 and m1/2 and, if
the Higgsino mass is O (TeV), the Higgsino can be a ther-
mal relic dark matter candidate [136,137]. If m0 and m1/2

are large, the proton lifetime is greatly enhanced because of
the large stop mass. In all cases, compatibility with minimal
SU(5) requires relatively low values of tan β � 5.

We also examine whether such models are compatible
with present experimental constraints on the direct detection
of dark matter through spin-independent elastic scattering, as
provided, e.g., by the LUX experiment [138], and whether
they can be probed by the next generation of such experi-
ments, e.g., XENON1T [139] and LUX-ZEPLIN (LZ) [140].

For the purpose of our study, we use FeynHiggs [141–
145] to calculate mh as a function of the model input param-
eters. Since one expects an uncertainty ∼ ±1.5 GeV in this
calculation, we assume that any model yielding a prediction
mh ∈ [124, 127] GeV may be acceptable. Even with this the-
oretical uncertainty, we find that the mh measurement gener-
ally gives a stronger constraint on the model parameters than
do the direct LHC searches for supersymmetric particles pub-
lished so far. As we also discuss, another important constraint
is provided by the experimental search for Bs → μ+μ−
decay [146–149], particularly at large tan β. Since we do not
impose any gμ − 2 constraint, and the Higgs and other LHC
constraints exclude small values of (m0,m1/2), the impact
of the b → sγ constraint [150–153] is reduced.

We use the SuperSymmetry And Relic Density (SSARD)
code (information as regards this code is available from K.
A. Olive: it contains important contributions from J. Evans,
T. Falk, A. Ferstl, G. Ganis, F. Luo, A. Mustafayev, J. Mc-
Donald, K. A. Olive, P. Sandick, Y. Santoso, V. Spanos,
and M. Srednicki). to calculate the particle spectrum, pro-
ton lifetime, and elastic scattering cross sections. SSARD
first calculates the supersymmetric particle spectrum for a
given set of boundary conditions defined by the model –
CMSSM, NUHM etc. Coupled renormalization-group equa-
tions (RGEs) are then run back and forth between the weak
scale and the GUT scale, which is defined by the renormal-
ization scale where the two electroweak gauge couplings
are equal. The gauge and Yukawa couplings are run at two
loops, whereas the soft supersymmetry-breaking masses are
run at one loop. The strong gauge coupling is fixed at the
weak scale. The offset between the strong coupling and elec-
troweak couplings is used to determine GUT-scale threshold
corrections, and thereby the GUT-scale masses that affect

proton decay. Once convergence of the RGEs is obtained,
the sfermion mass matrices are evaluated to obtain physi-
cal masses. SSARD determines μ and Bμ at the weak scale
by minimizing the Higgs tadpole equations, and uses them
to determine the pseudoscalar Higgs mass, which serves as
an input to FeynHiggs. The neutralino and chargino mass
matrices are then diagonalized with one-loop corrections
applied. With the sparticle spectrum determined, the cross
sections for annihilation and coannihilation are computed
and input into a routine that integrates numerically the Boltz-
mann equation to determine the cosmological relic density.
Finally, branching fractions for rare decays are computed,
along with the value of gμ − 2 and the neutralino–nucleon
scattering cross section.

The layout of this paper is as follows. In Sect. 2 we summa-
rize the features of the CMSSM and mSUGRA models that
are relevant for our analysis, and introduce their extensions
to sub-GUT and NUHM1 models. In Sect. 3, we discuss the
basics of our calculations of the proton lifetime and elastic
scattering cross sections in CMSSM-like models. Section 4
displays our results. Finally, Sect. 5 summarizes our conclu-
sions.

2 The models

2.1 mSUGRA

Minimal supergravity (mSUGRA) models have a quadratic
Kähler potential for the chiral superfields, and the effective
scalar potential is [45,154–160]

V =
∣
∣
∣
∣

∂W

∂φi

∣
∣
∣
∣

2

+ (A0W
(3) + B0W

(2) + h.c.) + m2
3/2φ

iφ∗
i ,

(1)

where W is the superpotential for the matter superfields φi ,2

which takes the following form in the MSSM:

W = (

yeH1Le + yd H1Qd + yuH2Qu
) + μH1H2. (2)

We denote by L and Q (e, u, and d) the left- (right-)handed
matter superfields, the Yukawa couplings are denoted by the
yα , and H1,2 are the pair of MSSM Higgs doublets with
superpotential mixing coefficient μ. The W (3) in Eq. (1) are
the trilinear terms in the superpotential, W (2) is the bilinear
part corresponding to the μ term, and m3/2 is the gravitino
mass. In mSUGRA one finds scalar mass universality with
m0 = m3/2, and there is a relation between the tri- and bilin-
ear supersymmetry-breaking terms:

A0 = B0 + m0. (3)

2 We use the same notation for the chiral superfields and their spin-zero
components.
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These conditions apply at an input renormalization scale,
Min, which may or may not be identified with the grand uni-
fication scale MGUT. If the gauge kinetic function is minimal,
there is also gaugino mass universality, with a common mass
m1/2, which we assume to apply at the same input scale Min.

The two electroweak vacuum conditions are

μ2 = m2
1 − m2

2 tan2 β + 1
2m

2
Z (1 − tan2 β) + �

(1)
μ

tan2 β − 1 + �
(2)
μ

(4)

and

Bμ = −1

2
(m2

1 + m2
2 + 2μ2) sin 2β + �B, (5)

where the soft supersymmetry-breaking Higgs masses de-
noted by m1,2 are here evaluated at the weak scale, and �B

and �
(1,2)
μ are loop corrections [161–163]. An mSUGRA

model has just three continuous parameters: m1/2, m0 and
A0. The conditions (4), (5) can be used to determine tan β as
well as the magnitude of μ, but the sign of μ is undetermined.
We consider in this paper both signs of μ in selected cases.

2.2 The CMSSM

The CMSSM is effectively a one-parameter generalization
of mSUGRA, in which the relation (3) between A0 and B0

is dropped, which allows tan β to be taken as an extra free
parameter. In addition,m0 �= m3/2 in general, which is possi-
ble in SUGRA models only if the supergravity Kähler poten-
tial has non-minimal kinetic terms. Thus the CMSSM is spec-
ified by four parameters, m1/2, m0, A0, tan β, the sign of μ.
Here we assume thatm3/2 is sufficiently large to be irrelevant.

2.3 Sub-GUT versions of the CMSSM and mSUGRA

Generalizations of both mSUGRA and the CMSSM are pos-
sible if the input scale for universality of the supersymmetry-
breaking terms differs from MGUT. We concentrate here on
‘sub-GUT’ models with Min < MGUT [39–41]: a value
of Min above the GUT scale [164–172] would introduce
many more GUT parameters, requiring a separate in-depth
study. Sub-GUT versions of mSUGRA have four parameters:
m1/2,m0 = m3/2, A0 = B0 + m0, and Min, whereas sub-
GUT versions of the CMSSM have tan β as an extra parame-
ter (assuming again that m3/2 is irrelevantly large). We found
in [51] that sub-GUT mSUGRA models are phenomenologi-
cally viable in a relatively restricted range of A0 that straddles
the Polonyi value A0 = (3 − √

3) × m3/2 [45,173].

2.4 The NUHM1

Another one- or two-parameter generalization of the CMSSM
is the NUHM [28,29,174–182], in which the values of
the soft supersymmetry-breaking contributions to the Higgs

massesm1 andm2 at the input scale are allowed to differ from
the universal scalar massm0. In the NUHM1 considered here,
it is assumed that m1 = m2 at the input scale [42–44]. One
may choose either μ or mA (through its relation to Bμ) as a
free parameter, and use the minimization conditions (4) and
(5) to solve for m1 = m2. The examples shown here treat
μ as a free parameter, since this displays more readily the
interesting results in this scenario.

The two-parameter extension known as the NUHM2
[44,183,184] drops the requirement that m1 = m2 at the
input scale. In this case, bothm1 andm2 are allowed to be free
input parameters. Alternatively, one can choose both μ and
mA at the weak scale as free input parameters and use the min-
imization conditions (4) and (5) to solve form1 andm2. We do
not study the NUHM2 in this paper, as most of the interesting
aspects of the NUHM2 are contained in NUHM1 scans.

