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Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we
argue why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is
possible in a non-Abelian SU(N) Yang-Mills theory, we constrain the form of the amplitude of the
process and offer a simple understanding of these results in terms of effective-action operators.

I. INTRODUCTION

The Landau-Yang theorem states that a massive vector
(i.e. spin 1) particle cannot decay into two on-shell mass-
less photons. The proofs of Landau [1] and Yang [2] show
that one can reach this conclusion under very general
conditions, using only Lorentz invariance, gauge invari-
ance (in the form of transversality of photon polarization
vectors) and the Bose symmetry of the photons.
One can also consider the case of a massive color-octet

vector state decaying into two on-shell massless gluons.
This process is of phenomenological interest not only for
models predicting the existence of colored massive vec-
tor particles, but also for heavy quarkonium physics, e.g.
for the hadroproduction of a J/ψ particle or its decay
into hadrons.1 Evidence that this amplitude vanishes
at tree-level has been given many times in Quantum
Chromodynamics (QCD), usually by explicitly calculat-
ing the two-gluon decay of a quark-antiquark pair pro-
jected onto a massive color-octet spin-1 state (QQ̄)1,8,
see e.g. Refs. [3–9]. In these papers it was generally un-
derstood, albeit with some exceptions, that the proofs of
Landau and Yang could not be immediately extended to
the color-octet case, because of additional terms in the
amplitude induced by the antisymmetric character of the
color quantum numbers. However, for a number of years
no attempt was apparently made to study the color-octet
case in more detail or to explicitly check if the vanishing
of the amplitude at tree level still held at higher orders.
This situation began to change only recently, when two

calculations found non-zero results for the one-loop am-
plitude of the transition between a massive color-octet

1 In both cases the two gluons will not be exactly on-shell, but
their off-shellness will be at most of the order of a few hundred
MeV, and its effects therefore suppressed by the ratio with the
much larger scale set by the J/ψ mass or transverse mass.

vector state and two massless gluons: Ref. [10] calculated
the next-to-leading order corrections to gluon fusion pro-
duction of massive color-octet vector bosons (colorons),
while Ref. [11] reported that the (QQ̄)8 → gg amplitude
is also different from zero at one-loop level.
These results indicate that a colored version of the

Landau-Yang theorem breaks down once quantum cor-
rections are taken into account. In this note we analyze
in depth the origin of the cancellation at tree level and
the structure of the amplitude in full generality, we ex-
plore where the proof of a would-be Landau-Yang the-
orem for colored states fails, and derive constraints on
the form of the amplitude for the decay of a massive vec-
tor color-octet in two massless gluons. We also identify
higher-dimension effective operators whose presence can
explain the non-vanishing results at one-loop and beyond,
and show how the LY theorem (or its failure) can be un-
derstood in a very direct and simple way at the operator
level.

II. THE ABELIAN CASE

It is instructive to first reconsider the original Landau-
Yang theorem, highlighting the difficulties in extending
it to the case of a color-octet state. We denote by

M(1, 2) ≡ 〈γ(k1, ǫ1)γ(k2, ǫ2)|V (P, ǫ)〉 , (1)

the amplitude for the decay V → γγ, where V is a color-
less massive spin-1 state and the γ’s are photons. k1 and
k2 are the photons 4-momenta, P is the 4-momentum of
V , and momentum conservation dictates P = k1 + k2.
Relying only on Lorentz invariance and Bose symmetry
(M(1, 2) =M(2, 1)), one can write

M ∼ A (ǫ1 · ǫ2)[ǫ · (k1 + k2)]

+ B [(ǫ1 · ǫ)(ǫ2 · k1) + (ǫ2 · ǫ)(ǫ1 · k2)]
+ C [ǫ · (k1 + k2)](ǫ1 · k2)(ǫ2 · k1) , (2)
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where ǫ1 ≡ ǫ∗1(k1), ǫ2 ≡ ǫ∗2(k2) and ǫ ≡ ǫ(P ) are the po-
larization 4-vectors of the two photons and of the massive
vector state respectively. A,B,C are coefficients that can
be determined in perturbation theory: they only depend
on scalar products of momenta, and therefore are con-
stants in the decay of a massive vector particle. Terms
that vanish because of transversality, ǫ1 ·k1 = ǫ2 ·k2 = 0,
have not been included. Instead, for the sake of intro-
ducing the discussion of the non-Abelian case that will
follow, we have kept in Eq. (2) also the A and C terms,
even if in the Abelian case these terms are trivially equal
to zero as a consequence of the transversality of the mas-
sive vector polarization, ǫ(P ) · P = 0.
It is convenient to consider the B term in Eq. (2) after

a Lorentz transformation to the rest frame of the massive
state V . The photon polarizations transform under the
Lorentz transformation, yielding in general non vanishing
time components for ǫµ1,2. However, the gauge invariance

of the amplitude M in Eq. (2) is equivalent to the invari-
ance of M under the transformations

