Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

Simon Viel

(Lawrence Berkeley National Laboratory)

10th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors

Xi'an, China

September 29th, 2015

Test Beam Experiment Team

- Lawrence Berkeley National Laboratory
 - Rebecca Carney, Maurice Garcia-Sciveres, Sasha Pranko, Simon Viel
- Universität Göttingen
 - Gerhard Brandt, Julia Rieger
- University of Louisville
 - Swagato Banerjee
- University of Wisconsin–Madison
 - Andrew Hard, Laser Kaplan, Lashkar Kashif, Hongtao Yang
- With many thanks for their support at the test beams to
 - Carsten Hast (SLAC), Mathieu Benoit (Université de Genève)

Context: High-Luminosity LHC

- The Large Hadron Collider (LHC), situated at CERN near Geneva, Switzerland, will be upgraded to the High-Luminosity LHC in 2024-2026
 - This accelerator will deliver proton-proton collisions at a levelled luminosity of 5 x 10³⁴ cm⁻² s⁻¹ and an average rate <µ> = 200 per bunch crossing (200 collisions per 25 ns)
- The ATLAS experiment, situated at one of the four interaction points of the LHC, will need to be upgraded to face such high collision rates

Current ATLAS Inner Detector

pixel size: 50 µm x 250 µm

ATLAS Inner Tracker Upgrade

- One of the main upgrades to the ATLAS experiment will be a completely new Inner Tracker (ITk), made of silicon pixel and strip detectors
 - Currently evaluating different ITk designs; this study provides input to the discussion by characterizing the performance of a long inner pixel barrel to cover up to |η| = 4

Extended Inner Pixel Barrel Layers

- Silicon pixel detectors used for the ITk are planned to have **50 µm x 50 µm** pitch
 - With the layout shown on the last slide, we would therefore expect to measure long pixel clusters (tracklets) at low angle θ
 - Such long clusters provide a measurement of $\theta \rightarrow$ vertex position using θ and R
- Main advantages of extending the inner barrel layers:
 - Improvements in tracking **efficiency** and **resolution** from having a measurement as close as possible to the interaction point
 - Potential to reduce fake track rates by rejecting clusters with incompatible length
 - Potential to reduce CPU time owing to better track seeding capability

SLAC Test Beam at End Station A

Data taken in April – May 2015

SLAC Test Beam: Devices Under Test

- Four un-irradiated Insertable B-Layer (IBL) modules under test
 - Two double-chip planar modules and two single-chip 3D modules
 - Sensor thickness: 200 µm for planar modules, 230 µm for 3D modules
 - Modules tuned to 10 Time-over-Threshold units (250 ns) at 16k electrons

Time-over-Threshold (ToT) is measured as a multiple of the 25 ns clock signal

IBL 3D FBK sensor design

SLAC Test Beam

- Four un-irradiated Insertable B-Layer (IBL) modules under test
 - Two double-chip planar modules and two single-chip 3D modules
 - Sensor thickness: 200 μ m for planar modules, 230 μ m for 3D modules
 - Modules tuned to 10 Time-over-Threshold units (250 ns) at 16k electrons
- Beam: 10 GeV electrons, few-particle bunches at 5 Hz
 - Studies with beam in short pixel direction (50 μm) and long pixel direction (250 μm)

Long Pixel Clusters Observed

Incidence Angle Measurements

• Cluster length \rightarrow precise measurement of the incidence angle

 In tracking context: measurement of θ → z₀ given R

- Gaussian fit to signal peak
- Excellent performance achieved with all modules, especially at lowest angles
- Resolution limited by pitch/√6 along beam direction
 [pitch/√12 for entry and exit pixels]
 - Except at 2 deg. where some scattering effects are seen

Pixel Hit Efficiency

- Method: count fraction of hit pixels between first and last of cluster
 - No timing cut applied here
 - "in-time" efficiency available soon

Example: $\varepsilon = 4/5$ for this long cluster

Long pixel direction, Threshold 1000e

Short pixel direction, Threshold 1000e

Pixel Hit Efficiency

- Method: count fraction of hit pixels between first and last of cluster
 - No timing cut applied here
 - "in-time" efficiency available soon