3 Calculations

3.1 Proton decay lifetimes

In this subsection we describe how we calculate proton
decay rates in the minimal supersymmetric SU(5) GUT
model [117,118]: for further discussions and detailed formu-
las, see [110,115,116,185]. This model is the simplest super-
symmetric extension of the original Georgi–Glashow model
[186], in which the MSSM matter superfields are embedded
into a 5⊕10 representation of SU(5) for each generation, and
the MSSM Higgs superfields H1 and H2 are incorporated in
a pair of 5 and 5 superfields, respectively. The SU(3)C com-
ponents of the 5 and 5 are called the color-triplet Higgs fields.
The dominant contribution to proton decay in this model is
given by the exchange of these color-triplet Higgs fields [187,
188], which induce dimension-five baryon-number violat-
ing operators, whereas the exchanges of SU(5) gauge bosons
yield dimension-six operators. In this case, the dominant pro-
ton decay channel is the p → K+ν̄ mode, and we focus on
the partial decay rate for this channel in the following.

We obtain the low-energy effective Lagrangian below the
GUT scale by first integrating out the color-triplet Higgs
fields. In superfield notation, the effective Lagrangian is given
by

Leff
5 = Ci jkl

5L O5L
i jkl + Ci jkl

5R O5R
i jkl + h.c., (6)

with the effective operators O5L
i jkl and O5R

i jkl defined by

O5L
i jkl ≡

∫

d2θ
1

2
εabc(Q

a
i · Qb

j )(Q
c
k · Ll),

O5R
i jkl ≡

∫

d2θ εabcuiae j ukbdlc, (7)
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˜QL

˜W ˜W

˜LL ( ˜QL)

QL

QL

LL (QL)

QL (LL)

(a)

˜Hu
˜Hd

˜tR τ̃R

sL (dL)

dR (sR)

ντ

uR

(b)

Fig. 1 One-loop diagrams that yield dimension-six four-fermion oper-
ators. Diagrams a and b are generated by the charged wino and Higgsino
exchange processes, respectively. The gray dots indicate the dimension-

five effective interactions (6), and the black dots represent the wino and
Higgsino mass terms

where a, b, c are SU(3)C color indices, i, j, k, l are gen-
eration indices, and εabc is the totally antisymmetric ten-
sor. The Wilson coefficients of the above operators, Ci jkl

5L

and Ci jkl
5R at the GUT scale are evaluated from the tree-

level color-triplet Higgs exchange diagrams, with the results
given in Appendix A. As shown in Eq. (21) of the appendix,
these Wilson coefficients include up-type quark Yukawa cou-
plings yui and down-type quark/lepton Yukawa couplings
ydl , which should be unified at the GUT scale in the mini-
mal SU(5) GUT. Note, however, that although the minimal
SU(5) GUT relation between the bottom and τ masses [189–
192] is approximately consistent with the experimental val-
ues, this is not the case for the strange and μ masses, nor
for the down and e masses. The GUT Higgs couplings must
therefore be more complicated than in the minimal SU(5)
GUT, e.g., with additional higher-dimensional Higgs repre-
sentations [193] and/or contributions to the fermion masses
from higher-dimensional superpotential terms [194]. In prac-
tice, the ambiguity in choosing whether the down-type quark
or lepton Yukawa couplings sets the scale of proton decay
results in about a factor of 20 uncertainty in the proton decay
calculation [116], which represents our ignorance of GUT-
scale physics in the Yukawa sector. In the following calcu-
lation, we take down-type quark Yukawa couplings as the
GUT-scale Yukawa couplings, which leads to longer proton
decay lifetimes and thus gives rather conservative bounds on
the model parameter space.

In addition, the GUT-scale Yukawa couplings introduce
two extra phase factors [195], which give rise to addi-
tional uncertainty [185]. It turns out, however, that the
effects of these unknown phases are actually negligible, as
shown in Appendix A. Thus, we neglect these effects in our
analysis.

After integrating out the color-triplet Higgs boson, the
GUT-scale Wilson coefficients are then evolved down to the
sfermion mass scale according to the renormalization-group
equations (RGEs), which are also presented in Appendix A.

At the sfermion mass threshold, sfermions in the external
lines of the dimension-five effective operators are integrated
out via the one-loop diagrams illustrated in Fig. 1, yield-
ing dimension-six four-fermion operators [196–198]. In the
absence of flavor violation in the sfermion sector,3 only the
operators, O5L

ii1 j and O5R
331k with i = 2, 3, j = 1, 2, 3, and

k = 1, 2 give sizable contributions to proton decay; the
contributions of the other operators are suppressed by small
Yukawa couplings and/or the off-diagonal CKM matrix ele-
ments. The one-loop diagrams in Fig. 1 yield the following
effective Lagrangian below the sfermion mass scale:

Leff
6 = C H̃

i O1i33 + CW̃
jkÕ1 j jk + CW̃

jkÕ j1 jk + C
W̃
jkÕ j j1k,

(8)

with the operators composed of SM fermion fields,

Oi jkl ≡ εabc(u
a
Rid

b
R j )(Q

c
Lk · LLl),

Õi jkl ≡ εabcε
αβεγ δ(Qa

LiαQ
b
L jγ )(Qc

LkδLLlβ), (9)

corresponding, respectively, to the operators O(1) and Õ(4)

in [198], where α, β, γ, δ are SU(2)L indices, εαβ is the
totally antisymmetric tensor, and i = 1, 2, j = 2, 3, and
k = 1, 2, 3. The coefficients of the operators in (8) are also
given in Appendix A. Note that, since a chirality flip in the
internal wino/Higgsino propagator is required in the pro-
cesses shown in Fig. 1, the operator coefficients C H̃

i ,CW̃
jk

contain factors of M/M2
f̃

if M � M f̃ , where M is the wino

or Higgsino mass and M f̃ is the mass of a sfermion running
in the loop. As a result, if the magnitude of the Higgsino mix-
ing term |μ| is much smaller than that of the wino mass |M2|,
the wino contribution dominates the Higgsino contribution,
and vice versa if |μ| 
 |M2|.

3 The effects on proton decay of possible flavor violation in the sfermion
sector are discussed in [115].
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The coefficients in (8) are then run down to the elec-
troweak scale using the one-loop RGEs given in [199]. At
the electroweak scale, we transform to an operator basis in
the low-energy SU(3)C ⊗ U(1)em theory, and the operator
coefficients are evolved to the hadron scale, Qhad = 2 GeV,
using the two-loop RGEs obtained in [200]. Finally, using the
hadron matrix elements of the operators at Qhad = 2 GeV,
we obtain the partial decay width of the p → K+ν̄ channel.
These matrix elements are evaluated using the QCD lattice
simulation performed in [201]. This procedure, as well as the
relevant formulas, is also summarized in Appendix A.

As can be seen from (21), the proton decay rate depends
on the mass of the color-triplet Higgs field MHC . Thus, to
evaluate the proton lifetime, we need to determine the size
of MHC . To that end, we use the method discussed in [100–
102]. In this method, the GUT-scale threshold corrections to
the gauge coupling constants are used to estimate the masses
of the GUT particles. The GUT-scale matching conditions
for the gauge coupling constants at one-loop level in the DR
scheme [202] in the minimal SU(5) GUT are given as follows
[203–205], assuming no additional GUT-scale physics:

1

g2
1(MGUT)

= 1

g2
5(MGUT)

+ 1

8π2

[
2

5
ln

MGUT

MHC

− 10 ln
MGUT

MX

]

,

1

g2
2(MGUT)

= 1

g2
5(MGUT)

+ 1

8π2

[

2 ln
MGUT

M�

− 6 ln
MGUT

MX

]

,

1

g2
3(MGUT)

= 1

g2
5(MGUT)

+ 1

8π2

[

ln
MGUT

MHC

+ 3 ln
MGUT

M�

−4 ln
MGUT

MX

]

, (10)

where g1, g2, g3, and g5 are the gauge coupling constants
of U(1), SU(2)L , SU(3)C , and SU(5), respectively, with
g1 related to the hypercharge gauge coupling g′ through
g1 = g′√5/3, and MX and M� are the masses of the heavy
gauge bosons and the adjoint Higgs fields, respectively. Note
that these conditions do not include scale-independent terms
since we use the DR scheme for the renormalization. These
equations then yield

3

g2
2(MGUT)

− 2

g2
3(MGUT)

− 1

g2
1(MGUT)

= − 3

10π2 ln

(
MGUT

MHC

)

,

5

g2
1(MGUT)

− 3

g2
2(MGUT)

− 2

g2
3(MGUT)

= − 3

2π2 ln

(
M3

GUT

M2
XM�

)

, (11)

and the upper relation allows one to evaluate MHC from the
coupling constants of the SM gauge interactions at the GUT
scale determined using the RGEs [100–102].

Before concluding this subsection, we discuss the quali-
tative dependence of the proton decay lifetime on the MSSM
parameters. As already mentioned above, the loop functions
for the diagrams in Fig. 1 give rise to a factor of ∼ M/M2

f̃
.