ǫµj (kj) → ǫ̃µj (kj) = ǫµj (kj) + βjk
µ
j , (j = 1, 2) , (3)

where βj are arbitrary constants. This means that we
are allowed to use ǫ̃1,2 in place of ǫ1,2 in the expression
of M . In particular, we choose βj in such a way that

ǫ̃µj (kj ,±) =
1√
2
(0,∓1,−i, 0) . (4)

Therefore, only polarizations transverse to the ẑ direc-
tion will eventually appear in M . Taking the 3-momenta
k1 and k2 along ẑ, in the rest frame of V , we simply have
k1 = −k2 so that

ǫ̃1(2) · k2(1) = 0 . (5)

M in Eq. (2) is therefore zero and V → γγ is forbid-
den, leading to a proof of the Landau-Yang theorem in
the Abelian case.2 The treatment of gauge invariance in
the non-Abelian case, discussed in the next section, will
require instead more care.
Before considering the non-Abelian case, it is instruc-

tive to understand the Landau-Yang result at the level
of operators in the Lagrangian (or effective action) that
describes the interaction between a color-singlet massive

2 If the initial particle were a 1+ axial-vector, the only
non-trivial parity conserving term would be proportional to
ǫµνρσǫµǫν1ǫ

ρ
2
(k1 − k2)σ . In the rest frame of the massive vector

particle k1 − k2 = (0, 0, 0, 2E), E being the photon energy. Thus
ǫ, ǫ1, ǫ2 can only have 0, 1, 2 indices and permutations. Since
ǫ1,2 are transverse polarizations, and ǫ0 ∼ |P |/M (where P

and M are the massive vector momentum and mass), we get
ǫµνρσǫµǫν1ǫ

ρ
2
(k1 − k2)σ = 0. This illustrates that the Landau-

Yang theorem applies as well to positive parity vectors.

vector V µ and the electromagnetic tensor Fµν . This
approach takes care of gauge invariance automatically
and further cancellations can be shown by using the field
equations of motion, as illustrated below. The only non-
trivial operator3 leading to the relevant Lorentz struc-
tures for the V → γγ decay written in Eq. (2) is:

∆L = a(∂µVν)FµρF
ρν , (6)

where a is some coefficient with dimension mass−2.
Other operators with more derivatives just modify the
momentum-dependent form factors of the vertices with-
out changing its Lorentz structure.
Integrating by parts judiciously, the operator in Eq. (6)

can be rewritten as

∆L = −aVν(∂µFµρ)F
ρν − a

4
(∂νVν)FµρF

µρ . (7)

The second term, which can be written in this form
thanks to the symmetry of FµρF

µρ under photon ex-
change, can be dropped due to ∂νVν = 0. In the first,
we can use the equation of motion of the electromagnetic
field to replace ∂µFµρ by a sum over all electromagnetic
currents to which the photon couples in the theory. This
replacement, equivalent to a field redefinition, does not
change the physics [12], but makes clear the fact that
this Lagrangian does not contribute to the V → γγ de-
cay with on-shell photons. (The modified Lagrangian in
terms of electromagnetic currents will give the right de-
scription for processes with virtual photons coupled to
such currents in the final state.)

III. NON-ABELIAN CASE: TREE-LEVEL

CANCELLATION

As mentioned in the Introduction the V a → gbgc am-
plitude is known to vanish at tree level. The purpose of
this section is to trace the origin of the tree-level cancel-
lation, showing it explicitly.
We choose to work with a colored vector field V a rather

than in full QCD and projecting a quark-antiquark pair
onto a spin-one color-octet state. We therefore introduce
a pure-glue SU(N) Lagrangian, to which we add a mas-
sive colored vector field V a

µ , in the adjoint representation
of SU(N), interacting with the gluons in a gauge invari-
ant way:

LVF = −1

4
V a
µνV

aµν−1

2
M2V a

µ V
aµ−1

4
F a
µνF

aµν+LI . (8)

3 Operators like (∂µVµ)FνρF ρν are trivial in the sense that they
can be removed by using ∂µVµ = 0.
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FIG. 1. Polar (A1) and direct (A2) contributions to the V a
→

gbgc amplitude.

