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Abstract

A search for direct pair production of the supersymmetric partner of the top quark, decaying
via a scalar tau to a nearly massless gravitino, has been performed using 20 fb−1 of proton–
proton collision data at

√
s = 8 TeV. The data were collected by the ATLAS experiment

at the LHC in 2012. Top squark candidates are searched for in events with either two had-
ronically decaying tau leptons, one hadronically decaying tau and one light lepton, or two
light leptons. No significant excess over the Standard Model expectation is found. Exclusion
limits at 95% confidence level are set as a function of the top squark and scalar tau masses.
Depending on the scalar tau mass, ranging from the 87 GeV LEP limit to the top squark
mass, lower limits between 490 GeV and 650 GeV are placed on the top squark mass within
the model considered.
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1 Introduction

Additional partners of the top quark are ingredients in several models that address the hierarchy prob-
lem [1–4] of the Standard Model (SM). Supersymmetry (SUSY) [5–13] is one such model which natur-
ally resolves the hierarchy problem with the introduction of supersymmetric partners of the known bosons
and fermions. A supersymmetric partner of the top quark would stabilise the Higgs boson mass against
quadratically divergent quantum corrections, provided that its mass is close to the electroweak symmetry
breaking energy scale. This would make its discovery possible at the Large Hadron Collider (LHC) [14].
In a generic R-parity-conserving minimal supersymmetric extension of the SM (MSSM) [15–19], the
scalar partners of right-handed and left-handed quarks, q̃R and q̃L, can mix, as can the scalar partners
of charged leptons, ˜̀

R and ˜̀
L, to form two squark or two slepton mass eigenstates, respectively. The

lighter of the two top squark eigenstates is denoted t̃1 and is referred to as the scalar top in the following.
Likewise, the lighter of the two scalar tau eigenstates is denoted τ̃1 and referred to herein as the scalar
tau.

In gauge-mediated supersymmetry breaking (GMSB) models [20–25], the spin-3/2 partner of the grav-
iton, called the gravitino G̃, is assumed to be the lightest supersymmetric particle. Assuming that the
mass scale of the messengers responsible for the supersymmetry breaking is of the order of 10 TeV, in
order to minimise fine tuning [26], the scalar top should be lighter than about 400 GeV [27]. If the scalar
tau is lighter than the scalar top, and the supersymmetric partners of the gauge and Higgs bosons (char-
ginos and neutralinos) are heavier, the dominant decay mode of the t̃1 might be the three-body decay
into bνττ̃1, where ντ is the tau neutrino, followed by the τ̃1 decay into a tau lepton and a gravitino. The
other possible decay mode is the two-body decay into a top quark and a gravitino. The partial width of
the two-body decay depends on the gravitino mass, while the partial width of the three-body decay via a
virtual chargino depends on the chargino mass, as well as the chargino and scalar top mixing. For fixed
scalar top and scalar tau masses either mode can dominate, and we focus in this paper on the signature
resulting from the three-body decay. The two-body decay would give a signature very similar to that
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of the decay into a top quark and a neutralino, which has been addressed in previous searches [28–34].
In the simplest gauge-mediated models, the predicted Higgs boson mass [35] is typically lower than the
measured mass [36], especially if a light scalar top is also required. However, a variety of mechanisms
exist [37–41] to raise the Higgs boson mass to make it compatible with the observed value.

A lower limit of 87 GeV on the mass of the scalar tau has been set by the LEP experiments [42–46]. No
limits have been published so far from hadron collider searches for the three-body decay of the scalar
top into the scalar tau. Searches for scalar top pair production in proton–proton (pp) collisions, targeting
the decay into charginos or neutralinos, have been performed by the ATLAS [28] and CMS [29–34]
collaborations. Searches for scalar tops decaying into gravitinos, but not including the scalar tau in the
decay chain, have been reported by the ATLAS [47] and CMS [48, 49] collaborations.

This paper presents a dedicated search for pair production of scalar tops resulting in a final state with
two tau leptons, two jets that contain a b–hadron (b-jets), and two very light gravitationally interacting
particles. The decay topology of the signal process is shown in Fig. 1; the model considered is a simplified
model in which all the supersymmetric particles other than the scalar top and the ones entering its decay
chain are decoupled. In order to maximise the sensitivity, two distinct analyses have been performed
based on the decay mode of the tau leptons in the final state: one analysis requires two hadronically
decaying tau leptons (the hadron–hadron channel) and the other requires one hadronically decaying tau
lepton and one tau decaying into an electron or muon, plus neutrinos (the lepton–hadron channel). In
addition, the results of the search reported in Ref. [50], which is sensitive to events where both tau leptons
decay leptonically (referred to as the lepton–lepton channel), are reinterpreted and limits are set on the
scalar top and scalar tau masses.

t̃

t̃∗

τ̃

τ̃∗

p

p

b ν̄τ

G̃

τ

ντb̄

G̃

τ̄

Figure 1: Diagram showing the decay topology of the signal process.
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2 ATLAS detector

ATLAS [51] is a multi-purpose particle physics experiment at the LHC. The ATLAS detector1 consists
of an inner tracking detector surrounded by a superconducting solenoid, electromagnetic and hadronic
calorimeters, and a muon spectrometer. The inner detector covers |η| < 2.5 and consists of a silicon
pixel detector, a semiconductor microstrip detector, and a transition radiation tracker (TRT). The inner
detector is surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, and allows
for precision tracking of charged particles and vertex reconstruction. The calorimeter system covers the
pseudorapidity range |η| < 4.9. In the region |η| < 3.2, high-granularity liquid-argon electromagnetic
sampling calorimeters are used. A steel/scintillator-tile calorimeter provides energy measurements for
hadrons within |η| < 1.7. The end-cap and forward regions, which cover the range 1.5 < |η| < 4.9,
are instrumented with liquid-argon calorimeters for electromagnetic and hadronic particles. The muon
spectrometer surrounds the calorimeters and consists of three large superconducting air-core toroid mag-
nets, each with eight coils, a system of tracking chambers (covering |η| < 2.7) and fast trigger chambers
(covering |η| < 2.4).

3 Monte Carlo simulations and data samples

A number of Monte Carlo (MC) simulated event samples are used to model the signal and describe the
backgrounds. For the main background components, predictions are normalised to the data in control
regions (CRs) and then extrapolated to the signal regions (SRs) using simulation. All MC samples util-
ised in the analyses are processed using either the ATLAS detector simulation [52] based on GEANT4 [53]
or a fast simulation based on a parameterisation of the performance of the ATLAS electromagnetic and
hadronic calorimeters [54] and GEANT4 elsewhere. Additional pp interactions in the same (in-time) and
nearby (out-of-time) bunch crossings, termed pile-up, are included in the simulation, and events are re-
weighted so that the distribution of the number of pile-up collisions matches that in the data.