Therefore, the proton lifetime becomes longer if the sfermion
masses are taken to be larger. In addition, as can be seen from
(21), the decay amplitude contains both the up- and down-
type Yukawa couplings, which leads to a factor of 1/ sin 2β.
Moreover, the Higgsino exchange contribution also has an
extra factor of 1/ sin 2β. As a result, the proton decay rate is
strongly enhanced for moderate/large values of tan β. For
these reasons, large sfermion masses and small tan β are
favorable for evading the proton decay constraints.

3.2 Elastic scattering cross sections

Next, we review the calculation of the neutralino–nucleus
elastic scattering cross sections that we use in the following
analysis. There are two types of interactions that induce dark
matter-nuclei scattering: spin-independent (SI) and spin-
dependent (SD). Since there is no interference between these
two interactions, we can evaluate the SD and SI scattering
cross sections separately.

We first consider SI scattering. The SI elastic scattering
cross section of the neutralino lightest supersymmetric par-
ticle (LSP) with a nucleus is expressed in terms of the SI
neutralino–nucleon effective coupling fN (N = p, n) as fol-
lows:

σSI = 4

π

(
mχmT

mχ + mT

)2
[

Z f p + (A − Z) fn
]2

, (12)

where mχ and mT are the masses of the neutralino LSP and
the target nucleus, respectively, and Z (A) denotes the atomic
(mass) number of the target nucleus.

The SI neutralino–nucleon scattering matrix elements
are induced by the exchange of squarks and neutral Higgs
bosons. To evaluate the effective coupling fN , we first obtain
the neutralino–quark/gluon effective operators by integrating
out the squarks and Higgs bosons. Then, using the nucleon
matrix elements of these effective operators, we can calculate
the effective coupling fN . For more details, see [206–214].
As a result, fN is expressed in terms of the coefficients of
the neutralino–quark effective scalar interactions, α3qχχqq
(where χ andq denote the neutralino LSP and quarks, respec-
tively), as [208–212]
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fN
mN

=
∑

q=u,d,s

f (N )
Tq

α3q

mq
+ 2

27
f (N )
TG

∑

q=c,b,t

α3q

mq
. (13)

Here the mq are the quark masses, mN is the nucleon

mass, the f (N )
Tq

≡ 〈N |mqqq|N 〉/mN are the nucleon matrix

elements of the light-quark mass operators, and f (N )
TG ≡

1 − ∑

q=u,d,s f (N )
Tq

denotes the gluon contribution to the

nucleon mass. We extract the values of f (N )
Tq

from the pion–

nucleon σ -term �πN = 50 and σ0 = 36 MeV [215].4 Ana-
lytic expressions for the α3q are presented in [208–212].
The second term of the right-hand side in Eq. (13) repre-
sents the (long-distance) contribution of heavy quarks to
the neutralino–gluon interactions, which can be related to
the quark couplings α3q via the triangle diagrams associ-
ated with the trace anomaly of the energy-momentum tensor
[223,224]. In Eq. (13), we neglect the effects of the twist-
2 operators [206] as well as the short-distance contribution
of quarks to the gluon operators [213,214], since they are
numerically small when squarks are rather heavy, which is
the case we discuss below.

In the models we study, the dominant contribution to α3q

is given by the exchange of neutral Higgs bosons, since the
squarks tend to be heavy. Moreover, in a wide range of param-
eter space, the Higgs sector is close to the decoupling limit,
and the LSP is a bino–Higgsino mixed state with |M1|, |μ|,
|M1 − |μ|| 
 mZ . In this case, the expression for α3q is
approximated by

α3q � −g2
2mq tan2 θW

4(μ2 − M2
1 )

(

M1 + μ sin 2β

m2
h

+ μ cos 2β

m2
H

cq

)

,

(14)

for the bino LSP case, while

α3q � − sgn(μ)g2
2mq

8

(
tan2 θW

M1 − |μ| + 1

M2 − |μ|
)

[

1 + sgn(μ) sin 2β

m2
h

+ sgn(μ) cos 2β

m2
H

cq

]

, (15)

for the Higgsino LSP case. Here, θW is the Weinberg mix-
ing angle, mh (mH ) is the mass of the lighter (heavier) neu-
tral Higgs boson, and cq = cot β and − tan β for up- and
down-type quarks, respectively. As can be seen from these
expressions, the neutralino–nucleon scattering cross sections
decrease when the difference between M1 and |μ| gets large.
In addition, it is found that the SI effective coupling depends

4 This choice corresponds to y ≡ 2〈N |ss|N 〉/〈N |uu+dd|N 〉 = 0.28,
which is larger than the values obtained in lattice QCD simulations
[216–219]. We note that the uncertainties in these quantities (see,
e.g., [220–222]) affect significantly the resultant scattering cross sec-
tions [212].

on the sign of μ and, in particular, when μ is negative the
coupling can be significantly suppressed due to cancella-
tions (this feature is sometimes called the “blind spot” [208–
211,222,225–228].

We next discuss SD scattering, for which the neutralino–
nucleus scattering cross section is given by

σSD = 32

π
G2

F�2 J (J + 1)

(
mχmT

mχ + mT

)2

, (16)

where GF is the Fermi constant, J is the total spin of the
target nucleus, and

� = 1

J
(ap〈Sp〉 + an〈Sn〉), (17)

with 〈Sp〉 (〈Sn〉) being the expectation value of the total
spin of protons (neutrons) in the target nucleus. The SD
neutralino–nucleon effective coupling, αN , is expressed as

aN =
∑

q=u,d,s

α2q√
2GF

�(N )
q , (18)

where we use �
(N )
q given in [212], and α2q denotes the

SD neutralino–quark couplings, which are induced by the
exchange of Z -boson and squarks. The analytic formula for
α2q is again given in [208–212]. As in the SI case, the squark
contribution is suppressed compared with the Z boson contri-
bution in the parameter region we are interested in. Further-
more, when |M1|, |μ|, |M1−|μ|| 
 mZ ,a2q is approximated
by

a2q � g2
2 tan2 θW

8(μ2 − M2
1 )

cos 2βT 3
q , (19)

for a bino-like LSP, while for a Higgsino-like LSP we have

α2q � g2
2

16|μ| cos 2βT 3
q

(
tan2 θW

M1
+ 1

M2

)

, (20)

where T 3
q denotes the third component of the SU(2)L gener-

ators.
As seen above, the neutralino–nucleus scattering cross

sections are suppressed when gauginos/Higgsinos are heavy.
In such cases, electroweak loop contributions may dominate
the tree-level Higgs and Z boson contributions [213,229–
232]. It turns out, however, that in the case of a bino–Higgsino
LSP, the electroweak loop contributions are quite small [233],
and thus we neglect them in our calculation.

Because of the coherent nature of the SI neutralino–
nucleus scattering as shown in Eq. (12), the current and future
direct detection experiments are much more sensitive to the
SI scattering compared to SD scattering. For this reason, we
mainly discuss SI scattering in the following.
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4 Results

4.1 CMSSM

In view of the discussion in Sect. 3.1, in our study of the
proton lifetime we focus on relatively small values of tan β,
and have chosen tan β = 5 in Fig. 2. For larger values of
tan β, the proton lifetime becomes smaller than the current
experimental bound, and minimal SU(5) is not viable.

We show in Fig. 2 four examples of (m1/2,m0) planes in
the CMSSM with tan β = 5. In the left panels we choose

A0 = 0, whereas in the right panels we choose A0 = 2.3m0.
We take μ > 0 in the upper panels and μ < 0 in the
lower panels. Higgs mass contours are shown as red dot-
dashed curves labeled by mh in GeV in 1 GeV intervals
starting at 122 GeV. We recall that to calculate mh we use
FeynHiggs [141–145], which carries a roughly ±1.5 GeV
uncertainty. In the left panels, the light mauve shaded region
in the upper part of the figure is excluded because there are
no solutions to the Higgs minimization conditions: along this
boundary μ2 = 0. Electroweak symmetry breaking (EWSB)
fails here because the Higgs soft masses at the GUT scale
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Fig. 2 The CMSSM (m1/2,m0) planes for tan β = 5 with μ > 0
(upper) and μ < 0 (lower), and with and A0 = 0 (left) and A0 = 2.3m0
(right). In the light mauve shaded regions, it is not possible to satisfy
the electroweak symmetry-breaking (EWSB) conditions. In the brown
shaded regions, the LSP is charged and/or colored. Thedark blue shaded
regions show the areas where 0.06 < �χh2 < 0.2 in the left panels

and the further enlarged range of 0.02 < �χh2 < 0.5 in the right pan-
els. The red dot-dashed contours indicate the Higgs mass, labeled in
GeV, and the solid black contours indicate the proton lifetime in units
of 1035 years. The point labeled A refers to the point tested for phase
dependence in the appendix
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are large and the RG running to the weak scale does not sup-
press the Higgs soft masses sufficiently for EWSB to occur.
Because large gluino masses can assist electroweak symme-
try breaking effectively at two loops, the value of m0 that is
allowed increases for increasing m1/2. Just below the region
where EWSB fails, there is a dark blue shaded region where
the relic density falls within the range determined by CMB
experiments [234]. Since the relic density of dark matter is
now determined quite accurately (�χh2 = 0.1193±0.0014),
for the purpose of visibility we show in dark blue the strip
for which the relic density lies in the range [0.06, 0.20]. This
strip is in the focus-point region [75,76,119–122] where the
Higgsinos are much lighter than the stops. The correct dark
matter density is realized either by coannihilation of the Hig-
gsino with the bino when m1/2 is smaller, or by Higgsino
annihilations when the Higgsino mass is of order a TeV for
larger values of m1/2. The TeV-scale Higgsino dark matter
region continues well beyond the bounds of the figure.