Example: $\varepsilon = 4/5$ for this long cluster

No significant contribution to efficiency from noise

Long pixel direction, All threshold values

Short pixel direction, All threshold values

CERN SPS Test Beam

Data taken in May 2015

FEI4 Telescope at CERN SPS

Resolution

- Tracks were measured using an FEI4 telescope
 - Reconstructed using JUDITH software for alignment and tracking
- Telescope resolution at DUT ~ 14 μm in x, ~ 8.5 μm in y
- Example residual distributions for DUT in long pixel direction
 - Rotated in y to 2 degree incident angle, bias -40 V, threshold 1000e

Incidence Angle Measurements

• Cluster length \rightarrow precise measurement of the incidence angle

 In tracking context: measurement of θ → z₀ given R

- Long pixel direction
- Gaussian fit to signal peak
- Excellent performance independent of bias voltage
- Resolution limited by pitch/√6 along beam direction
 [pitch/√12 for entry and exit pixels]

Incidence Angle Measurements

• Cluster length \rightarrow precise measurement of the incidence angle

 In tracking context: measurement of θ → z₀ given R

- Short pixel direction
- Gaussian fit to signal peak
- Excellent performance independent of bias voltage
- Resolution limited by pitch/√6 along beam direction [pitch/√12 for entry and exit pixels]
 - Except at 2 deg. where some scattering effects are seen

Pixel Hit Efficiency

- Method: count fraction of hit pixels between first and last of cluster
 - No timing cut applied here
 - "in-time" efficiency available soon

Example: $\epsilon = 4/5$ for this long cluster

Short pixel direction

Pixel Hit Efficiency

- Method: count fraction of hit pixels between first and last of cluster
 - No timing cut applied here
 - "in-time" efficiency available soon
- Small hit inefficiencies observed for 3D modules in short pixel direction
 - Down to 95% efficiency seen at 1000e threshold
 - Down to 77% at 2000e threshold
 - No problem for long clusters as long as the threshold is low enough
 - Cause: depth effect, or charge collection effect?
 - Track analysis in short pixel direction should help answer this question

Example: $\varepsilon = 4/5$ for this long cluster

Conclusion

- Test beam results with IBL planar and 3D modules demonstrate excellent performance of these devices at small incidence angles
 - Comparable results observed with electron beam (SLAC) and pion beam (CERN)
 - Long clusters are **well-reconstructed**, especially at 1000e threshold
 - Excellent angular resolution using cluster size information only (e.g. 1% for $\theta \sim 2^{\circ}$)
- Proof-of-concept for the ITk extended inner barrel design
- Next steps
 - Perform the alignment and track analysis for CERN test beam runs
 - Preliminary results are shown in supplementary material
 - Measurement of irradiated sensors down to 2 degrees incidence angle
 - Investigation of observed inefficiencies at high threshold using tracks
 - Measurement of new prototype modules with RD53 chip when available
 - Complete the design of the Inner Tracker upgrade
 - Simulation of the overall tracking performance of the proposed Pixel ITk layouts

SUPPLEMENTARY MATERIAL

IV for Devices Under Test

Analysis With Tracks

- With tracks, one can also calculate the **charge collection** with respect to the **intersection** of the track with each pixel middle plane
 - Disregarding the entry and exit pixel of the long cluster
 - Pixel local coordinate system (note capital letters):

X in long pixel direction, Y in short pixel direction, Z along sensor depth

Analysis With Tracks

- With tracks, one can also calculate the **charge collection** with respect to the **intersection** of the track with each pixel middle plane
 - Disregarding the entry and exit pixel of the long cluster
 - Pixel local coordinate system (note capital letters):

X in long pixel direction, Y in short pixel direction, Z along sensor depth

IBL 3D FBK sensor design

Beam in long pixel direction intersects pixel in Z vs. Y

Pixel Hit Efficiency

 With tracks, one can also calculate the pixel hit efficiency with respect to the intersection of the track with each pixel middle plane

Charge Collection

- Mean Time-over-Threshold (ToT) as a function of the track intersection point
 - Working toward a reliable ToT \rightarrow charge calibration

Charge Collection

- Mean Time-over-Threshold (ToT) as a function of the track intersection point
 - Working toward a reliable ToT \rightarrow charge calibration

Charge sharing probability as a function of the track intersection point

Charge sharing probability as a function of the track intersection point

• Charge sharing probability as a function of the track intersection point

• Charge sharing probability as a function of the track intersection point

• Charge sharing probability as a function of the track intersection point