Considering operators of dimension d = 4, there is only
one operator that can contribute to the interactions:

LI =
g′

2
V a
µνF

aµν (9)

= g′∂µV
a
ν F

aµν − gg′fabcAc
µV

b
ν (∂

µAaν − ∂νAaµ) .

In this expression

V a
µν ≡ Dab

µ V
b
ν −Dab

ν V
b
µ , (10)

Dab
µ denotes the covariant derivative in the adjoint rep-

resentation

Dab
µ = ∂µδ

ab − gfabcAc
µ , (11)

and

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (12)

Using the interaction term between V and the gluons
introduced in Eq. (9) we can extract the relevant con-
tributions from the two vertices directly relevant to our
calculation, V → g and V → gg, and use them to evalu-
ate the two amplitudes in Fig. 1.
From the first term in the r.h.s. of Eq. (9) we get, after

integration by parts 4

V a → ga : −g′M2ǫν , (13)

whereM is the mass of V , whereas from the second term
we get

V a → gbgc : igg′fabc(ǫ2 · ǫ1)[ǫ · (k1 − k2)] . (14)

In both cases, polarization vectors for legs that will even-
tually be external ones have already been included.
In order to complete the amplitude A1 in Fig. 1 we

need to propagate the gluon with 1/(k1 + k2)
2 = 1/M2

from the V state to the triple-gluon vertex. This leads
to

A1 = −igg′M2ǫν
1

M2
fabc(k1 − k2)

ν(ǫ1 · ǫ2) . (15)

4 We omitted null terms like ∂νV a
ν = 0 and terms proportional

to k1 · ǫ2 and k2 · ǫ1 that do not contribute to the final ampli-
tude because of the general transversality considerations made
in Section II.

The amplitude A2 is instead given simply by the expres-
sion for the V → gg vertex in Eq. (14). The sum A1+A2

shows a full cancellation.
In Ref. [3] the same conclusion was reached by com-

puting explicitly the QQ̄ → gg amplitude with off-shell
gluons after projecting the QQ̄ pair onto an ℓ = 0
(i.e. S-wave), spin 1, color-octet state, and later setting
k21 = k22 = 0. The result found in Ref. [3] with off-shell
gluons has the form

M bca ∼ f bca {D (ǫ1 · ǫ2)[ǫ · (k1 − k2)]

+ E [(ǫ1 · ǫ)(ǫ2 · k1)− (ǫ2 · ǫ)(ǫ1 · k2)]} (16)

with

D = E/2 = 1 +
M2

k21 + k22 −M2
. (17)

In this expression the second term comes from the sum
of the two amplitudes with a propagating quark, whereas
the first one originates from the amplitude with the tri-
linear gluon vertex. In the on-shell limit k21 = k22 = 0
and one finds D = E = 0.
We have therefore shown that the vanishing of the

amplitude for the decay of a massive color-octet vector
bosons into two massless gluon is due to a cancellation
between the diagram with the triple-gluon vertex and the
rest of the amplitude, whose forms are themselves dic-
tated by gauge invariance. When working in full QCD
and with a projected QQ̄ pair instead of the vector boson
V , the cancellation takes place between the antisymmet-
ric combination of the Abelian diagrams and the triple-
gluon vertex diagram.
As we will show below, this delicate cancellation does

not survive quantum corrections.

IV. NON-ABELIAN CASE: FULL ANALYSIS

We consider now the process where a massive color-
octet vector state decays into two massless colored glu-
ons, V a → gbgc, in full generality. Lorentz invariance
and Bose symmetry lead to the matrix element

M bca ∼ ǫρǫµ1 ǫ
ν
2A

bca
µνρ

= f bca
{

D (ǫ1 · ǫ2)[ǫ · (k1 − k2)]

+ E [(ǫ1 · ǫ)(ǫ2 · k1)− (ǫ2 · ǫ)(ǫ1 · k2)]

+
F

k1 · k2
[ǫ · (k1 − k2)](ǫ1 · k2)(ǫ2 · k1)