The signal model considered is a supersymmetric model with the gravitino as the lightest supersymmetric
particle. By construction, the scalar partner of the right-handed tau lepton and the lightest scalar top2 are
the next-to-lightest and the next-to-next-to-lightest supersymmetric particles, respectively, and different
signal models are simulated by varying their masses. Pair production of the scalar top is generated us-
ing HERWIG++ 2.6.3 [55] with the parton distribution functions (PDF) set CTEQ6L1 [56]. The model
requires that the scalar top decays to bνττ̃1 via a virtual chargino with 100% branching ratio, while the
τ̃1 decays, with a 100% branching ratio, into a tau lepton and a gravitino. Lifetimes are assumed to be
small enough (below about 1 ps) that the detector response is unaffected by the decay distance of the
supersymmetric particles from the primary vertex.

Signal cross sections are calculated to next-to-leading order (NLO) in the strong coupling constant αs,
adding the resummation of soft gluon emission at next-to-leading-logarithmic accuracy (NLO+NLL) [57–

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis coinciding with the axis of the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the
y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the
beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2).

2 The mixing matrix of the simulated samples is such that the lightest scalar top eigenstate is almost a pure partner of the
right-handed top quark.
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Table 1: Details about the MC generation of the background and signal samples.

Process Generator Parton shower Cross-section
normalisation PDF set Generator

tune

tt̄
POWHEG-BOX
r2129 [61, 62] PYTHIA 6.426 [63] NNLO+NNLL

[64–69]
NLO CT10

[70]
Perugia

2011C [71]
Single-top
(Wt and s-channel)

POWHEG-BOX
r1556 [61, 72, 73] PYTHIA 6.426 NNLO+NNLL

[74]
CTEQ6L1

[56]
Perugia
2011C

Single-top
(t-channel) ACERMC 3.8 [75] PYTHIA 6.426 NNLO+NNLL

[76] CTEQ6L1 Perugia
2011C

tt̄ + W/Z
MADGRAPH5
1.3.28 [77] PYTHIA 6.426 NLO [78] CTEQ6L1 AUET2

[79]

WW, WZ, ZZ SHERPA 1.4.1 [80] SHERPA 1.4.1 NLO [81] NLO CT10 SHERPA
default

Z/γ∗(→ ee/µµ)+jets ALPGEN 2.14 [82] HERWIG 6.520 [83] NNLO [84] CTEQ6L1 AUET2

Z/γ∗(→ ττ)+jets SHERPA 1.4.1 SHERPA 1.4.1 NNLO [84] NLO CT10 SHERPA
default

W(→ `ν)+jets,
` = e, µ, τ

SHERPA 1.4.1 SHERPA 1.4.1 NNLO [84] NLO CT10 SHERPA
default

t̃1 t̃∗1
HERWIG++ 2.6.3

[55] HERWIG++ 2.6.3
NLO+NLL

[57–59] CTEQ6L1 UE-EE-3
[85]

59]. The nominal cross section and its uncertainty are taken from an envelope of cross-section predictions
using different PDF sets and factorisation and renormalisation scales, as described in Ref. [60].

The programs used to generate signal and background events, as well as details of the cross-section
calculation, PDF sets, and generator tunings, are reported in Table 1.

The data sample used in this paper was recorded between March and December 2012, with the LHC
operating at a centre-of-mass energy of

√
s = 8 TeV. The data are collected based on the decisions of a

three-level trigger system [86]. Events are selected for the electron–hadron channel if they are accepted by
a single-electron trigger, and for the muon–hadron channel if accepted by a single-muon trigger. For the
hadron–hadron channel, a missing transverse momentum trigger is used. The trigger efficiency reaches
its maximum value for leptons with a transverse momentum (pT) above 25 GeV in the lepton–hadron
channels, and it exceeds 97% for a missing transverse momentum above 150 GeV in the hadron–hadron
channel. After beam, detector and data-quality requirements, the integrated luminosity of the data samples
is 20.3 fb−1 in the electron–hadron and muon–hadron channels, and 20.1 fb−1 [87] in the hadron–hadron
channel. The difference in integrated luminosity is due to the additional data-quality requirements related
to the trigger used in the hadron–hadron channel.

4 Event reconstruction

The reconstruction and selection of final-state objects used in this analysis are discussed below.

Vertex candidates from pp interactions are reconstructed using tracks in the inner detector. To identify
the hard-scattering vertex in the presence of pile-up, the vertex with the highest scalar sum of the squared
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transverse momentum of the associated tracks, Σp2
T, is defined as the primary vertex. The primary vertex

is required to have at least five associated tracks with pT > 400 MeV.

Jets are reconstructed from three-dimensional clusters of energy deposits in the calorimeters using the
anti-kt jet clustering algorithm [88] using FastJet [89], with a radius parameter of R = 0.4. The dif-
ferences in the calorimeter response between electrons/photons and hadrons are taken into account by
classifying each cluster as coming from a hadronic or an electromagnetic shower on the basis of its
shape [90]. The energy of electromagnetic and hadronic clusters is then weighted with correction factors
derived from MC simulations. The average expected contribution from pile-up, calculated as the product
of the jet area and the median energy density of the event [91], is subtracted from the jet energy. A further
energy and η calibration based on MC simulations and data, relating the response of the calorimeter to
the true simulated jet energy [92, 93], is then applied. The jets selected in the analysis are the jet candid-
ates with pT > 20 GeV and |η| < 2.5. Events containing jets that are likely to have arisen from detector
noise, beam background or cosmic rays, are removed using the procedures described in Ref. [92]. Events
containing any jet failing to meet specific quality criteria described in Ref. [94] are also rejected.

Among the jets satisfying the selection criteria above, b-jet candidates are identified by a neural-network-
based algorithm, which utilises the impact parameters of tracks, secondary vertex reconstruction, and the
topology of b- and c-hadron decays inside a jet [95, 96]. The efficiency for tagging b-jets in a MC sample
of tt̄ events using this algorithm is 70% with rejection factors of 137 and 5 against light-quark or gluon
jets, and c-quark jets, respectively. To compensate for differences between the b-tagging efficiencies and
mis-tag rates in data and MC simulation, correction factors derived using tt̄ events are applied to jets in
the simulation as described in Refs. [95, 96].

Electron candidates used to veto events with prompt leptons in the hadron–hadron channel search are
required to have pT > 10 GeV, |η| < 2.47 and to satisfy loose selection criteria on electromagnetic shower
shape and track quality [97]. Their longitudinal and transverse impact parameters must be within 2 mm
and 1 mm of the primary vertex, respectively. In the lepton–hadron channel, further selections are applied.
Electrons are required to satisfy the tight quality criteria, to have pT > 25 GeV, and to be isolated within
the tracking volume. The electron identification efficiencies are of about 95%, 91% and 80% for the
loose, medium and tight working points respectively. The electron isolation requires that the scalar sum,
ΣpT, of the pT of inner detector tracks within a cone of size ∆R ≡

√
(∆η)2 + (∆φ)2 = 0.2 around the

electron candidate, is less than 10% of the electron pT. The tracks included in the scalar sum must have
pT > 1 GeV, are matched to the primary vertex, and do not include the electron track.

