

Quarkonium Production in pp and p+Pb Collisions with ATLAS at the LHC

Qipeng Hu on Behalf of the ATLAS Collaboration University of Science and Technology of China (USTC)

Physics Motivation

understood.

CNM effects:

- Shadowing + other gluon PDF modification
- Medium-induced gluon radiation
- Absorption of the QQ pair

Initial state effects

Final state

effects

The ATLAS Detector

Quarkonium Signal Extraction

Qipeng Hu (USTC)

Sep 28, 2015 Kobe, Japan

Forward to Backward Ratio

- (Left) Prompt J/ ψ R_{FB}
- (*Right*) Non-prompt J/ ψ R_{FB}

Prompt J/ ψ R_{FB} is compatible with both EPS09 models.

$$R_{\rm FB}(p_{\rm T},y^*)\equiv rac{d^2\sigma(p_{\rm T},y^*>0)/dp_{
m T}dy^*}{d^2\sigma(p_{
m T},y^*<0)/dp_{
m T}dy^*}.$$

y*: CM rapidity being positive in forward(proton beam direction)

Nuclear Modification Factor – $\psi(nS)$ **FATLAS**

- (Top) Prompt J/ ψ
- (Middle) Non-Prompt J/ ψ
- (Bottom) Prompt $\psi(2S)$

No significant suppression or enhancement for the kinematics range of $|y^*| < 1.5$ and $10 < p_T < 30$ GeV

ATLAS-CONF-2015-023

Nuclear Modification Factor – Y(1S) **FATLAS**

ATLAS-CONF-2015-050

• *(Left)* Y(1S) *R*_{pPb} vs. *p*_T.

Compatible with inclusive J/ ψ R_{pPb} at low p_T (**ALICE**) and prompt J/ ψ R_{pPb} at higher p_T (**ATLAS**)

(Right) Y(1S) R_{pPb} vs. y*
 In comparison with ALICE and LHCb results. Provide constrains for models at central rapidity.

Double Ratio

ATLAS-CONF-2015-023

- (Left) Prompt charmonium double ratio
- (Right) Bottomonium double ratio

No obvious p_T and rapidity dependence

$$\frac{[\Upsilon(2S+3S)/\Upsilon(1S)]_{pPb}}{[\Upsilon(2S+3S)/\Upsilon(1S)]_{pp}}$$

Centrality in *p*+Pb

<u>Centrality Bias</u>: hard scatterings are often correlated with a larger transverse energy of the underlying event.

Process independent centrality bias correction factor from model calculation (<u>arXiv:1412.0976</u>) doublechecked by data-driven calculation (<u>arXiv:1507.06232</u>).

How would the bias correction factor work for quarkonium production?

J/ ψ R_{pPb} vs. \langle N_{part} \rangle

ψ (2S) and Y(1S) R_{pPb} vs. $\langle N_{\text{part}} \rangle$

ATLAS-CONF-2015-023

ATLAS-CONF-2015-050

Bias corrected $\Upsilon(1S) R_{pPb}$ is consistent with being constant.

Evident decrease trend as $\langle N_{part} \rangle$ or ΣE_T increases for prompt $\psi(2S)$ production.

Suppressed in more central collisions wrt. more peripheral collisions.

Double Ratio vs. FCal ΣE_T

ATLAS-CONF-2015-023 ATLAS-CONF-2015-050 Ք_{pPb}(ψ(2S))/*R_{pPb}*(J/ψ) ϓ(2S+3S)/Υ(1S)]_{pPb}/[Υ(2S+3S)/Υ(1S)]_{pp} ATLAS Preliminary $10 < p_{_{
m T}} < 30 {
m GeV}$ **ATLAS** Preliminary **Prompt Double Ratio** $-1.5 < y^* < 1.5$ 2.5 p+Pb $\sqrt{s_{NN}}$ = 5.02 TeV $p+Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ 1.5 $pp \sqrt{s} = 2.76 \text{ TeV}$ $pp \sqrt{s} = 2.76 \text{ TeV}$ 2 1.5 ly*l < 1.2, p_⊤ < 40 GeV 0.5 0.5 0^L 0 20 40 60 80 20 40 60 80 100 E_{T}^{FCal} [GeV] ΣE_{T}^{FCal} [GeV]

- *(Left)* Prompt charmonium double ratio
- (Right) Bottomonium double ratio

Both show sizable ΣE_T dependence. Excited states (ψ (2S) and Υ (2S+3S)) are more suppressed wrt. ground states in more central collisions in a similar way.

Self-normalized Ratio (I)

ATLAS-CONF-2015-050

$\Sigma E_T / \langle \Sigma E_T \rangle < 2.3$

Self-normalized Y yields are consistent with the unitarily sloped line. Compatible with **CMS**.

 $(\Sigma E_{\mathrm{T}}^{\mathrm{HF}} / \langle \Sigma E_{\mathrm{T}}^{\mathrm{HF}} \rangle$ for CMS)

 $\Sigma E_{\rm T}/\langle \Sigma E_{\rm T} \rangle = 3.1$

2 σ deviated from line at for both Y(1S) and Y(2S+3S).