}

, (18)

where fabc are the color-SU(N) structure constants. We
have now denoted by ǫ1 ≡ ǫb∗1 (k1), ǫ2 ≡ ǫc∗2 (k2) and ǫ ≡
ǫa∗(P ) the polarizations of the massless colored gluons.
Note the minus sign between k1 and k2 momenta in the
D and F terms, as well as the minus sign in the E term,
compared to Eq. (2). Since ǫ · (k1 − k2) 6= 0, the D and
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F terms cannot be dropped as was done in the Abelian
case. An additional term proportional to the symmetric
tensor dbca, rather than to the antisymmetric one f bca, is
identical to the two-photons case considered previously,
and will therefore not be discussed further.
In the following we exploit the BRST symmetry [13]

of the gauge-fixed action to constrain the form of the
amplitude in Eq. (18). We will show that, differently
from the Abelian case, we cannot conclude that all its
terms are simultaneously zero.
The tensor Abca

µνρ(k1, k2) can be readily extracted from
Eq. (18):

Abca
µνρ(k1, k2) = f bca

[

Dgµν(k1 − k2)ρ

+ E (gµρk1ν − gνρk2µ)

+
F

k1 · k2
(k1 − k2)ρ k2µk1ν

]

. (19)

As shown in the Appendix, BRST invariance implies that
this tensor satisfies

kµ1 ǫ
ν
2A

bca
µνρ(k1, k2) = ǫµ1k

ν
2A

bca
µνρ(k1, k2) = 0 , (20)

which, together with Eq. (19), gives

0 = kµ1 ǫ
ν
2A

bca
µνρ

= f bca [(D + E + F )(k1 · ǫ2)k1ρ
− (D + F )(k1 · ǫ2)k2ρ − E(k1 · k2)ǫ2ρ] , (21)

where we set k21 = 0, i.e. on-shell gluon, and used the
transversality condition k2 · ǫ2 = 0. From Eq. 21 we
conclude that BRST invariance requires E = 0 and D +
F = 0. However the latter relation can be satisfied even
if D 6= 0 and F 6= 0.
As discussed in the Abelian case, once BRST invari-

ance is enforced, we can work with transverse polariza-
tions and hence we know that the E and F terms will
not contribute to the amplitude because terms of the
form ǫ1 · k2 and ǫ2 · k1 vanish in an appropriate frame.
However, we also see that the D term can survive in the
non-Abelian case, consistently with the non-vanishing re-
sults at one loop obtained in Refs. [10, 11]
The explicit tree-level calculation performed in Sec-

tion III shows the cancellation of the V a gluonic decay
amplitude expected from (9). As done above for the
Abelian case, it is interesting to understand this result
directly in terms of the operators that can appear in the
Lagrangian. The d = 4 operator in (9) generates the
Lorentz structures of the terms E and D in Eq. (18).
By themselves, these terms do not contribute to the
V a → gbgc decay, as we have seen. At the operator
level, that result is immediate to see in analogy to what
we did for the Abelian case. Simple integration by parts
yields

g′

2
V a
µνF

aµν = −g′V b
ν (D

ba
µ F

aµν) , (22)

and then, use of the equation of motion for the gluons to
replace Dba

µ F
aµν by colored quark currents shows that

the decay amplitude into on-shell gluons is zero.
The operator that can generate both D and F terms

(in the combination D + F ), and thus contribute to the
gluonic decay of V a, is

∆L6 = f bcaV a
µνF

b νρF cµ
ρ , (23)

a d = 6 operator that can be radiatively generated as
a finite correction to the effective action already at 1-
loop order. Consistently with the results of our previous
discussion, attempts to reduce this operator to equations
of motion or trivially vanishing terms, as we did for the
Abelian operator (6), fail in this case due to the non-
Abelian nature of the gauge symmetry: no expression
like (7) exists in this case. Note that the additional d =
6 operator, DabµV b

µνD
ac
ρ F

c ρν will not contribute to the
two-gluon decay of V a, as can be shown by direct use of
the gluonic equation of motion. The relevance of these
d = 6 operators for technicolor phenomenology and this
particular gluonic decay amplitude has been studied in
[14, 15].