Muon candidates are reconstructed using inner detector tracks either combined with muon spectrometer
tracks or matched to muon segments [98]. They are required to have pT > 10 GeV and |η| < 2.4. Their
longitudinal and transverse impact parameters must be within 1 mm and 0.2 mm of the primary vertex,
respectively. These selections have an overall efficiency of about 99%. Muon candidates that pass these
selections are referred to as loose muons and are used to veto events with prompt leptons in the hadron-
hadron channel. The candidates with pT > 25 GeV which fulfill the isolation requirement ΣpT < 1.8 GeV,
i.e. with at most one additional track with 1 < pT < 1.8 GeV reconstructed within a cone of size ∆R = 0.2
around the muon track, are referred to as tight muons.

Event-level weights are applied to MC events to correct for differences between the lepton reconstruction
and identification efficiencies measured in the simulation, and those measured in data.

Hadronically decaying tau lepton (τhad) candidates are seeded by calorimeter jets with pT > 10 GeV. An
η- and pT-dependent energy scale calibration is applied to correct for the detector response and subtract
energy from pile-up interactions [99]. Tau lepton candidates are identified by using two boosted decision
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Table 2: Sequence of the overlap removal algorithm. Here, ` refers to electrons and muons.
Condition Discarded object
∆R(jet, electron) < 0.2 jet
∆R(τhad, `) < 0.2 τhad
∆R(jet, `) < 0.4 `

∆R(τhad, jet) < 0.2 jet

tree (BDT) algorithms that separate them from jets and electrons [99]. Variables describing the shower
shape in the calorimeters and information from the tracking system are used to separate the collimated τhad
decay products from the generally broader jets resulting from quark and gluon hadronisation. Variables
such as the number of tracks or the fraction of the total tau energy contained in a cone of size ∆R = 0.1
centred on the tau candidate provide strong discriminating power. To distinguish taus from electrons,
the most discriminating characteristics are the transition radiation emitted by electrons in the TRT and
the longer and wider shower generated by a hadronically decaying tau in the calorimeter compared with
that produced by an electron. In addition to the two BDT selection criteria, a muon veto is applied.
Hadronically decaying tau lepton candidates are required to have pT > 20 GeV, |η| < 2.47, and exactly
one or three associated inner detector tracks (referred to as 1-prong and 3-prong candidates, respectively).
The tau candidate is assigned an electric charge equal to the sum of the charges of the associated tracks,
and this is required to be either +1 or -1. Three working points (loose, medium, and tight) are used for
each BDT. The hadron–hadron channel uses the tight identification working point for jet rejection and
the medium identification working point for electron rejection, while the lepton–hadron channel uses the
medium working point for both. The loose working point has been used to cross-check the background
modelling. For the jet-veto BDT, the working points correspond to a signal efficiency of 70%, 60% and
40% for 1-prong τhad, and 65%, 55% and 35% for 3-prong τhad, respectively. The electron-veto BDT
working points have a signal efficiency of 95%, 85% and 75%, respectively. Efficiency scale factors
are used to account for the mis-modelling of BDT input variables in the simulation. They are extracted
by comparing efficiencies in data and simulation in a Z → ττ selection, using a tag-and-probe method
described in Ref. [99].

As a given final-state particle can be simultaneously reconstructed as (for example) an electron, a jet and
a hadronically decaying tau lepton, an algorithm is used to resolve such ambiguities. Electrons satisfying
the medium quality criteria, muons satisfying the criteria described above except that on isolation, jets
and hadronically decaying tau candidates satisfying the selection criteria given above are considered by
the algorithm. If two objects are close together in ∆R, one of them is discarded according to the sequence
specified in Table 2. Electrons and muons close to jets, which are likely to originate from the decay of
heavy-flavour hadrons, are removed from the list of leptons used in the analysis.

The missing transverse momentum vector pmiss
T , whose magnitude is referred to as Emiss

T , is calculated
as the negative vector sum of the transverse momenta of all reconstructed electrons, jets and muons, and
calorimeter energy clusters not associated with any objects. For the pmiss

T computation, hadronically de-
caying taus are treated as jets. Clusters associated with electrons with pT > 10 GeV, and those associated
with jets with pT > 20 GeV are calibrated with the electron and jet cluster calibrations, respectively. For
jets, the calibration includes the pile-up correction described earlier while the jet vertex fraction (JVF)
requirement is not imposed. The JVF variable is the ratio of the sum of the transverse momentum of the
tracks associated with the jet and originating from the selected primary vertex to the total pT sum of all
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tracks matched with the jet. This requirement rejects jets originating from pile-up. Clusters of energy
deposits in calorimeter cells with |η| < 2.5 not associated with these objects are calibrated using both
calorimeter and tracker information [100].

5 Event selection and background estimate

5.1 Hadron–hadron channel

For the hadron–hadron channel search, events in the signal region are required to have exactly two oppos-
itely charged hadronically decaying taus satisfying the tight identification criteria, no electrons or muons,
and at least two jets with a JVF larger than 0.5 or pT > 50 GeV. One of the jets must be b-tagged. The
leading jet must also satisfy pT > 40 GeV.

The missing transverse momentum must be larger than 150 GeV. The ∆φ separation between each of the
two leading jets and the direction of the missing transverse momentum must be greater than 0.5 radian, to
suppress events where large Emiss

T arises from mis-measurement of jet energies. Beyond these preselection
requirements, additional selections are made using transverse masses and derived variables, as explained
below. These selections have been determined using MC signal and background samples to maximise the
expected significance of the signal.

The transverse mass associated with two final-state objects a and b is defined as

mT (a, b) =

√
m2

a + m2
b + 2

(
Ea

TEb
T − pa

T.p
b
T

)
, (1)

where m, ET and pT are the object mass, transverse energy and transverse momentum vector, respectively.
Objects entering the mT calculation are always assumed to be massless, unless the transverse mass is used
as part of a derived variable in the lepton–hadron channel (see Sect. 5.2).

The stransverse mass (mT2) [101, 102] is computed as

mT2 (a, b) =

√
min

qa
T+qb

T=pmiss
T

(
max

[
m2

T

(
pa

T,q
a
T

)
,m2

T

(
pb

T,q
b
T

)])
, (2)

where qa
T and qb

T are vectors satisfying qa
T + qb

T = pmiss
T , and the minimum is taken over all the possible

choices of qa
T and qb

T.

The selection criteria that define the signal region for the hadron–hadron channel (SRHH) rely on the
following variables:

• mT2(τhad, τhad) is defined using the momenta of the hadronically decaying taus and the missing
transverse momentum, which is assumed to result from two invisible massless particles. The
mT2(τhad, τhad) variable is bounded from above by the W boson mass for events where the two had-
ronically decaying taus originate from the decay of two W bosons and all the missing transverse
momentum is carried by the neutrinos from the W bosons decay, as is the case for the dominant
background (tt̄).
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• msum
T (τhad, τhad) is defined as the sum of the transverse mass of each τhad candidate and the missing

transverse momentum

msum
T (τhad, τhad) = mT

(
τhad1, pmiss

T

)
+ mT

(
τhad2, pmiss

T

)
(3)

The msum
T (τhad, τhad) distribution is expected to reach higher values for the signal due to a larger

number of invisible final-state particles than for the SM background processes.