Self-normalized Ratio (II)

• *(Left)* Uncorrected self-normalized ratio for charmonium and *Z*.

Consistent with line when $\Sigma E_T / \langle \Sigma E_T \rangle < 2.3$, more than **3** σ deviated from line at $\Sigma E_T / \langle \Sigma E_T \rangle = 3.1$.

• (*Right*) Bias corrected ratios. More significant deviations.

- Charmonia and bottomonia production in pp and p+Pb collisions are presented.
- Charmonia (J/ ψ and ψ (2S)):
 - Charmonia R_{pPb} shows no obvious p_T and rapidity dependence.
 - J/ ψ R_{pPb} shows no centrality dependence.
 - Prompt $\psi(2S)$ is more suppressed in more central collisions wrt. more peripheral collisions.
- Bottomonia (Y(1S) and Y(2S+3S)):
 - $\Upsilon(1S) R_{pPb}$ is compatible with prompt J/ ψR_{pPb} .
 - $\Upsilon(1S) R_{pPb}$ shows no centrality dependence.
 - Y(2S+3S) states are more suppressed in more central collisions.

Thank you! ありがとう

pPb Beam Configuration

The proton-nucleon center of mass (CM) frame has a shift of 0.465 in rapidity in the proton beam direction.

y*: CM rapidity being positive in forward(proton beam direction).

$$y^* = -(y_{lab} + 0.465)$$
 p+Pb run period A
 $y^* = y_{lab} - 0.465$ p+Pb run period B

i	Туре	Source	$f_i(m)$	$h_i(\tau)$
1	<i>J/ψ</i> S	Р	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$\delta(\tau)$
2	<i>J/ψ</i> S	NP	$\omega_i CB_1(m) + (1 - \omega_i)G_1(m)$	$E_1(\tau)$
3	ψ(2S) S	Р	$\omega_i CB_2(m) + (1 - \omega_i)G_2(m)$	$\delta(\tau)$
4	ψ(2S) S	NP	$\omega_i CB_2(m) + (1-\omega_i)G_2(m)$	$E_2(\tau)$
5	Bkg	Р	flat	$\delta(\tau)$
6	Bkg	NP	$E_3(m)$	$E_4(\tau)$
7	Bkg	NP	$E_5(m)$	$E_6(\tau)$

Table 2: Probability density functions for individual components in the fit model used to extract the prompt (P) and non-prompt (NP) contributions for the J/ψ and the $\psi(2S)$ signal (S) and background (Bkg). The index, *i*, runs from 1 to 7 for 7 different components. The composite pdf terms are defined as follows: *CB* - Crystal Ball; *G* - Gaussian; $E(\tau)$ - single sided exponential; $E(|\tau|)$ - double sided exponential; δ - delta function. The parameter ω is the fraction of CB function in the signal.

Signal	$f_{\Upsilon(1S)}(m_{\mu\mu})$ $f_{\Upsilon(2S)}(m_{\mu\mu})$ $f_{\Upsilon(3S)}(m_{\mu\mu})$	$\omega G(m_{\mu\mu}; M_{1S}, \sigma_{1S}) + (1 - \omega) CB(m_{\mu\mu}; M_{1S}, 2\sigma_{1S}, \alpha, n)$ $\omega G(m_{\mu\mu}; M_{2S}, \sigma_{2S}) + (1 - \omega) CB(m_{\mu\mu}; M_{2S}, 2\sigma_{2S}, \alpha, n)$ $\omega G(m_{\mu\mu}; M_{3S}, \sigma_{3S}) + (1 - \omega) CB(m_{\mu\mu}; M_{3S}, 2\sigma_{3S}, \alpha, n)$
Background	$\frac{f_{\rm bkg}(m_{\mu\mu})}{\log p_{\rm T} f_{\rm bkg}(m_{\mu\mu})}$	$\frac{erf(m_{\mu\mu}) \times E(m_{\mu\mu})}{P(m_{\mu\mu})}$

Table 1: Functional forms of individual components in the central fit model. The composite pdf terms are defined as follows: G - single Gaussian function, CB - Crystal Ball function, erf - error function, E - exponential function, P - 2nd order polynomial function. The parameter ω is the fraction of the Gaussian function in the signal.

Selected ψ (2S) fits

- Data
- Fit Model
- Prompt Signal
- ----- Non-Prompt Signal
- Prompt Bkg
- ---- Non-Prompt Bkg

pp Reference at 5 TeV

ATLAS-CONF-2015-023

Three interpolation functions used to calculate pp reference at 5.02 TeV, central values obtained from power law function.

$$\sigma(\sqrt{s}) = \begin{cases} p_0 + \sqrt{s}p_1 & \text{linear} \\ (\sqrt{s}/p_0)^{p_1} & \text{power law} \\ p_0(1 - \exp(-\sqrt{s}/p_1)) & \text{exponential} \end{cases}$$

Three points for charmoina interpolation Two points for bottomoina interpolation

Non-prompt fraction

2

у*

Cross Sections

ATLAS-CONF-2015-023 Revison

Update 7 and 8 TeV results used in the interpolation

*E*_T / 〈*E*_T〉 Scale Factor