We note also that the brown shaded regions at the bottoms
of the panels are excluded because there the LSP is the lighter
charged stau lepton. The planes also feature stau coannihila-
tion strips close to the boundary of the brown shaded region.
They extend to about m1/2 � 1 TeV but are very difficult to
see on the scale of this plot, even with our enhancement of
the relic density range. We note that for this value of tan β

there are no relevant constraints from rare B decays.
Contours of the proton lifetime using down-type Yukawa

couplings (see the discussion given in Sect. 3.1) are shown
as solid black curves that are labeled in units of 1035 years.
Thus the limit of τp > 5 × 1033 years would exclude every-
thing below the curve labeled 0.05. For the nominal value
of mh = 125 GeV, neglecting the theoretical uncertainties
in the calculation of mh , we see that in the upper left plane
of Fig. 2 the Higgs contour intersects the focus-point region
where τp ≈ 2 × 1034 years. Much of the focus-point strip
in this figure may be probed by future proton decay exper-
iments. Changing the sign of μ has almost no effect on the
proton lifetime, as seen in the lower left panel of Fig. 2, but
the calculated Higgs mass is smaller by ∼1 GeV, which is
less than the uncertainty in the FeynHiggs calculation of
mh .

In the right panels of Fig. 2, since increasing A0 drives
a larger splitting between the two stops, there are excluded
regions shaded in brown in the upper halves of the panels,
where the lighter stop becomes the LSP. Close to this bound-
ary (but again difficult to see) there is a narrow blue strip
where 0.02 < �χh2 < 0.5. Here the dark matter density
is brought into the allowed range by coannihilation with the
lighter stop. The relatively large value of A0 = 2.3m0 leads
to large Higgs masses in most of the plane, but the Higgs
mass is somewhat smaller along this strip for μ > 0. We
recall that the Higgs mass is sensitive to the off-diagonal
element in the stop mass matrix, which is proportional to

Xt = At + μ cot β and peaks when Xt is roughly 2.5 times
the geometric mean of the two stop masses. For positive μ,
Xt is relatively large and we are past the peak where mh is
maximized. In contrast, for μ < 0, Xt is smaller (as there is
some cancellation between the two terms) and we are closer
to the peak and mh is larger. This effect is pronounced along
the upper left edge because the stop is much lighter in this
region. For μ > 0, the mh = 124 GeV contour, which is
consistent with the experimental value when uncertainties in
the theoretical calculation are considered, intersects the strip
at m1/2 ∼ 4.7 TeV where τp = 5 × 1033 years. Note that we
terminate the larger mh contours where the calculated value
becomes unreliable: near the endpoints of these curves, the
uncertainty in theFeynHiggs calculation ofmh is� 5 GeV.
For μ < 0, the mh = 125 GeV contour intersects the stop
coannihilation strip when m1/2 ∼ 1.4 TeV and the proton
lifetime is significantly smaller (<0.001 in these units). For
slightly lower A0 than the value 2.3m0 shown in these pan-
els of Fig. 2, large uncertainties in mh from FeynHiggs
appear when τp < 5 × 1033 years. When A0/m0 � 2.0 the
stop coannihilation strip is no longer present. On the other
hand, when A0/m0 � 2.4 the central value of the Higgs
mass along the stop strip drops below 122 GeV when μ > 0,
which is unacceptably small.

We show in Fig. 3 the spin-independent cross section, σSI,
as a function of the neutralino mass for the two upper panels
in Fig. 2 with μ > 0. The points in each panel represent
results of a scan of the parameter space. In the upper panels,
darker points fall within 3σ of the dark matter relic density
that fits best the Planck data. Lighter points have smaller
relic densities and should not be excluded. However, when-
ever the relic density is below the central value determined
by Planck, we scale the cross section downward by the ratio
of the calculated density to the Planck density. From these
panels, we find that the A0 = 0 cases give relatively large
SI scattering cross sections, while those for A0 = 2.3m0 are
significantly suppressed. In the case of A0 = 0, the values of
μ and M1 are close to each other, and thus the LSP is a well-
mixed bino–Higgsino state. This leads to a large SI scattering
cross section, as can be seen from Eqs. (14) and (15). The
set of darkly shaded points with good relic density are found
mostly at mχ � 1100 GeV due to the fact that these points
are mainly Higgsino LSPs. As the bino mass is increased,
the scattering cross section decreases. However, the points
sampled here all have mh < 128 GeV which produces the
lower boundary of the points displayed. Because of the con-
straints coming from the Higgs mass, the scattering cross
sections for all dark matter candidates in these models are
accessible at LZ. Along the focus point, the LSP mass varies
downward as μ is decreased and the cross section is maximal
at around 3 × 10−8 pb. Due to the small uncertainty in the
Planck relic density, we find very few darkly shaded points
in this region. Points with smaller cross section are found
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Fig. 3 The spin-independent elastic scattering cross section in the
CMSSM as a function of the neutralino mass for μ > 0, with tan β = 5
and A0 = 0 (left) and A0 = 2.3m0 (right). The upper panels show
points where the relic density is within 3σ of the central Planck value
colored darker blue, and those where the relic density is below the
Planck value as lighter blue points. The lower panels show the same

set of points colored according to the calculation of the Higgs mass:
124–126 GeV (darkest), 123–124 and 126–127 GeV (lighter), 122–
123 and 127–128 GeV (lightest). The black solid curve is the current
LUX bound. The black dashed curve is the projected LZ sensitivity and
the dashed orange curve is the neutrino background level

between the focus-point strip and the no-EWSB boundary
where the relic density is below the Planck density. On the
other hand, for the A0 = 2.3m0 cases, the LSP is almost
pure bino and squarks are quite heavy; for these reasons, we
obtain very small SI cross sections. The solid curve in Fig. 3
corresponds to the current LUX limit [138] and thus some
models (including the focus-point models) are excluded by
this limit when A0 = 0, assuming our nominal treatment of
σSI as discussed in Sect. 3.2. The thin black dashed curve
corresponds to the projected LZ sensitivity [140,235] and
almost all of the points sampled when A0 = 0 are therefore
testable. The thick orange dashed line corresponds to the
irreducible neutrino background [235,236]. All of the points
sampled when A0 = 2.3m0 fall below the neutrino back-
ground and probing them would require a directional recoil
detector [237].

In the lower panels of Fig. 3, we see the same points,
now colored to show the Higgs mass ranges. The darkest
points have the calculated Higgs mass in the range 124–
126 GeV, medium shaded points have mh in the ranges 123–
124 or 126–127 GeV, and the lightest points have mh in the
ranges 122–123 or 127–128 GeV. All of these are compat-

ible with the experimental measurement, within twice the
FeynHiggs uncertainty.

In Fig. 4, we show the points corresponding to the lower
panels of Fig. 2 with μ < 0. There is relatively little change
in the scattering cross sections for μ < 0. When A0 = 0, the
cross sections are in general somewhat lower due to the can-
cellation mentioned in Sect. 3.2. For A0 = 2.3m0 the points
have moved to lower mχ , but they remain for the most part
unobservable. We again see that the Higgs mass constraint
puts the bulk of the points within reach of LZ.