For the SRHH signal region, the stransverse mass mT2(τhad1, τhad2) is required to be larger than 50 GeV
while the msum

T (τhad1, τhad2) variable is required to be larger than 160 GeV. The signal selection efficiency,
defined as the number of signal events that pass the full selection over the total number of generated
events, is only weakly dependent on the scalar tau mass, while it increases from 0.02% to 0.7% as the
scalar top mass increases from 150 GeV to 700 GeV, for a scalar tau mass of 87 GeV. The distributions
of mT2(τhad1, τhad2) and msum

T (τhad1, τhad2) are illustrated in Fig. 2 after the preselection.

The background processes populating the SRHH selection are grouped into three categories. The first
contains events with two real, hadronically decaying taus (true taus). It consists mainly of tt̄ events,
with smaller contributions from single-top-quark, Z+jets, diboson (WW, WZ, ZZ) and tt̄ + V production,
where V = W,Z. This set of backgrounds is estimated from simulation. The remaining backgrounds
contain events where at least one tau candidate is an electron or a jet that passes the tau identification
criteria (fake taus). The second category, which contains events with only one fake τhad, is composed of
tt̄, single-top-quark and W+jets events. The third and smaller category corresponds to processes with two
fake taus. It is mostly composed of tt̄, Z(→ νν)+jets, and single-top-quark events, which are all estimated
from simulation. It has been verified that these backgrounds are well modelled: in kinematic selections
where tt̄ with true taus is expected to be the dominant process, the ratio of data over the MC prediction
is compatible with one within systematics uncertainties. The contribution from multi-jet events, where
both tau candidates are fakes, is estimated from data using the jet smearing method described later in this
section.

The single-fake τhad backgrounds from top quark (tt̄ and single-top) and W+jets events are estimated
using MC simulations scaled to the observed number of data events in two dedicated control regions
(CRHHTop and CRHHWjets). These control regions require a single-muon trigger, one τhad satisfying the
tight quality criteria, and one muon with pT > 25 GeV that satisfies the tight quality criteria. The mT2 and
msum

T variables are then calculated using the tau and muon momenta, considering the invisible particles
as massless. One muon and one τhad are required in the control regions rather than two hadronically
decaying taus in order to minimise signal contamination. Upper bounds are set on the mT2 and msum

T
variables, which make the contamination from the lepton–hadron signal negligible. Table 3 details the
selections defining the two control regions and the signal region. The contributions to the background
from the double-fake τhad sources are smaller than 4.5% and therefore they are estimated using simulation
without normalising to data in a control region.

A simultaneous likelihood fit is performed to determine the normalisation factors of the single-fake τhad
backgrounds, with the number of data events in each CR as constraint, and the systematic uncertainties
described in Sect. 6 included as nuisance parameters. The fit is used to predict the number of background
events in the CRs and the SR. The background modelling is verified using two validation regions (VRs)
by comparing the observed number of events in each VR with the number derived from the fit. The
single-fake τhad backgrounds from top quark and W+jets events each have a validation region, labelled
VRHHTop and VRHHWjets. Like the control regions, they are defined using a muon and tau to avoid
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Figure 2: Top: distribution of the stransverse mass constructed from the two τhad, mT2(τhad, τhad), for events passing
the hadron–hadron preselection requirements. Bottom: distribution of the sum of the transverse mass of each τhad
candidate and the missing transverse momentum, msum

T (τhad, τhad), for events passing the hadron–hadron preselec-
tion requirements. The contributions from all SM backgrounds are shown as a histogram stack; the bands represent
the total uncertainty. The distributions expected for two signal models are also shown.
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signal contamination, and the selections are summarised in Table 3. The validation regions are designed
to be kinematically close to the signal region without overlapping with the control or signal regions.
The composition of the control and validation regions after the fit is shown in Fig. 3. The observed and
expected background yields in the VRs are in good agreement, with 50 observed events in VRHHWjets
(48.5±6.9 expected) and 31 observed events in VRHHTop (29.0±4.1 expected). It has also been verified
that a normalisation factor for the top quark background with two real τhad would be compatible with one
within uncertainties.

The multi-jet background is estimated from data using the jet smearing method described in Ref. [103].
A set of single-jet triggers is used to select a sample of events with at least two jets (of which at least
one is required to be a b-jet), and two τhad candidates. These events are required to have a low Emiss

T
significance3, to retain topologies where jets and tau candidates are well-balanced in the transverse plane
and suppress processes with genuine Emiss

T . The energy of jets and tau candidates is then smeared within
the resolution of the calorimeter, in order to simulate Emiss

T arising from mis-measurements. To minimise
the statistical uncertainty, no identification criteria are applied to τhad candidates beyond the 1,3-track
requirement, and a fake rate is used at a later stage to account for the tau identification efficiency. The
pseudo-dataset obtained after smearing serves as a template for the multi-jet background. Its normalisa-
tion is derived in a multi-jet-enriched CR, labelled CRHHQCD in Table 3. To estimate the background
yield in the signal region, all SRHH requirements except the tau identification are applied to the norm-
alised background template. A weight is then applied to each event according to the probability for a jet
reconstructed as a tau to satisfy the tight tau identification criteria. This fake rate is measured in data using
events which fire a single-jet trigger, with at least two jets and a hadronically decaying tau candidate. It
is found to be of the order of 1% for 1-prong tau candidates and between 0.02% and 0.4% (with a strong
pT dependence) for 3-prong tau candidates. The number of multi-jet events in the SR is estimated to be
0.0043 ± 0.0007 (stat) +0.0039

−0.0008 (syst), and is therefore neglected.

Table 3: Definition of the signal region (SRHH) for the hadron–hadron analysis. The selections of the associated
control regions for tt̄ and single-top-quark (CRHHTop) and W+jets (CRHHWjets) events with one fake hadronically
decaying tau, as well as the validation regions (VRHHTop and VRHHWjets), are also shown. The ` entering the
mT2 and msum

T variables is either a τhad (SR) or a muon (CRs and VRs).

Region Nτhad Nµ Njet Nb−jet Emiss
T ∆φ( j1,2, pmiss

T ) mT2(τhad, `) msum
T (τhad, `)

SRHH 2 0 ≥ 2 ≥ 1 > 150 GeV ≥ 0.5 > 50 GeV > 160 GeV
CRHHTop 1 1 ≥ 2 ≥ 1 > 100 GeV ≥ 0.5 - [70,120] GeV

CRHHWjets 1 1 ≥ 2 0 > 100 GeV ≥ 0.5 < 40 GeV [80,120] GeV
VRHHTop 1 1 ≥ 2 ≥ 1 > 120 GeV ≥ 0.5 < 40 GeV [120,140] GeV

VRHHWjets 1 1 ≥ 2 0 > 120 GeV ≥ 0.5 < 40 GeV [120,150] GeV
CRHHQCD ≥ 2a 0 ≥ 2 ≥ 1 > 150 GeV ≤ 0.5b - -

a For the multi-jet control region (CRHHQCD), no identification criteria are applied to tau leptons.
b The ∆φ requirement only applies to the sub-leading jet j2.