V. LANDAU-YANG IN ℓ = 1 SCATTERING

STATES

Up to this point we have considered the decay of a
colored massive vector particle. Now we wish to analyze
the Landau-Yang selection rule for the Q(p1)Q̄(p2) →
g(k1)g(k2) annihilation in P -wave, with quarks treated
as spinless for simplicity. This configuration constitutes
a stand-in for that of spin-1/2 quarks whose projection
onto a given spin and angular momentum state leads to
a J = 1 vector state for the QQ̄ pair.
We start by considering the amplitude

M = ǫ1µǫ2νA
µν(k1, k2, p1) = 〈k1, ǫ1; k2, ǫ2|p1, p2〉, (24)

with on shell particles. The Aµν tensor can be decom-
posed in terms of form factors as

Aµν(k1, k2, p1) = A
(∓)
1 (pµ1k

ν
2 ± pν1k

µ
1 ) +

+ A
(∓)
2 (pµ1k

ν
1 ± pν1k

µ
2 ) +

+ A
(−)
3 (k1 · k2) gµν +A

(−)
4 kν1k

µ
2 +

+ A
(−)
5 kµ1 k

ν
2 , (25)

where Ai are functions of the Mandelstam variables

s = (p1 + p2)
2 and t = (p1 − k1)

2. The form factors A
(±)
i

are symmetric/antisymmetric with respect to k1 ↔ k2
exchange. In Eq. (25) we assume that the gluon con-
figuration is color-odd so that the final state is Bose-
symmetric.
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BRST identities imply that if we saturate Eq. (25) with
k1µǫ2ν we get

0 = k1µǫ2νA
µν =

= [A
(−)
2 +A

(+)
2 ] (k1 · p1) (k1 · ǫ2) +

+ [A
(−)
2 −A

(+)
2 ] (k1 · k2) (p1 · ǫ2) +

+ [A
(−)
3 +A

(−)
4 ](k1 · k2)(k1 · ǫ2) . (26)

From this equation we deduce that A
(−)
2 = A

(+)
2 = 0,

while due to the transversality of the gluon polarizations,

the A
(∓)
1 and the A

(−)
5 contributions to the physical am-

plitude vanish.

One can further see that, in the threshold limit, p1 =

p2 = 0, we have A
(−)
i = 0 because of antisymmetry, and

therefore A
(−)
3,4 = 0 at threshold. However this is not

sufficient to imply the Landau-Yang selection rule. In
fact the initial state |p1, p2〉 is to be projected onto the
P -wave in the center of mass according to

|p1, p2; ℓ = 1,m〉 =
∫

dΩp̂1
Y ℓ=1
m (p̂1)|p1, p2〉 , (27)

where p1 + p2 = 0 and p̂1 = p1/||p1|| is the unit vector
along p1, and the transition amplitude is given by

M ∝ ǫ1µǫ2ν

∫

dΩp̂1
Y ℓ=1
m (p̂1)A

µν . (28)

The P -wave condition selects contributions to Aµν that
overall contain one power of p1 which originates from
the t dependence of Ai’s which, close to threshold, we
parameterize as

A
(−)
i ≃ (p1 · k1)Bi , (29)

with Bi constrained by (26). Replacing in Eq. (28) we
find

M ∝ B3 ǫ1µǫ2ν g
µν

∫

dΩp̂1
Y ℓ=1
m (p̂1) (p1 · k1) ∝

∝ B3 (ǫ1 · ǫ2) km1 , (30)

where
√
2 k±1

1 = k1x∓ik1y, k01 = k1z and we used Eq. (5).

The result in Eq. (30) shows that the form of the am-
plitude for the process is very constrained. However, one
cannot say anything about the value of B3, because the
BRST identity in Eq. (26) only allows one to conclude
that the combination B3 + B4 must vanish. This is the
same kind of roadblock that was met in Section IV, and
it shows that the Landau-Yang selection rule cannot be
extended to non-Abelian gluons also in the case in which
the initial state is not a single particle but a scattering
continuum.

VI. CONCLUSIONS

In this note we have considered the process where a
massive, color-octet vector state decays into two on-shell
massless gluons. The well-known result that this ampli-
tude vanishes at tree level in QCD has been shown in
general terms to be due to a cancellation between the
color-antisymmetric, Abelian part of the amplitude and
its non-Abelian part.