Finally, in Fig. 5 we show the spin-dependent cross sec-
tions, σSD, for the upper panels in Fig. 2 when μ > 0. Points
where the relic density is within 3σ of the central Planck
value are colored darker green in the upper panels, and those
where the relic density is below the Planck value as lighter
green points, and the other points and shadings are identi-
cal to those in the previous two figures. Here the thick black
solid curve is the upper limit from PICO [238] and the thin
curves are obtained from IceCube [239] limits based on anni-
hilations into bb̄ pairs (solid) or W+W− pairs (dashed). For
the focus-point models, annihilations proceed primarily into
electroweak gauge bosons, or hZ final states with some non-
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Fig. 4 As in Fig. 3, but for μ < 0

Fig. 5 As in Fig. 3, but showing the spin-dependent cross section. The
solid curve is the current PICO bound [238], and the red solid/dashed
curves are the IceCube bounds [239] assuming annihilations into
b̄b/W+W−, respectively. The upper panels show points where the relic

density is within 3σ of the central Planck value colored darker green,
and those where the relic density is below the Planck value as lighter
green points. The color coding of the lower panels are the same as in
Fig. 3
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negligible contributions from t t̄ , for which the W+W− may
be applicable. Models with A0 = 0 lie just below the current
bounds again because of the highly mixed nature of the LSP,
while the models with A0 = 2.3m0 predict cross section far
below these bounds.

4.2 mSUGRA

In [51], mSUGRA models were considered with A0/m0 =
3 − √

3 (the Polonyi [173] value) and A0/m0 = 2 for com-
parison. The computed value of tan β is generally � 10. As
a result, proton lifetime limits for these cases would be short,
in violation of the experimental bounds unless a non-minimal
version of SU(5) is adopted.

In the case of the Polonyi model, viable regions of the
parameter space contain a gravitino LSP, which would give
negligible signals in direct detection experiments. However,
for the larger value A0 = 2m0 there are some regions of
parameter space with a bino LSP with the relic density held
in check by stau coannihilations, but tan β � 40 for mh >

124 GeV and there are strong constraints from B-physics
observables in that case. This model is highly constrained
and we do not discuss it further here, though we return later
to mSUGRA models with universality imposed below the
GUT scale.

4.3 subGUT

In the left panels of Fig. 6, we show examples of (m1/2,m0)

planes with tan β = 3.5, A0 = 2.5m0, Min = 109 GeV and
μ > 0 (upper panel) and μ < 0 (lower panel). In both planes,
one finds three distinct brown shaded regions where the LSP
is no longer neutral and/or uncolored. At the left, at low m1/2

and m0 < 4 TeV the lighter stop is the LSP, at low m0 for all
m1/2 the lighter stau is the LSP, and along a diagonal strip
that rises from the stau LSP region the lighter chargino is
the LSP. When μ is approximately equal to the bino mass,
M1, two of the neutralino mass eigenstates are strongly mixed
bino–Higgsino states. In this case, 1-loop corrections to these
masses can differ significantly from the correction to the sec-
ond Higgsino (which is nearly identical to the correction to
the lighter chargino) and cause the chargino to become the
LSP. To the left of this region, the LSP is the bino and the
relic density gets too large. To the right of this region, the
LSP is the Higgsino and, because m1/2 and μ are large here,
the relic density again gets too large.

There are also three distinct regions in these panels of
Fig. 6 where the relic density is consistent with the Planck
constraint. Somewhat offset from the stop LSP region, we
see a curved band which is produced by stop coannihilation.
This region is much broader than in the typical CMSSM
case, due to the increased degeneracy of the SUSY particles.
Then, just above the stau LSP region we see the familiar

stau coannihilation strip. At this value of Min it extends to
far greater values of m1/2 than it would in the CMSSM with
Min = MGUT: this is generally possible for sufficiently small
Min, and is again due to the degeneracy of the SUSY particles.
We note that, to the right of the chargino LSP region, stau
coannihilation occurs between the stau and a Higgsino LSP
instead of the more usual bino. Finally, between the stau and
stop strips, we see a narrow funnel region where 2mχ ≈
mA,H . For μ > 0, the funnel extends to m1/2,m0 � 3 TeV,
while for μ < 0, it extends past the end of the plot tom0 > 10
TeV. Looking now at the red dashed contours of mh , we see
that in the stop coannihilation strip and the funnel region the
Higgs mass is somewhat too small: mh < 123 GeV for μ >

0, whereas the uncertainty from FeynHiggs is ∼1.5 GeV.
This is to be expected, since the stop masses are light in this
region and so the corrections to the Higgs mass are small.
On the other hand, the Higgs mass exceeds 124 GeV for
4 TeV < m1/2, and hence much of the stau coannihilation
region is acceptable. For μ < 0 (lower left panel of Fig. 6),
the values of mh are somewhat higher, and parts of the stop
coannihilation strip may be acceptable.

As in the previous subsections, the solid black lines are
contours of the proton decay lifetime. For 4 TeV < m1/2

(where the Higgs mass is acceptable), the lifetime exceeds the
experimental bound of 5 × 1033 years. As discussed earlier,
in order to obtain a sufficiently long lifetime, we are forced
to relatively small values of tan β. For tan β larger than the
value 3.5 shown here, the lifetime along the stau strip drops
below the experimental bound, as seen in the right panels of
Fig. 6 where tan β = 10 is chosen, and one would need to
abandon minimal SU(5), as the proton lifetime is less than
1033 years over much of the plane.

Qualitatively, we see similar features for the LSP and relic
density in the right panels. Smaller tan β (<3.5) is possible,
but one needs to go to higher values of m1/2 to ensure a suffi-
ciently heavy Higgs boson. For smaller A0/m0, the extent of
the stau strip is reduced, making it difficult to obtain both a
heavy enough Higgs and a long proton lifetime. This reduc-
tion in the stau coannihilation strip is due to a reduction in
the Higgsino masses as A0 is reduced. The stau coannihila-
tion band in this figure is actually assisted by several other
supersymmetric particles with masses similar to the stau,
including the charged and neutral Higgsinos. The Higgsino
masses are roughly set by m0 (μ is set by EWSB conditions
which is related to the stop mass and hence to m0). Since the
bino and stau masses continue to grow as m1/2 is increased,
eventually the Higgsino becomes the LSP with no potential
coannihilation partners. At this point, the stau coannihilation
band disappears and the Higgsino becomes the LSP. Low-
ering A0 reduces the value of m0 for which the Higgsino
becomes the LSP, and so reduces the size of the stau coanni-
hilation strip. However, if we rely on non-minimal SU(5) to
lengthen the lifetime of the proton, we can go to larger values
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Fig. 6 The subGUT CMSSM (m1/2,m0) planes for A0 = 2.5m0 with
Min = 109 GeV. The left (right)panelshave tan β = 3.5(10). Theupper
(lower) panels have μ > 0 (μ < 0). The shadings and contour types

are as in Fig. 2. The point labeled B refers to the point tested for phase
dependence in the appendix

of tan β, as seen in the right panels of Fig. 6. This allows one
to obtain simultaneously a large enough Higgs mass and a
small enough relic density.

Results for the SI cross section for the subGUT CMSSM
cases displayed in Fig. 6 are shown in Figs. 7 (for μ > 0)
and 8 (for μ < 0). We see in the upper panels of Fig. 7 that
the SI cross sections for models with a relic density com-
patible with the Planck range (darker blue points) are gen-
erally below the current upper limit but within reach of the
LZ experiment. The dark-shaded points originate from what
appears to be the stau coannihilation strip. As noted above,
obtaining the correct relic density at such large LSP masses
requires additional coannihilation and mass degeneracies. In
this case, the Higgsinos also have masses comparable to the

bino mass. Along this horizontal strip of points in the left
panel of Fig. 7, the mass difference (μ − M1) is relatively
constant and hence from Eq. (14), when tan β is small, we
obtain a cross section which is relatively constant as well. The
same is true for most of the underdense (paler blue) points
for tan β = 10 (upper right panel), but underdense points
for tan β = 3.5 may have SI cross sections below the LZ
sensitivity though above the neutrino background level. The
lower panels of Fig. 7 show that many of the points within
reach of the LZ experiment have values of mh close to the
experimental value. Figure 8 (for μ < 0) exhibits somewhat
lower values of the SI cross section, in general. Note that the
cluster of points with mχ ∼ 1500 GeV correspond to bino
LSPs in the stop coannihilation region. These points do not
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Fig. 7 As in Fig. 3 for the subGUT case with A0 = 2.5m0, μ > 0, Min = 109 GeV and tan β = 3.5 (left), tan β = 10 (right), shown in the upper
panels of Fig. 6

appear when μ > 0 as that region has mh < 122 GeV and
hence not included in our scan for elastic cross sections. Con-
sequently, most models with a relic density compatible with
the Planck range are beyond the LZ sensitivity, and some of
the tan β = 3.5 points are below the neutrino background
level. The same is true a fortiori for the points with under-
dense relic neutralinos. Finally we note in passing, that the
three nearly horizontal points below the neutrino background
(for μ < 0) originate from the funnel region (there are sim-
ilar points when μ > 0 but more difficult to discern in the
figure).