3 The Emiss
T significance is defined as Emiss

T /
√∑

jets
ET +

∑
soft terms

ET where soft terms correspond to clusters of energy deposits in

the calorimeter which are not associated with any reconstructed object.

11



CRHHTop CRHHWjets VRHHWjets VRHHTop SRHH

N
um

be
r 

of
 e

ve
nt

s

-110

1

10

210

310

410 Data 2012
SM Background
top true tau
top fake tau

ν l→W 
Other

ATLAS
-1 = 8 TeV, 20 fbs

Figure 3: Background yields and composition after the fit in the two CRs and the two VRs of the hadron–hadron
channel analysis. Combined statistical and systematic uncertainties are shown as shaded bands. The observed
number of events and the total (constrained) background are the same by construction in the CRs.

5.2 Lepton–hadron channel

The search in the lepton–hadron channel requires exactly one hadronically decaying tau, exactly one
isolated electron or muon with pT > 25 GeV, and no further isolated electrons or muons with pT >

10 GeV. The hadronically decaying tau and the lepton are required to have opposite electric charge. Each
event must also contain at least two jets, where at least one of the two jets must have pT > 50 GeV, and
at least one of the two must be b-tagged.

After this common preselection, two different signal regions are defined to target signal models with a
scalar top mass large or small in comparison to the top-quark mass. These are referred to as the low-mass
(SRLM) and high-mass (SRHM) selections in the following, and they have been optimised with respect
to the expected significance of the signal. The selections for the two signal regions are summarised in
Tables 4 and 5. The low-mass selection requires a second b-jet. Three mT2 variables are employed in the
selections, with different choices of the two visible four-momenta used in the calculation from Eq. (2):

• mT2(`, τhad) uses the momenta of the light lepton and the hadronically decaying tau. The missing
transverse momentum is assumed to result from two invisible massless particles. The mT2(`, τhad)
variable is bounded from above by the W boson mass for events where the light lepton, the hadron-
ically decaying tau and the missing transverse momentum originate from the decay of a pair of W
bosons, which is the case for most of the background (tt̄ and Wt). The high-mass selection requires
this variable to be large, because its distribution for signal models with heavy scalar taus and scalar
tops peaks at higher values than for the top-quark-dominated SM background.

• mT2(b`, bτhad) is calculated using the two jets with the highest b-tagging weight. One of them is
paired with the light lepton and the other with the τhad. The four-momentum vectors of the two
resulting particle pairs are then used in the mT2 algorithm. The missing transverse momentum is
assumed to be carried by two invisible massless particles. For tt̄ events where the jet and the lepton
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belong to the decay of the same top quark, this variable is bounded from above by the top-quark
mass. Similarly, for signal events, the upper bound on this variable is the scalar top mass. A
maximum-value cut is therefore used in the low-mass selection and a minimum-value cut in the
high-mass selection. The calculation of the variable requires the resolution of a two-fold ambiguity
in the pairing of the jets and the leptons. Only the pairings for which m(b`) and m(bτhad) are both
smaller than mt are considered.4 If exactly one pairing satisfies the condition, that pairing is used
in the mT2 calculation. If both pairings satisfy the condition, mT2 is calculated for both pairings
and the smaller value is taken. If no pairing satisfies the condition, the event is considered to have
passed the mT2(b`, bτhad) selection for the high-mass signal region and to have failed it for the
low-mass signal region.

• mT2(b`, b) is only used for the low-mass selection. The system of one of the b-jets and the light
lepton is considered as the first visible four-momentum. Only pairings for which m(b`) < mt are
considered. If neither pairing satisfies the condition, the event is discarded, while if both pairings
do, the pairing which yields the smaller value of mT2(b`, b) is used. The invisible particle associated
with this system is assumed to be massless. The other b-jet is the second visible system used in
the mT2 calculation, and the mass of the associated invisible particle is set to the W boson mass, as
the algorithm targets tt̄ events where one lepton from a W boson decay is not detected or identified.
For the dominant top-quark background, the mT2(b`, b) variable is bounded from above by the top-
quark mass. This variable has a softer distribution for low-mass signal events than the background,
and a maximum-value cut of 100 GeV is applied.

The distributions for mT2(b`, bτhad) and mT2(`, τhad) are illustrated in Fig. 4 after the preselection, showing
the separation between two signal models and the SM background. The mT2(b`, bτhad) variable is used
to distinguish the scalar top signal from the dominant top-quark backgrounds for both the low-mass and
high-mass selections.

Another variable used in the selections is the ratio of the scalar sum of the transverse momenta of the
two leading jets (HT) to the effective mass, meff = Emiss

T + HT + p`T + pτhad
T , where p`T and pτhad

T are the
transverse momenta of the lepton and the hadronically decaying tau, respectively. This ratio, HT/meff ,
tends to be smaller for signal events because of the high number of invisible particles in the final state, and
it is required to be less than 0.5. The high-mass selection also requires the missing transverse momentum
to be larger than 150 GeV and meff to be larger than 400 GeV because the decay products of a high-mass
scalar top would have large momenta. The low-mass selection requires (p`T + pτhad

T )/meff > 0.2 because
the difference between the masses of the scalar top and scalar tau is relatively small in comparison to the
difference between the masses of the top quark and the W boson. Finally, the mT(`, pmiss

T ) variable is used
to distinguish events with real tau leptons from events with fake tau leptons in the dominant top-quark
background, and to distinguish multi-jet events from W+jets events. The definitions of the low-mass and
high-mass SRs are summarised in Tables 4 and 5, respectively.

The signal selection efficiency of the low-mass selection is between 0.008% and 0.01% for the models
with a scalar top mass between 150 GeV and 200 GeV, which is the target of this selection. The signal
efficiency of the high-mass selection increases with the scalar top mass. For a fixed scalar top mass, it
increases with the scalar tau mass as the mT2(`, τhad) selection becomes more efficient, up to the region
with m(t̃1) − m(τ̃) < 50 GeV where the b-jets become too soft to be efficiently detected. Outside this

4 For top-quark pair production events where the lepton and the jet belong to the decay of the same top quark, the invariant

mass has an upper bound at
√

m2
t − m2

W , approximately 152 GeV. The algorithm tries to select pairs that satisfy this condition,
loosened to account for the detector resolution.
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Figure 4: Top: distribution of the stransverse mass constructed from the b-jet plus lepton and b-jet plus τhad,
mT2(b`, bτhad), for events passing the lepton–hadron preselection requirements with the additional requirement of a
second b-tagged jet. Bottom: distribution of the stransverse mass constructed from the momenta of the light lepton
and the hadronically decaying tau, mT2(`, τhad), for events passing the lepton–hadron preselection requirements.
The contributions from all SM backgrounds are shown as a histogram stack; the bands represent the total uncer-
tainty. The overflow bin in the mT2(b`, bτhad) plot is filled with the events that have no (b`, bτhad) pairing satisfying
m(b`) < mt and m(bτhad) < mt. The distributions expected for two signal models are also shown.
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region, which is better targeted by the lepton–lepton channel, the efficiency of the high-mass selection
varies between 0.0007% and 1% for a scalar top mass between 200 GeV and 700 GeV.

