Search for the Higgs boson decaying to b quark pairs in the W/Z associated production channels with ATLAS

Rute Pedro^{1,2} on behalf of the ATLAS Collaboration

1 LIP - Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 2 FCUL - Faculdade de Ciências da Universidade de Lisboa, Portugal

The $H \rightarrow bb$ decay has the largest SM branching ratio for a 125 GeV Higgs boson (58%) and its measurement is fundamental to:

- Measure the Higgs decay width and couplings
- Confirm the SM hypothesis

W/Z associated production provides clear The signatures for trigger and backgrounds rejection.

DATA SAMPLE

BACKGROUNDS

EVENT SELECTION

The analysis explores 3 channels to maximize the sensitivity: 0, 1 and 2 leptons ($\ell = e, \mu$).

The results from the VH (V=W,Z) channels analysis with the Run1 pp collision data are presented:

• $4.7 f b^{-1}$ at $\sqrt{s} = 7$ TeV

• $20.3 f b^{-1}$ at $\sqrt{s} = 8$ TeV

$min[\Delta\phi(E_T^{miss}, jet_i)] > 1.5$

 p_T^V -dependent $\Delta R(b_1, b_2)$ cuts and jets p_T cuts In addition: *b*-tagging weight (MV1c) in 3 categories: 50, 70 and 80% efficiency Events categorized based on the number of jets (2 or 3), p_T^V and *b*-tag type

MULTIVARIATE ANALYSIS

Process	Generator
$t\overline{t}$	Powheg+Pythia
Z + jets	Sherpa 1.4.1
W + jets	Sherpa 1.4.1
Dibosons	Powheg+Pythia8
top t-channel	AcerMC+Pythia
top s-channel	Powheg+Pythia
top Wt	Powheg+Pythia
Multi-jet	data-driven

Modeling uncertainties are derived by comparing different generators and simulation with data.

Special regions designed to control backgrounds.

A 80000 5 70000 Stuey 50000 40000 30000 10000	ATLAS $s = 8 \text{ TeV } \int \text{Ldt} = 20.3$ t muon, 2 jets, 0 tag W+jets control region	Data 2012 b fb ⁻¹ VH(bb) (μ=1.0) Diboson tī Single top Multijet W+hf W+cl W+l Z+hf Z+cl Z+l
0 0 0 0 0 0 0 0	50 100	++++++++++++++++++++++++++++++++++++++

The sensitivity is improved by exploring event properties with a Boosted Decision Tree (BDT) trained for different Higgs mass hypothesis for each event class:

- 0, 1 or 2 lepton channels
- 2 or 3 jets
- p_T^V intervals

Input variables optimized for each event category.

 $p_T^{j_3}, m_{bbj}$ only used for 3 jet events.

Variable	0 ℓ	1 ℓ	2 ℓ
p_T^V -Vector Boson Transverse Momentum			
E_T^{miss} - Missing Transverse Energy			
$p_T^{j_i}$ - Jet Transverse Momentum			
m_{bb} and m_{bbj} - Invariant Mass of the jets system			
$\Delta R(b_1, b_2)$ - Radial Distance between the 2 jets			
$ \Delta \eta(b_1, b_2) $ - η difference between the 2 jets			
$\Delta \phi(V, bb)$ - ϕ between the V and the bb system			
$ \Delta \eta(V, bb) $ - η between the the V and the bb system			
H_T - Scalar sum of E_T^{miss} , $p_T^{j_i}$ and p_T^ℓ			
$min[\Delta\phi(\ell, b^i)]$ - ϕ between the lepton and closest <i>b</i> -jet			
m_T^W - Vector Boson Transverse Mass			
$m_{\ell\ell}$ - Invariant Mass of the leptons system			
$MV1c(b_i)$ - Jet flavor (<i>b</i> -tagging) weight			

FIT METHOD

A maximum likelihood binned fit is performed simultaneously on the 3 channels using 38 regions. Input distributions are the BDT output (2 tag regions) and the *b*-tagging weight (1 tag regions).

Experimental and systematic uncertainties are parsed as a set of nuisance parameters. The impact of each uncertainty on the signal strength uncertainty $(\Delta \mu)$ is evaluated independently (right plot).

BIBLIOGRAPHY

The analysis is validated by the VZ

2 lepton

1 lepton

0 lepton

Combination

RESULTS

ATLAS

-1

0

The observed (expected) deviation from the background-only

ATLAS Collaboration. JHEP01(2015)069

 $(Z \rightarrow bb)$ yield measurement:

VALIDATION

 $\mu_{VZ} = 0.74 \pm 0.09 (\text{stat}) \pm 0.14 (\text{syst})$

hypothesis corresponds to a significance of 1.4 (2.6) σ .

Signal strength μ for the 3 Observed and expected 95% CL channels and combination. on σ upper limits.

XXXV Physics in Collision - September 15th-19th 2015 - Warwick University - England