Turning now to subGUT mSUGRA models, we consider
only the Polonyi model, i.e., A0 = (3−√

3)m0, with μ > 0.
The left panel of Fig. 9 is for Min = 109 GeV, with contours
of tan β in gray. The mauve shaded regions in the upper left
and lower right parts of the plane are where electroweak sym-
metry breaking fails (μ2 < 0 in the upper left and a diverging
Yukawa coupling due to an excessive value for tan β in the
lower right), and in the central brown shaded region the stau
is the LSP. Above this region, various processes contribute to
bringing the relic density into the Planck range. Over much of
this plane, the LSP is mostly Higgsino: this is nearly degen-
erate with the next-to-lightest superparticle (NLSP), which
is a chargino in this case, as well as the second Higgsino.
In the blue shaded area above the stau LSP region, in addi-

tion to neutralino coannihilations, stau coannihilation also
enhances the cross section in this strip. In the wide blue
shaded region above the stau strip (recall that we are here
showing regions where the relic density lies between 0.06
and 0.2) the Higgs funnel (lower part of this strip and conven-
tional focus-point region (upper part) have merged. Below the
stau LSP region, the gravitino becomes the LSP and can be
dark matter. The values of tan β are quite large for all points
in the left panel of Fig. 9. For this reason, the proton life-
time in minimal SU(5) models is much too short, and some
non-minimal model must be considered.5 The right panel of
Fig. 9 is for Min = 1011 GeV, and shares the qualitative fea-
tures of the electroweak symmetry breaking and stau LSP
constraints. The values of tan β are somewhat smaller than
in the Min = 109 GeV case, but still much too large to obtain
a sufficiently long proton lifetime in minimal SU(5) mod-
els. The dark matter constraint is satisfied in a focus-point
strip close to the electroweak symmetry-breaking boundary,
which has now demerged from the funnel and stau coanni-
hilation strip. The rapid-annihilation funnel is now clearly
visible as a separate well-defined region. In the stau strip and

5 We note also that the b → sγ constraint excludes a region at small
m1/2 and m0 (shaded green), and that the Bs → μ+μ− constraint is
also relevant in much of the allowed region of the plane.
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Fig. 8 As in Fig. 3 for the subGUT case with A0 = 2.5m0, μ < 0, Min = 109 GeV and tan β = 3.5 (left), tan β = 10 (right), shown in the lower
panels of Fig. 6

in the funnel, the LSP is once again a bino, though the masses
of the Higgsinos are not much larger. There is also a gravitino
dark matter region below the stau LSP region.

Figure 10 displays results for the SI cross section in these
subGUT mSUGRA models. We see in the upper panels that
the SI cross section is generally between the current LUX
upper limit and the prospective LZ sensitivity, though some
models (particularly for Min = 1011 GeV) have cross sec-
tions above the LUX limit and a few underdense models have
SI cross sections below the LZ sensitivity. For Min = 109

GeV, we clearly see the pile of points with the Planck relic
density atmχ ≈ 1100 GeV corresponding to a Higgsino LSP
near the broad intersection of the stau strip and focus-point
swath. The dark blue points in this figure continue to higher
Higgsino masses along the stau coannihilation strip. Very
low mass points (all lightly shaded) correspond to regions
in the left panel of Fig. 9 that are to the left of the blue
shaded region. In the white region to the left, the relic den-
sity is small, and in the white region to the right (between
the stau strip and funnel) the relic density is too high. For
Min = 1011 GeV, we see two very distinct regions in Fig.
10. The region with lower masses (mχ � 800 GeV and cross
section between 10−9 and 10−8 pb) originate from the focus-
point region. The remainder of the points come from either
the funnel or the stau strip and can be more easily distin-

guished by the lower panels showing the Higgs mass ranges.
The relative paucity of dark-shaded blue points stems from
the fact that the true Planck strips are quite thin in this case.
Note also that there is no pile-up of points at 1100 GeV as
the LSP is most bino rather than Higgsino at the higher value
of Min. We see in the lower panels of this figure that mod-
els with mh ∈ [124, 126] GeV lie in the intersection region
for Min = 109 GeV, and as noted above the dark brown
shaded points for Min = 1011 GeV at low masses come from
the focus point whereas we now see that the middle group
around mχ ∼ 1000 GeV originate in the funnel, and the
group at larger masses lie in the stau strip. All of the dark-
shaded points lie within reach of the LZ experiment (though
some Min = 1011 GeV models are excluded already by the
LUX upper limit).

We conclude this subsection by showing results for the
SD cross sections in these subGUT mSUGRA models in
Fig. 11. We see in the upper panels that the SD cross sections
are generally smaller than the PICO bound [238], and also
below the IceCube upper limits [239] for both b̄b andW+W−
final states (which are likely to be more similar to the model
final states). There is a handful of Min = 1011 GeV mod-
els (most of them underdense) whose predictions lie close
to the IceCube W+W− limit, but most model predictions
are significantly below it. We see in the lower right panel of
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Fig. 9 As in Fig. 2 for the subGUT mSUGRA case with A0 =
(3 − √

3)m0, and Min = 109 GeV (left) and Min = 1011 GeV (right).
In addition to the shadings described for Fig. 2, the green shaded region

is excluded by b → sγ , the gray lines show contours of tan β in incre-
ments of 5 as labeled

Fig. 10 As in Fig. 3 for the subGUT mSUGRA case with A0 = (3 − √
3)m0, and Min = 109 GeV (left panels) and Min = 1011 GeV (right

panels) shown in Fig. 9

Fig. 11 that many of the models close to the IceCube W+W−
limit have FeynHiggs mh values close to the experimen-
tal value. Comparing this figure with Fig. 10, it seems that

there are better prospects for discovering SI scattering in
these subGUT mSUGRA scenarios. However, we recall that
these models yield proton lifetimes that are too short in
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Fig. 11 As in Fig. 3 for the subGUT mSUGRA case with A0 = (3 − √
3)m0, and Min = 109 GeV (left panels) and Min = 1011 GeV (right

panels) shown in Fig. 9

minimal SU(5), pointing to the need for some non-minimal
model.

4.4 NUHM1

As mentioned earlier, in the NUHM1 one has the freedom
to treat μ as a free parameter, and in the following we show
(m1/2,m0) planes for some representative choices of μ, tan β

and A0. In fact, as long as tan β is small enough to obtain
an acceptable proton lifetime, the qualitative behavior of the
parameter space is relatively insensitive to A0, though there
is some dependence of the Higgs mass contours on A0, as
could be expected.

We show in the upper left panel of Fig. 12 the (m1/2,m0)

plane for tan β = 4.5, A0 = 0 and μ = 1000 GeV, which
exhibits a small stau LSP region at low m0 and m1/2. Since
μ is fixed, the composition of the LSP changes as m1/2 is
increased. At small m1/2 the LSP is mainly bino and the
relic density is too high. As m1/2 is increased, the Higgsino
component increases and the relic density passes through the
Planck range across a relatively narrow, near-vertical transi-
tion strip. (Note that, in all four panels of this figure, the blue
region corresponds to just the 3σ Planck range rather than the
extended range used in previous figures.) At larger m1/2 the
LSP is a Higgsino with a mass of about 1050 GeV which is

slightly low for a Higgsino LSP and, as a result, the relic den-
sity is somewhat too small whenm1/2 � 3 TeV. In this panel,
we see that we obtain an acceptable Higgs mass (mh > 124
GeV) when m0 � 13 TeV. The proton lifetime is sufficiently
large (τp � 0.25 × 1035 years) for this value of m0.

In the upper right panel of Fig. 12, we have increased μ

slightly to 1050 GeV. The most striking feature is that the dark
matter region fills the right part of the plane: indeed, it extends
infinitely far to the right toward large gaugino masses. In this
case, when the gaugino mass is large, the LSP is a nearly pure
Higgsino, as is the NLSP. This near-degeneracy facilitates
coannihilation that brings the relic density within the accept-
able range, with �χh2 being determined predominantly by
μ [136,137]. The Higgsino mass in this case is very close to
1100 GeV, which remains constant at large m1/2. Thus there
is a very large (infinite) area where the relic density matches
the Planck result. At low m1/2, the relic density is too large
and drops monotonically as the gaugino mass is increased
and asymptotes to the Planck density at very large m1/2. For
m0 � 10 TeV, when A0 = 0, the Higgs mass contours are
nearly vertical and the value of tan β = 4.5 was chosen to
maximize the area with good relic density and Higgs masses.
The area between m1/2 = 5 TeV and 9 TeV has mh between
124 and 126 GeV, and increasing (decreasing) tan β by 0.5
would raise (lower)mh by roughly 1 GeV. Much of this region
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Fig. 12 The NUHM1 (m1/2,m0) planes for tan β = 4.5 (upper) and
tan β = 10 (lower). We take μ = 1000 GeV in the upper left panel
and 1050 GeV in the upper right panel, both with A0 = 0. In the lower

panels, μ = 500 GeV with A0 = 2.3m0 (left) and μ = 1000 GeV with
A0 = 0 (right). The shading and contour types are as in Fig. 2

has τp � 0.05 × 1035 years: requiring τp > 5 × 1033 years
implies either m1/2 � 7.8 TeV for small m0 or m0 � 8 TeV
for m1/2 � 4 TeV. As μ is increased past 1050 GeV, the left
edge of the blue shaded region moves quickly to the right and
the relic density would be too large over much of the plane.
The relic density would now asymptote to a value in excess of
the Planck density. The Higgs mass is independent of A0/m0

for small m0 but the Higgs mass contours bend to the left as
A0/m0 is increased, so that the Higgs mass becomes large at
larger m0.