Table 4: Definition of the signal region SRLM used in the low-mass lepton–hadron analysis. The selections
of the associated control regions for top-quark events with true taus (CRTtLM), top-quark events with fake taus
(CRTfLM), and W+jets (CRWLM), and of the validation region (VRTLM) are also given.

Region Nb−jet HT/meff
p`T+p

τhad
T

meff
mT2(b`, b) mT2(b`, bτhad) mT(`, pmiss

T ) meff

SRLM ≥ 2 < 0.5 > 0.2 < 100 GeV < 60 GeV - -
CRTtLM ≥ 2 - > 0.2 < 100 GeV 110 − 160 GeV > 100 GeV -
CRTfLM ≥ 2 - > 0.2 < 100 GeV 110 − 160 GeV < 100 GeV -
CRWLM 0 < 0.5 > 0.2 - - > 40 GeV < 400 GeV
VRTLM ≥ 2 > 0.5 > 0.2 < 100 GeV 60 − 110 GeV - -

Table 5: Definition of the signal region SRHM used in the high-mass lepton–hadron analysis. The selections
of the associated control regions for top-quark events with true taus (CRTtHM), top-quark events with fake taus
(CRTfHM), and W+jets (CRWHM), and of the validation region (VRTHM) are also given.

Region Nb−jet Emiss
T meff HT/meff mT2(b`, bτhad) mT2(`, τhad) mT(`, pmiss

T )
SRHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV > 120 GeV -

CRTtHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV 20-80 GeV > 120 GeV
CRTfHM ≥ 1 > 150 GeV > 400 GeV < 0.5 > 180 GeV 20-80 GeV < 120 GeV
CRWHM 0 > 150 GeV > 400 GeV < 0.5 - 20-80 GeV 40-100 GeV
VRHM ≥ 1 < 150 GeV > 400 GeV < 0.5 > 180 GeV > 80 GeV -

In the lepton–hadron channel, the ratio of real to fake hadronically decaying tau events depends on the
background process. In W+jets events, the light lepton is always a real lepton from the W decay, due to
the high reconstruction efficiency and purity of final-state electrons and muons, while the τhad is faked by
a recoiling hadronic object. In tt̄ and Wt events, the light lepton originates from the decay of one of the W
bosons while the hadronically decaying tau candidate can be either a real or a fake tau. These processes
(W+jets, tt̄, and Wt) are the main background sources and are estimated by MC simulation scaled to the
observed data in three CRs for each SR. The CRs are enriched in either W+jets, top-quark events with
true hadronically decaying taus, or top-quark events with fake hadronically decaying taus (where the top-
quark events include both single and pair production), and are used to derive normalisation factors for
these three categories of background. For the low-mass selection SRLM, the true- and fake-tau top-quark
backgrounds are controlled by CRTtLM and CRTfLM, while CRWLM controls the W+jets background.
For the high-mass selection SRHM, the three control regions CRTtHM, CRTfHM and CRWHM are used
to normalise the true- and fake-tau top-quark backgrounds and the W+jets background. The CRs are
defined in Table 4 for the low-mass selection and in Table 5 for the high-mass selection. The minor
contribution from other background processes is estimated from simulation.

A simultaneous likelihood fit is performed to obtain the three normalisation factors for each SR, using the
observed number of data events in each CR as constraints, and with the systematic uncertainty sources
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(described in Sect. 6) treated as nuisance parameters. The fit is used to predict the number of background
events in the CRs and the SR. The validity of the background modelling is verified by using a validation
region for each SR and comparing the observed number of events with the prediction from the fit. For the
low-mass selection, the validation region VRLM is defined in Table 4, while the validation region VRHM
is defined in Table 5 for the high-mass selection.

The background composition and the observed number of events in each CR as well as in the VR and SR
are shown in Fig. 5 for the low-mass selection and in Fig. 6 for the high-mass selection. The observed and
expected background yields in the VRs are in good agreement, with 386 observed events for the low-mass
selection (351 ± 84 expected) and 17 observed events in the high-mass selection (22 ± 5 expected). The
expected background yields and observed number of events in the SRs are reported in Sect. 7.
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Figure 5: Background yields and composition after the fit for the three CRs and the VR in the lepton–hadron channel
low-mass selection. Combined statistical and systematic uncertainties are shown as shaded bands. The observed
number of events and the total (constrained) background are the same by construction in the CRs.

The background estimate with fake hadronically decaying taus (either from top-quark or W+jets events)
is validated using an alternative method. The observed rate of events with a light lepton and a τhad with
the same electric charge is scaled by the expected ratio of opposite-sign (OS) to same-sign (SS) events for
the fake τhad backgrounds, which is estimated from MC simulation. Too few SS events are observed for
the SRHM selection to make a meaningful prediction, so the method is only viable for the looser SRLM
selection, for which it predicts 12 ± 6 events with fake hadronically decaying taus, in agreement within
uncertainties with the sum of W+jets and top-quark events with fake hadronically decaying taus obtained
from the fit, which is 12 ± 5 events.

6 Systematic uncertainties

Various sources of systematic uncertainty affecting the predicted background yields in the signal regions
are considered. The uncertainties are either computed directly in the SR when backgrounds are estimated
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Figure 6: Background yields and composition after the fit for the three CRs and the VR in the lepton–hadron channel
high-mass selection. Combined statistical and systematic uncertainties are shown as shaded bands. The observed
number of events and the total (constrained) background are the same by construction in the CRs.

from simulation, or propagated through the fit for backgrounds that are normalised in CRs.

The dominant detector-related systematic uncertainties considered in these analyses are the jet energy
scale and resolution [92], the τhad energy scale and BDT identification efficiency [99], and the b-tagging
efficiency [95, 96]. The energy scale and resolution of clusters in the calorimeter not associated with
electrons, muons or jets, which affect the missing transverse momentum calculation, are also a source
of systematic uncertainty. In all cases, the difference in the predicted background or signal between the
nominal MC simulation and that obtained after applying each systematic variation is used to determine the
systematic uncertainty on the background or signal estimate. Parts of the systematic uncertainties cancel
when a background is estimated from a control region, but they do not cancel for processes normalised
to their theoretical cross section. The remaining detector-related systematic uncertainties, such as those
on lepton reconstruction efficiency and on the modelling of the trigger, are of the order of a few percent.
A 2.8% uncertainty on the luminosity determination was measured using techniques similar to that of
Ref. [87], and it is included for the normalisation of all signal and background MC samples. The signal
uncertainties are between 10% and 15% for models close to the observed exclusion contour.