Using considerations of Lorentz invariance and Bose
symmetry we have also written down the most general
expression for this amplitude, and employed BRST
invariance to constrain its form. We have shown that, at
variance with the Abelian case, one cannot conclude that
the amplitude vanishes to all orders. This is consistent
with recent evidence that the amplitude does indeed
not vanish at one-loop. We have explained this result in
terms of the emergence of higher-dimension operators,
radiatively generated in the effective action already at
one-loop order. In addition, we offer a novel way of
understanding the Landau-Yang theorem (or its failure)
directly in terms of the relevant operators, manipulated
by integration by parts or using field equations of
motion. We have also considered in detail a situation
where the massive vector state is given by the projec-
tion of a spinless quark-antiquark pair onto an ℓ = 1
angular momentum state, reaching the same conclusions.
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Note added. While our note was being finalized
Ref. [16] appeared, also discussing the failure of the
Landau-Yang theorem in a non-Abelian gauge theory
and reporting that an explicit calculation shows that the
(QQ̄)8 → gg amplitude at one loop is non-vanishing.
This paper also prompted a revised version of Ref. [17]
that now features a discussion of the Landau-Yang theo-
rem in QCD.
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APPENDIX

We now detail the derivation of the identities in
Eq. (20). The BRST transformations are defined by

δBRSTA
a
µ ≡ θ δAa

µ = θ (Dµ)
abcb , (31)

δBRSTB
a ≡ θ δBa = 0 , (32)

δBRSTc̄
a ≡ θ δc̄a = θ Ba , (33)

δBRSTc
a ≡ θ δca = −1

2
g θ fabccbcc , (34)

where θ is an anticommuting parameter and Ba are La-
grange multipliers enforcing the gauge fixing conditions.
The theory that we are considering also contains a col-
ored massive vector field V a

µ (x), whose BRST variation
is given by

δV a
µ (x) = −g

2
fabc cb V c

µ . (35)

The Lagrangian density for the gauge-fixed theory,

L = LVF − δ (c̄a ∂µA
aµ)− 1

2α
BaBa , (36)

satisfies δL = 0 and therefore the expectation value of
any BRST variation vanishes,

〈δO〉 = 0 , (37)

where 〈...〉 denotes the vacuum T -product.

In particular, from

δ (c̄a(x)Ab
ν (y)V

c
ρ (z)) =

= Ba(x)Ab
ν (y)V

c
ρ (z) + c̄a(x)(Dν)

bdcd(y)V c
ρ (z) +

−g
2
f cdec̄a(x)Ab

ν(y)c
d(z)V e

ρ (z) , (38)

we have

0 = 〈T (Ba(x)Ab
ν (y)V

c
ρ (z))〉+

+〈T (c̄a(x)(Dν)
bdcd(y)V c

ρ (z))〉+

−g
2
f cde〈T (c̄a(x)Ab

ν (y)c
d(z)V e

ρ (z))〉 . (39)

Integrating over the Nakanishi-Lautrup field Ba yields:

〈T (Ba(x)Ab
ν(y)V

c
ρ (z))〉 =

= α ∂µx 〈T (Aa
µ(x)A

b
ν (y)V

c
ρ (z))〉 , (40)

hence

α∂µx 〈T (Aa
µ(x)A

b
ν (y)V

c
ρ (z))〉 =

= −〈T (c̄a(x)(Dν )
bdcd(y)V c

ρ (z))〉+

+
g

2
f cde〈T (c̄a(x)Ab

ν (y)c
d(z)V e

ρ (z))〉 . (41)

The tensor Abca
µνρ in Eq. (18) is given by the LSZ reduc-

tion formalism in the form

Abca
µνρ(k1, k2) ∝

∝ lim
(k1+k2)2→M2

lim
k2

1
→0

lim
k2

2
→0

k21k
2
2 [(k1 + k2)

2 −M2]×
∫

dxdy 〈T (Aa
µ(x)A

b
ν (y)V

c
ρ (0))〉eik1xeik2y . (42)

Eqs. (41) and (42) imply

k1
µAabc

µνρ(k1, k2) ∝
∝ lim

(k1+k2)2→M2

lim
k2

1
→0

lim
k2

2
→0

k21k
2
2 [(k1 + k2)

2 −M2]×
∫

dxdy 〈T (c̄a(x)(Dν )
bdcd(y)V c

ρ (0))〉eik1xeik2y , (43)

where the second term in the r.h.s. of Eq. (41) does not
contribute because there are no single particle poles in
the channel of the composite operator f cdecd(z)V e

ρ (z).
As for the first term, the massless ghost can contribute a
term proportional to the momentum k2ν in the channel
of the operator (Dν)

bdcd(y). Eq. (43) can therefore be
written as

k1
µAabc

µνρ(k1, k2) ∝ k2νAabc
ρ , (44)

so that

k1
µǫ2

νǫρAabc
µνρ(k1, k2) = (k2 · ǫ2)ǫρAabc

ρ = 0 , (45)

because k2 · ǫ2 = 0. This proves Eq. (20).
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