In the lower panels of Fig. 12, we have taken tan β = 10.
In the left panel, μ = 500 and the transition strip from bino to
Higgsino dark matter is much narrower and occurs at much
lower m1/2 ≈ 1200 GeV. Had we chosen A0 = 0 as in

the previous plots, the Higgs mass would be far too small.
This can be compensated in this panel by choosing larger
A0, and we have chosen A0 = 2.3m0 in this panel. As in the
CMSSM, there is now a shaded region where the LSP is a stop
in the upper left of the panel. There is a barely visible stop
coannihilation strip that runs close to the stop LSP boundary,
from the transition strip down to smaller m1/2 and m0. There
is also a narrow stau coannihilation strip running on top of
the stau LSP region at low m0. In the right panel, we have
again taken A0 = 0 and increased μ to 1000 GeV. The relic
density region resembles that in the upper left panel of the
same figure, though the Higgs masses are now notably larger.
The transition strip is now centered onmh = 126 GeV, which
is compatible within the experimental measurement within
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Fig. 13 As in Fig. 3 for the NUHM1 cases with tan β = 4.5 and A0 = 0 with μ = 1000 GeV (left) and μ = 1050 GeV (right)

the theoretical uncertainties. We note also that the proton
lifetime is far smaller in the lower panels due to the larger
value of tan β. Indeed, in the lower left panel τp is always
below 0.01 × 1035 years.

The elastic scattering cross sections for the four panels
of Fig. 12 are shown in Figs. 13 and 14. The left panels of
Fig. 13 correspond to the NUHM1 model with tan β = 4.5,
A0 = 0, and μ = 1000 GeV. Viable points (with the correct
relic density or less) have gaugino masses of around 3 TeV
(for the correct relic density) or greater (less than the Planck
density). In either case, the LSP mass is just over 1 TeV,
which explains why all the points line up vertically. Most of
the points (though not all) lie below the current LUX limit
and all of them lie above the LZ projected reach. Note that, in
principle, this vertical strip could extend further down, into
the neutrino background, if we continued to sample points at
higherm1/2. Our sampling of points includes only points with
mh between 122 and 128 GeV. Concerning the right panels
with μ = 1050 GeV, we recall that much of the (m1/2,m0)

plane contains a Higgsino LSP with the desired relic density.
In that region, the mass of the LSP is always very close to
1100 GeV and that fact is readily seen in the right panels of
Fig. 13, where all the points stack vertically at mχ � 1100
GeV. All of these points lie below the current LUX bound,
but most of them are within the projected reach of LZ. As
in the previous example, the vertical strip of points could go

lower if we sampled to larger m1/2 where mh > 128 GeV.
As seen in the lower right panel of this figure, the points with
mh between 124 and 126 GeV are all accessible to LZ.

In Fig. 15, we show the spin-independent cross sections for
tan β = 10. In the left panels withμ = 500 GeV, we again see
a pile-up at a fixed LSP mass,mχ ∼ 500 GeV, corresponding
in this case to the transition strip and the region to its right.
Since the strip is so narrow in this case, there are very few
dark-shaded points, and these have cross sections that exceed
the LUX bound. There are also a few points at lower mχ that
originate near the stop or stau coannihilation strips. All of the
points shown lie within the LZ projected reach. One also sees
in the lower left panel that many of the points have a Higgs
mass in the 124–126 GeV range. Indeed, for an underdense
Higgsino-like LSP with mχ ≈ 500 GeV (to the right of
the transition strip in Fig. 12), there are also many points
with mh > 126 GeV, though these points are eclipsed in
Fig. 15 by those with more favorable mh . In the right panels
of Fig. 15, for μ = 1000 GeV, all points in the transition
strip and to the right of the strip have a narrow range of LSP
masses fixed by the value of μ. These points lie just below
the current LUX bound. Points that are most compatible with
Planck dark matter abundance and havemh ≈ 125 GeV have
the largest SI cross sections, within an order of magnitude
of the current LUX limit. All points considered here, with
122 < mh < 128 GeV, should be accessible with LZ.
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Fig. 14 As in Fig. 3 for the NUHM1 with tan β = 10 and A0 = 2.3m0 with μ = 500 GeV (left) and A0 = 0 with μ = 1000 GeV (right)

5 Discussion

Large parts of the CMSSM parameter space are excluded
by the absence (so far) of proton decay, if the CMSSM is
embedded within the minimal SU(5) GUT. There are regions
of parameter space with tan β � 5 and (m1/2,m0) � several
TeV that are still allowed, however. Typically, these models
predict a spin-independent dark matter-nucleon scattering
cross section that falls below the current LUX upper limit
but could be accessible to the planned LZ experiment. In
fact, it is the constraints coming from the Higgs boson mass
which exclude the bulk of the model points which are beyond
the reach of LZ. The prospects for direct detection of spin-
independent dark matter scattering are reduced for μ < 0
and for A0 > 0, and the cross sections for spin-dependent
dark matter scattering are generally substantially below the
current bounds from PICO and IceCube.

In view of the limited perspectives within the CMSSM,
we have explored in this paper the prospects for probing
other MSSM scenarios via proton decay and dark matter
detection. In one class of scenarios, called subGUT mod-
els, universality of the soft supersymmetry-breaking masses
is retained, but it is imposed at some scale Min < MGUT.
Within the subGUT CMSSM there are more possibilities for
bringing the supersymmetric relic density within the range
allowed by Planck and other experiments even if m1/2 and

m0 are each several TeV, thanks in particular to the more
compressed spectrum and consequently the greater possibil-
ities for coannihilation processes that bring the dark matter
density down into the allowed range. However, small val-
ues of tan β � 5 are preferred again, as in the GUT-scale
CMSSM, unless one adopts a non-minimal GUT structure.
For Min = 109 GeV and tan β = 3.5 or 10, we find spin-
independent dark matter-nucleon scattering cross sections
that are well within the range allowed by LUX, and the spin-
independent cross section may fall below the neutrino back-
ground level, particularly for μ < 0.

In mSUGRA models, the possibilities are very limited
if Min = MGUT but open up for Min < MGUT. On the
other hand, in mSUGRA models tan β is no longer a free
parameter, and the electroweak vacuum conditions typically
require large values that give severe problems within the min-
imal SU(5) GUT framework. That said, spin-independent
dark matter scattering may again lie within reach of the
LZ experiment, whereas spin-dependent scattering cross
sections generally lie below the PICO and IceCube upper
limits.

In the NUHM1 one may regard the Higgs mixing param-
eter μ as an extra free parameter compared to the CMSSM.
This freedom opens up new possibilities for models that
respect the dark matter, Higgs mass, and proton decay con-
straints. In particular, since varying μ varies the Higgsino
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component of the LSP, there is the possibility of a ‘well-
tempered’ transition region as well as the more familiar stau
and stop coannihilation possibilities for bringing the relic
neutralino density into (or below) the Planck range. More-
over, for some μ values as seen in the upper right panel of
Fig. 12, in particular, the relic density may lie within the
Planck range up to indefinitely high values of m1/2 and m0.
In this case, the proton lifetime may certainly be long enough
to survive the present experimental lower limit whereas, as
seen in Fig. 13, the spin-independent dark matter scattering
cross section is likely to be within reach of the planned LZ
experiment.