Various theoretical uncertainties are considered for the modelling of the major SM backgrounds. In the
case of top-quark contributions, the predictions of POWHEG-BOX are compared with those of MC@NLO-4.06
to estimate the uncertainty due to the choice of generator. The difference in the yields obtained from
POWHEG-BOX interfaced to PYTHIA and POWHEG-BOX interfaced to HERWIG is taken as the systematic
uncertainty due to parton shower modelling, and the predictions of dedicated ACERMC-3.8 samples gen-
erated with different tuning parameters are compared to give the uncertainty related to the modelling of
initial- and final-state radiation (ISR/FSR). At NLO, contributions with an additional bottom quark in
the final state lead to ambiguities in the distinction between the Wt process (gb → Wtb) and top-quark
pair production. All the Wt samples, generated using MC@NLO-4.06 and POWHEG-BOX, use the diagram
removal scheme [104] to model this interference. The ACERMC-3.8 event generator is used to simulate
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the WWb and WWbb̄ final states at leading order (which include both the tt̄ and Wt single-top-quark
processes); the predictions of these ACERMC-3.8 samples are then compared to those of the nominal MC
samples in order to assess the uncertainty on the background estimate from this interference. The uncer-
tainties on W+jets and Z+jets production are evaluated by studying the predictions of ALPGEN-2.14 with
various choices of the renormalisation and factorisation scales.

The impact of systematic uncertainties on the total background estimate in the different SRs is shown in
Table 6. The table quotes, for each SR, the relative background uncertainty attributed to each source.

Table 6: Summary of background estimates and the associated total uncertainties.The size of each systematic
uncertainty is quoted as a relative uncertainty on the total background. A dash indicates a negligible contribution
to the uncertainty. The individual uncertainties can be correlated, and thus do not necessarily sum in quadrature to
the total relative uncertainty.

SRHH SRLM SRHM
Background events 3.1 ± 1.2 22.1 ± 4.7 2.1 ± 1.5
Uncertainty Breakdown [%]:
Jet energy scale and resolution 17 13 2
Tau energy scale 9 4 3
Cluster energy scale and resolution 1 2 4
b-tagging 2 4 2
Top-quark theory uncertainty 37 11 64
W+jets theory and normalisation - 1 19
Simulation statistics 20 6 21
Top normalisation 18 6 20

Signal cross sections are calculated at NLO+NLL with a total associated uncertainty between 14% and
16% for scalar top masses between 150 GeV and 560 GeV.

7 Results and interpretation

The numbers of events observed in the hadron–hadron SR and in the two lepton–hadron SRs are reported
in Table 7, along with the background yields before and after the background-only likelihood fit. In
both the results and interpretation tables (Tables 7 and 8) the quoted uncertainties include all the sources
of statistical and systematic uncertainty. Good agreement is seen between the observed yields and the
background estimates.

Figure 7 shows the distributions of msum
T (τhad, τhad) and mT2(τhad, τhad) for the hadron–hadron channel,

for events satisfying all the SR criteria except that on the variable being reported in the figure. Figure 8
shows mT2(b`, bτhad) for the lepton–hadron low-mass selection and mT2(`, τhad) for the lepton–hadron
high-mass selection for events satisfying all the corresponding SR criteria except those on the variable
displayed in the figure.

Upper limits at 95% confidence level (CL) on the number of beyond-the-SM (BSM) events for each SR
are derived using the HistFitter program [105], with the CLs likelihood ratio prescription as described
in Ref. [106]. The limits are calculated for each SR separately, with the observed number of events,
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Figure 7: Top: distribution of msum
T (τhad, τhad) for the events passing all the hadron–hadron signal region require-

ments, except that on msum
T (τhad, τhad). Bottom: distribution of mT2(τhad, τhad) for the events passing all the hadron–

hadron signal region requirements, except that on mT2(τhad, τhad). The contributions from all SM backgrounds are
shown as a histogram stack; the bands represent the total uncertainty. The background yields have been rescaled by
the post-fit normalisation factors. The arrows mark the cut values used to define the SRs. The distributions expected
for two signal models are also shown.
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Figure 8: Top: distribution of mT2(b`, bτhad) for events passing all the lepton–hadron LM signal region requirements,
except that on mT2(b`, bτhad). Bottom: distribution of mT2(`, τhad) for events passing all the lepton–hadron HM
signal region requirements, except that on mT2(`, τhad). The contributions from all SM backgrounds are shown as a
histogram stack; the bands represent the total uncertainty. The background yields have been rescaled by the post-fit
normalisation factors. The arrows mark the cut values used to define the SRs. The overflow bin in the mT2(b`, bτhad)
plot is filled with the events that have for both pairings of m(b`) and m(bτhad) at least one invariant mass larger than
mt. The distributions expected for two signal models are also shown.
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Table 7: Observed number of events and background fit results for the hadron–hadron SR and the two lepton–
hadron SRs. Combined statistical and systematic uncertainties are given. The uncertainties between the different
background components can be correlated, so they do not necessarily sum to the total background uncertainty. A
dash indicates a negligible background contribution. The nominal expectations from MC simulation are given for
comparison in the lower part of the table.

Channel SRHH SRLM SRHM

Observed events 3 20 3

Total (constrained) background events 3.1 ± 1.2 22.1 ± 4.7 2.1 ± 1.5

Top with only true tau(s) 2.0 ± 1.1 8.2 ± 3.9 0.2+0.3
−0.2

Top with at least one fake tau 0.9 ± 0.5 9.8 ± 4.5 1.2+1.4
−1.2

W+jets 0.01+0.02
−0.01 2.2 ± 0.6 0.4 ± 0.4

Z/γ∗+jets 0.04 +0.15
−0.04 1.9 ± 1.1 –

tt̄ + V 0.04 ±0.02 – 0.3 ± 0.1

Diboson 0.14 ± 0.02 – –

Expected background events before the fit 3.7 25.8 2.2

Top with only true tau(s) 2.0 11.5 0.18

Top with at least one fake tau 1.4 10.1 1.1

W+jets 0.01 2.4 0.65

Z/γ∗+jets 0.04 1.9 –

tt̄ + V 0.04 – 0.27

Diboson 0.14 – –

Table 8: Left to right: Total constrained background yields, number of observed events, 95% CL observed (expec-
ted) upper limits on the number of BSM events, S 95

obs.(exp.), and the visible cross section, 〈Aεσ〉95
obs.(exp.).