In conclusion, the examples studied in this paper show
that there are certainly interesting possibilities for probing
supersymmetric models beyond the CMSSM via searches
for proton decay and direct dark matter scattering.
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Appendix A: Wilson coefficients and RGEs for proton
decay

In this appendix, we summarize the matching conditions
and RGEs used in the proton decay calculation discussed in
Sect. 3.1. The Wilson coefficients Ci jkl

5L and Ci jkl
5R in Eq. (6)

are given at the GUT scale by

Ci jkl
5L (MGUT) = 1

MHC

yui e
iϕi δi j V ∗

kl ydl ,

Ci jkl
5R (MGUT) = 1

MHC

yui Vi j V
∗
kl ydl e

−iϕk , (21)

where yui and ydl are up- and down-type Yukawa couplings at
the GUT scale, respectively, Vi j is the Cabibbo–Kobayashi–
Maskawa (CKM) matrix, and ϕi (i = 1, 2, 3) denote the
extra phases appearing in the GUT Yukawa couplings. They

are taken such that they satisfy
∑

i ϕi = 0, and thus there are
two independent degrees of freedom [195]. For the definition
of the GUT Yukawa couplings, we follow the convention
of [116]. These unknown phases cause uncertainty in our
calculation, whose significance is estimated below.

These Wilson coefficients are run down to the SUSY-
breaking scale using RGEs. Since the theory is supersym-
metric, the RGEs of the Wilson coefficients are readily
obtained from the anomalous dimensions of the fields in
the corresponding effective operators, thanks to the non-
renormalization property [240] of the holomorphic operators.
Hence we have

d

d ln Q
Ci jkl

5L = 1

16π2 ×
[

−2

5
g2

1 − 6g2
2 − 8g2

3 + y2
ui + y2

di

+ y2
u j

+ y2
d j

+ y2
uk + y2

dk + y2
el

]

Ci jkl
5L ,

d

d ln Q
Ci jkl

5R = 1

16π2

[

−12

5
g2

1 − 8g2
3 + 2y2

ui + 2y2
e j

+ 2y2
uk + 2y2

dl

]

Ci jkl
5R , (22)

where Q denotes the renormalization scale.
The matching conditions at the sfermion mass scale are

C H̃
i = yt yτ

(4π)2 F(μ,m2
t̃R

,m2
τR

)C∗331i
5R ,

CW̃
jk = α2

4π

[

F(M2,m
2
Q̃1

,m2
Q̃ j

) + F(M2,m
2
Q̃ j

,m2
L̃k

)
]

C j j1k
5L ,

C
W̃
jk = −3

2

α2

4π

[

F(M2,m
2
Q̃ j

,m2
Q̃ j

) + F(M2,m
2
Q̃1

,m2
L̃k

)
]

C j j1k
5L ,

(23)

where mt̃R , m τ̃R , mQ̃ j
, and mL̃k

are the masses of the right-
handed stop, the right-handed stau, left-handed squarks, and
left-handed sleptons, respectively, αi ≡ g2

i /(4π), and

F(M,m2
1,m

2
2) ≡ M

m2
1 − m2

2

[
m2

1

m2
1 − M2

ln

(
m2

1

M2

)

− m2
2

m2
2 − M2

ln

(
m2

2

M2

)]

. (24)

Between the SUSY-breaking scale and the electroweak
scale, the RGEs for the Wilson coefficients are given by [199]

d

d ln Q
CH̃
i =

[
α1

4π

(

−11

10

)

+ α2

4π

(

−9

2

)

+ α3

4π
(−4) + 1

2

f 2
t

16π2

]

C H̃
i ,

d

d ln Q
CW̃

jk =
[

α1

4π

(

−1

5

)

+ α2

4π
(−3)

+ α3

4π
(−4) + f 2

u j

16π2

]
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× CW̃
jk + α2

4π
(−4)[2CW̃

jk + C
W̃
jk],

d

d ln Q
C

W̃
jk =

[
α1

4π

(

−1

5

)

+ α2

4π
(−3)

+ α3

4π
(−4) + f 2

u j

16π2

]

× C
W̃
jk + α2

4π
(−4)[2CW̃

jk + C
W̃
jk], (25)

where the fu j denote the SM up-type Yukawa couplings. At
the electroweak scale, the effective operators are matched
onto the effective interactions that induce the p → K+ν̄k
decay mode. The interactions are written as

L(p → K+ν̄i ) = CRL(usdνi )
[

εabc(u
a
Rs

b
R)(dcLνi )

]

+ CRL(udsνi )
[

εabc(u
a
Rd

b
R)(scLνi )

]

+ CLL(usdνi )
[

εabc(u
a
Ls

b
L)(dcLνi )

]

+ CLL(udsνi )
[

εabc(u
a
Ld

b
L)(scLνi )

]

, (26)

and we have

CRL(usdντ ) = −VtdC
H̃
2 (mZ ),

CRL(udsντ ) = −VtsC
H̃
1 (mZ ),

CLL(usdνk) =
∑

j=2,3

Vj1Vj2C
W̃
jk(mZ ),

CLL(udsνk) =
∑

j=2,3

Vj1Vj2C
W̃
jk(mZ ). (27)

We note that C
W̃
jk does not contribute to the electroweak

matching conditions: it is relevant only to the RGEs.
The above coefficients are then run down to the hadronic

scale Qhad = 2 GeV, where the matrix elements of the
effective operators are evaluated. The QCD contributions
to the RGE for this step are calculated at two-loop level in
Ref. [200]. For a generic coefficient C , the two-loop RGE is

d

d ln Q
C = −

[

4
αs

4π
+

(
14

3
+ 4

9
N f + �

)
α2
s

(4π)2

]

C, (28)

where αs is the strong coupling constant, N f is the number of
quark flavors, and � = 0 (� = −10/3) for CLL (CRL ). The
analytical solutions of the RGEs are given in Refs. [115,200].

For the hadron matrix elements of the effective opera-
tors, we use the results given by the lattice QCD simulation
in [201]. Using these results, we obtain finally the partial
decay width of the p → K+ν̄i mode:

�(p → K+ν̄i ) = mp

32π

(

1 − m2
K

m2
p

)2

|A(p → K+ν̄i )|2,
(29)

4.0 x 1034

4.5 x 1034

5.0 x 1034

5.5 x 1034

0 0.5 π π 1.5 π 2 π

τ P
 y

ea
rs

φ

10 τP(φ3) for point A
10 τP(φ2) for point A
τP(φ3) for point B
τP(φ2) for point B

Fig. 15 The variation of the proton lifetime due to the phases of the
Wilson coefficients for point A (m1/2 = 2.2 TeV,m0 = 10 TeV, A0 = 0,
tan β = 5 and Min = MGUT) and point B (m1/2 = 8 TeV, m0 = 5.2
TeV, A0 = 2.5m0, tan β = 3.5, and Min = 109 GeV)

where mp and mK are the masses of the proton and kaon,
respectively. The amplitude A(p → K+ν̄i ) is the sum of the
Wilson coefficients multiplied by the corresponding hadron
matrix elements:

A(p → K+ν̄e) = CLL(usdνe)〈K+|(us)LdL |p〉
+ CLL(udsνe)〈K+|(ud)LsL |p〉,

A(p → K+ν̄μ) = CLL(usdνμ)〈K+|(us)LdL |p〉
+ CLL(udsνμ)〈K+|(ud)LsL |p〉,

A(p → K+ν̄τ ) = CRL(usdντ )〈K+|(us)RdL |p〉
+ CRL(udsντ )〈K+|(ud)RsL |p〉
+ CLL(usdντ )〈K+|(us)LdL |p〉
+ CLL(udsντ )〈K+|(ud)LsL |p〉. (30)

The following are the numerical values of the hadron matrix
elements at the scale of Qhad = 2 GeV found in [201]:

〈K+|(us)LdL |p〉 = 0.036(12)(7) GeV2,

〈K+|(ud)LsL |p〉 = 0.111(22)(16) GeV2,

〈K+|(us)RdL |p〉 = −0.054(11)(9) GeV2,

〈K+|(ud)RsL |p〉 = −0.093(24)(18) GeV2. (31)

The first and second parentheses represent statistical and sys-
tematic errors, respectively.

As mentioned above, new phases appearing in the GUT
Yukawa couplings yield uncertainty in the calculation [185],
though we have neglected the effects of these phases in the
main text. To justify our neglect of these parameters, here
we will show the variation in the proton lifetime when the
phases of the Wilson coefficients are included. We select
two points for analysis and present their phase dependence
in Fig. 15. Point A is for m1/2 = 2.2 TeV, m0 = 10 TeV,
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A0 = 0, tan β = 5 and Min = MGUT and has been labeled
in Fig. 2. Point B is for m1/2 = 8 TeV, m0 = 5.2 TeV,
A0 = 2.5m0, tan β = 3.5, and Min = 109 GeV and has been
labeled in Fig. 6. The variation arises due to cancellations
between the wino and Higgsino contribution to the proton
decay. Diagrams representing these processes are found in
Fig. 1. As is clearly seen from Fig. 15, the variation is small
in comparison to the uncertainty coming from the Yukawa
couplings. Thus, we ignore these effects in the main text.
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