Signal Region Background Observation S 95
obs.(exp.) 〈Aεσ〉95

obs.(exp.) [fb]

SRHH 3.1 ± 1.2 3 5.5
(
5.5+2.1
−1.3

)
0.27

(
0.27+0.11

−0.06

)
SRLM 22.1 ± 4.7 20 12.4

(
13.2+4.9

−3.5

)
0.61

(
0.65+0.24

−0.17

)
SRHM 2.1 ± 1.5 3 6.4

(
5.2+2.6
−0.9

)
0.31

(
0.26+0.13

−0.04

)

the expected background and the background uncertainty as input to the calculation. Possible signal
contamination in the control regions is neglected. Dividing the limits on the number of BSM events by
the integrated luminosity of the data sample, these can be interpreted as upper limits on the visible BSM
cross section, σvis = σ × A × ε, where σ is the production cross section for the BSM signal, A is the
acceptance defined as the fraction of events passing the geometric and kinematic selections at particle
level, and ε is the detector reconstruction, identification and trigger efficiency. Table 8 summarises, for
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Table 9: Acceptance times efficiency for the various signal regions, for a few selected (scalar top, scalar tau) signal
mass hypotheses. For each mass point, values are shown only for channels targeting that point. The lepton–lepton
results are taken from Ref. [50].

t̃1 mass τ̃1 mass lepton–lepton lepton–hadron lepton–hadron hadron–hadron
[GeV] [GeV] A × ε A × ε (SRLM) A × ε (SRHM) A × ε

153 87 - 1.29 × 10−4 - 2.27 × 10−4

195 87 - 1.36 × 10−4 - 4.46 × 10−4

195 148 1.71 × 10−4 7.80 × 10−5 - 7.00 × 10−4

195 185 8.01 × 10−4 - - -
391 148 7.32 × 10−4 - 9.44 × 10−4 3.40 × 10−3

503 493 1.03 × 10−2 - - -
561 87 - - 1.74 × 10−3 6.70 × 10−3

561 337 - - 1.30 × 10−2 9.90 × 10−3

561 500 - - 8.68 × 10−3 2.50 × 10−3

each SR, the estimated SM background yields, the observed numbers of events, and the expected and
observed upper limits on event yields from a BSM signal and on σvis. Table 9 summarises, for each SR,
the acceptance times efficiency for the relevant final state under various signal mass hypotheses.

Exclusion limits are derived for the scalar top pair production, assuming the t̃1 decays with 100% BR
into bνττ̃1 and the τ̃1 decays into a tau lepton and a gravitino. The fit used for these limits is similar
to that described in Sect. 5, but it now includes the expected signal in the likelihood, with an overall
signal-strength parameter constrained to be positive. The CRs and SRs are fit simultaneously, taking
into account the experimental and theoretical systematic uncertainties as nuisance parameters. The signal
contamination in the CRs is also taken into account. Exclusion contours are set in the plane defined by
the t̃1 and τ̃1 masses.

Systematic uncertainties on the signal expectations stemming from detector effects are included in the fit
in the same way as for the backgrounds. Systematic uncertainties on the signal cross section due to the
choice of renormalisation and factorisation scales and PDF uncertainties are calculated as described in
Sect. 6. Unlike other nuisance parameters, the signal cross-section uncertainties are only used to assess
the impact of a ±1σ variation on the observed limit.

For each mass hypothesis, the expected limits are calculated for the hadron–hadron selection, the two
lepton–hadron selections, and the statistical combination of the lepton–lepton selections described in
Ref. [50]. The selection giving the best expected sensitivity is used to compute the expected and observed
CLs value. The resulting exclusion contours are shown in Fig. 9. The limits for each individual channel
are reported in Fig. 10. The black dashed and red solid lines show the 95% CL expected and observed
limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty
(PDF and scale). The yellow bands around the expected limits show the ±1σ expectations. The red dotted
±1σ lines around the observed limit represent the results obtained when varying the nominal signal cross
section up or down by its theoretical uncertainty. Numerical limits quoted on the particle masses are taken
from these −1σ theoretical lines.

As can be seen from Fig. 9, models with a scalar top mass below 490 GeV are excluded. Depending on
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the scalar tau mass, some models with scalar top masses up to 650 GeV are also excluded. The scalar
top masses below 150 GeV are not fully considered but they are unlikely to be viable because the cross
section times branching ratio for t̃1 t̃1 → bτbτ+ X is more than 25 times larger than the cross section times
branching ratio for the production of tt̄ decaying into the same di-tau final state, and measurements of the
tt̄ cross section in various final states [107–110] are in good agreement with the SM prediction.
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Figure 9: Observed and expected exclusion contours at 95% CL in the (t̃1, τ̃1) mass plane from the combination of
all selections. The dashed and solid lines show the 95% CL expected and observed limits, respectively, including
all uncertainties except for the theoretical signal cross-section uncertainty (PDF and scale). The band around the
expected limit shows the ±1σ expectation. The dotted ±1σ lines around the observed limit represent the results
obtained when varying the nominal signal cross section up or down by the theoretical uncertainty. The LEP limit
on the mass of the scalar tau is also shown.
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8 Conclusion

A search for direct pair production of supersymmetric partners of the top quark decaying via a scalar tau
to a nearly massless gravitino has been performed using 20 fb−1 of pp collision data at

√
s = 8 TeV,

collected by the ATLAS experiment at the LHC in 2012. Scalar top candidates are searched for in events
with either two hadronically decaying taus, one hadronically decaying tau and one light lepton, or two
light leptons. Good agreement is observed between the Standard Model background estimate and the
data. The first results from a hadron collider search for the three-body decay mode to the scalar tau are
presented. In the context of the model considered, lower limits on the scalar top mass are set at 95%
confidence level, and found to be between 490 GeV and 650 GeV for scalar tau masses ranging from the
LEP limit to the scalar top mass.
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Figure 10: Observed and expected exclusion contours at 95% CL in the (t̃1, τ̃1) mass plane from the hadron–
hadron (top left), the lepton–hadron low-mass (top right), the lepton–hadron high-mass (bottom left) and the lepton–
lepton selections of Ref. [50] (bottom right). The dashed and solid lines show the 95% CL expected and observed
limits, respectively, including all uncertainties except for the theoretical signal cross-section uncertainty (PDF and
scale). The band around the expected limit shows the ±1σ expectation. The dotted ±1σ lines around the observed
limit represent the results obtained when varying the nominal signal cross section up or down by the theoretical
uncertainty. The LEP limit on the mass of the scalar tau is also shown.
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J. Machado Miguens122,126b, D. Macina30, D. Madaffari85, R. Madar34, H.J. Maddocks72, W.F. Mader44,
A. Madsen166, J. Maeda67, S. Maeland14, T. Maeno25, A. Maevskiy99, E. Magradze54, K. Mahboubi48,
J. Mahlstedt107, C. Maiani136, C. Maidantchik24a, A.A. Maier101, T. Maier100, A. Maio126a,126b,126d,
S. Majewski116, Y. Makida66, N. Makovec117, B. Malaescu80, Pa. Malecki39, V.P. Maleev123, F. Malek55,
U. Mallik63, D. Malon6, C. Malone143, S. Maltezos10, V.M. Malyshev109, S. Malyukov30, J. Mamuzic42,
G. Mancini47, B. Mandelli30, L. Mandelli91a, I. Mandić75, R. Mandrysch63, J. Maneira126a,126b,
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